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For years, there has been increasing attention placed on the metal removal processes such as turning and milling operations;
researchers from different areas focused on cutting conditions optimization. Cutting conditions optimization is a crucial step in
Computer Aided Process Planning (CAPP); it aims to select optimal cutting parameters (such as cutting speed, feed rate, depth
of cut, and number of passes) since these parameters affect production cost as well as production deadline. This paper deals with
multipass turning operation optimization using a proposed Hybrid Genetic Simulated Annealing Algorithm (HSAGA). The SA-
based local search is properly embedded into a GA search mechanism in order to move the GA away from being closed within
local optima. The unit production cost is considered in this work as objective function to minimize under different practical and
operational constraints. Taguchi method is then used to calibrate the parameters of proposed optimization approach. Finally,
different results obtained by various optimization algorithms are compared to the obtained solution and the proposed hybrid
evolutionary technique optimization has proved its effectiveness over other algorithms.

1. Introduction

Metal removal processes such as turning operations involve
different variables ranging from input variables (cutting
speed, feed rate, depth of cut, and number of passes) to output
variables (production cost, production time, tool life, dimen-
sional accuracy, surface roughness, cutting forces, cutting
temperature, and power consumption, etc.). Selecting appro-
priate cutting conditions has a significant impact on machin-
ing cost, product quality, and manufacturing cycle-time.
These parameters are feed rate (f), speed of cut (V), depth of
cut (d), and number of passes (n). Turning operation can be
illustrated in Figure 1.

The first paper related to parameter selection problem
of multipass turning presented by Shin and Joo [1] initiated
a series of studies. Authors from different backgrounds
attempted optimization of the same problem using various
optimization approaches [2, 3].

Chen and Tsai [4] proposed a hybrid technique based
on Simulated Annealing Algorithm and the Hooke-Jeeves
pattern search (SA-PS) to minimize the unit production cost;

Onwubolu and Kumalo [5] presented an optimization based
on Genetic Algorithm approach and have shown that GA
optimization technique gives better results than [4].However,
M.-C. Chen and K.-Y. Chen [6] demonstrated that the result
obtained by [5] was invalid, due to incorrect handling of the
equality constraint of cutting depth. Vijayakumar et al. [7]
have attempted the same problemusing theAnt ColonyOpti-
mization (ACO) Algorithm. Subsequently, Wang [8] proved
that the optimal solution, as found by [7], was also not valid.
Srinivas et al. [9] used Particle SwarmOptimization (PSO) to
minimize the unit production cost similarly to Chen and Tsai
[4].

In the last decade, hybrid optimization techniques con-
tinue to attract more researchers by their ability to solve com-
plex combinatorial optimization problems and various com-
binations approaches have been proposed by several authors.
Costa et al. [10] proposed a Hybrid Particle Swarm Opti-
mization (HPSO) technique for solving multipass turning
optimization problem as presented by [4]. Lee and Ponnam-
balam [11] used a hybrid algorithm by combining the GA and
the Artificial Immune Algorithm and attempted the same

Hindawi
Modelling and Simulation in Engineering
Volume 2017, Article ID 1940635, 10 pages
https://doi.org/10.1155/2017/1940635

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194638625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/1940635


2 Modelling and Simulation in Engineering

d

Workpiece

N

Tool

Chuck

Df

D0

Feed, f

Figure 1: Example of turning operation.

model as [7]. Xie and Guo [12] combined Ant Colony
Optimizations (ACO) with a Pass Enumerating method to
minimize unit production cost as well as [4].

Yildiz implemented several optimization techniques for
solving the multipass turning operations problem, such as
hybrid approach based on the Differential Evolution algo-
rithm [13], Hybrid Robust Differential Evolution (HRDE)
algorithm [14], Hybrid Artificial Bee Colony algorithm [15],
and Hybrid Robust Teaching-Learning-Based Optimization
(HRTLBO) algorithm [16] and hybrid PSO combined with
Receptor Editing property of immune system [17]. However,
any information about the optimal values of the machining
parameters was provided.

Aryanfar and Solimanpur [18] presented an optimization
ofmultipass turning operation based onGA technique which
aims to minimize the unit production cost. Jabri et al. [19]
proposed GA approach to solve a multiobjective problem
where machining cost and tool life cost are simultaneously
optimized. Rao and Kalyankar [20] used the Teaching-
Learning-Based Optimization algorithm to solve the same
problem (multipass turning operation). They concluded that
the TLBO can converge to the optimal solutionwithin a lower
number of iterations. Belloufi et al. [21] proposed a Firefly
Algorithm (FA), but constraint limitation such as cutting
force was incorrectly handled.

Mellal and Williams [22] utilized Cuckoo optimization
algorithm seeking to minimize production cost and compar-
ing the obtained results with previously published results. In
this study, the algorithm obtained the known optimal param-
eters in one case but failed in another. Chauhan et al. [23]
proposed a Totally Disturbed Particle Swarm Optimization
(TDSPO) for this problem where the phenomenon of chaos
is embedded at PSO in order to disturb the particles at later
iterations to prevent stagnation. Compared with the basic
PSO the proposed method has given best results. Gayatri and
Baskar [24] developed a sequential hybrid approach which
is a fusion of GA, SA, and PSO optimization techniques to
solve the multipass turning problem. In their work, three
different selectionmethods ofGAare studiedwhich are linear

ranking, tournament selection, and roulette wheel selection;
the former method is the best selection method of GA tech-
nique and the hybrid approach has proven effectiveness when
compared to each one. Another work related to the multipass
turning problem is recently published [25]; it is based on
a novel optimization technique called Flower Pollination
Algorithm (FPA).The global and local search operatorsmade
of this optimization technique a powerful approach and it has
given satisfactory results.

As presented in the above literature review, turning
process is a complex problem to solve since it involves numer-
ous elements. In fact, various optimization approaches are
proposed by authors from different areas hoping to improve
quality results in terms of precision and computational time.
Unfortunately, it appears that more efforts are needed to be
made to assist the process planner with reliable tool while
selecting best machining parameters. In this work, a Hybrid
Genetic SimulatedAnnealingAlgorithm is developed tomin-
imize the unit production cost of multipass turning process;
the performance of the proposed optimization approach is
highlighted by comparing the obtained results with different
optimal costs presented by various optimization techniques.

The rest of the paper is organized as follows. In the
next section, we present the problem concerned which is an
objective function to minimize subject to various operational
and practical constraints. In Section 3 the proposed hybrid
algorithm optimization for multipass turning operation is
presented. Parameters calibration of the proposed algorithm
is then studied and obtained results are presented and
compared to previously published works in Section 4. Finally,
concluding remarks and some possible future works are
given.

2. Multipass Turning Mathematical Model

Themathematical model of multipass turning operation pro-
posed by [1] has remained a topic of interest for researchers;
it is adopted in the present paper and the unit production
cost subject to constraints will be minimized. Constraints
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including parameter bounds and cutting condition restraints
on the tool and the workpiece are taken into account in
this study. A detailed presentation of the objective and the
constraints is given below.

2.1. Objective Function. The unit production cost, UC, for
multipass turning operations can be divided into four basic
cost elements.

(i) Cutting cost by actual time:

𝐶𝑀 = 𝑘0 × [ 𝜋𝐷𝐿1000𝑉𝑟𝑓𝑟 (
𝑑𝑡 − 𝑑𝑠𝑑𝑟 ) + 𝜋𝐷𝐿1000𝑉𝑠𝑓𝑠 ] . (1)

(ii) Machine idle cost due to loading and unloading
operations and idling tool motion:

𝐶𝑙 = 𝑘0 × [𝑡𝑐 + (ℎ1𝐿 + ℎ2) (𝑑𝑡 − 𝑑𝑠𝑑𝑟 + 1)] . (2)

(iii) Tool replacement cost:

𝐶𝑅 = 𝑘0 × 𝑡𝑒𝑇𝑝 [
𝜋𝐷𝐿1000𝑉𝑟𝐹𝑟 (

𝑑𝑡 − 𝑑𝑠𝑑𝑟 ) + 𝜋𝐷𝐿1000𝑉𝑠𝑓𝑠 ] . (3)

(iv) Tool cost:

𝐶𝑇 = 𝑘𝑡𝑇𝑝 [
𝜋𝐷𝐿1000𝑉𝑟𝑓𝑟 (

𝑑𝑡 − 𝑑𝑠𝑑𝑟 ) + 𝜋𝐷𝐿1000𝑉𝑠𝑓𝑠 ] , (4)

where

𝑇𝑝 = 𝜃𝑇𝑟 + (1 − 𝜃) 𝑇𝑠 𝑇𝑟 = 𝐶0𝑉𝑝𝑟 𝑓𝑞𝑟 𝑑𝑟𝑟 𝑇𝑠 =
𝐶0𝑉𝑝𝑠 𝑓𝑞𝑠 𝑑𝑟𝑠 . (5)

Finally, objective function which is the sum of these costs can
be expressed as follows:

min (UC) = min [𝑔 (𝑥)] = min (𝐶𝑀 + 𝐶𝑙 + 𝐶𝑅 + 𝐶𝑇) . (6)

2.2. Constraints. Constraints are technical and operational
limitations that should be taken into consideration during
the roughing and finishing operations. These constraints
involve parameter bounds, operating constraints, and cutting
condition relations.

(i) Parameter Bounds

𝑉𝐿 ≤ 𝑉𝑟 ≤ 𝑉𝑈,
𝑓𝐿 ≤ 𝑓𝑟 ≤ 𝑓𝑈,
𝑑𝐿 ≤ 𝑑𝑟 ≤ 𝑑𝑈,
𝑉𝐿 ≤ 𝑉𝑠 ≤ 𝑉𝑈,
𝑓𝐿 ≤ 𝑓𝑠 ≤ 𝑓𝑈,
𝑑𝐿 ≤ 𝑑𝑠 ≤ 𝑑𝑈.

(7)

(ii) Operating Constraints. The cutting force and the power
constraints for both roughing and finishing operations are
expressed as follows:

𝐹𝑟 = 108 × 𝑓𝜇𝑟 𝑑]𝑟 ≤ 𝐹𝑈, (8)

𝐹𝑠 = 108 × 𝑓𝜇𝑠 𝑑]𝑠 ≤ 𝐹𝑈, (9)

𝑃𝑟 = 𝑓𝑟𝑉𝑟6120 × 𝜂 ≤ 𝑃𝑈, (10)

𝑃𝑠 = 𝑓𝑠𝑉𝑠6120 × 𝜂 ≤ 𝑃𝑈. (11)

The chip-tool interface constraint of (10) follows the formu-
lation of Hati and Rao (1976) [26]:

𝑄𝑟 = 𝑘2𝑉𝜏𝑟 𝑓𝜑𝑟 𝑑𝛿𝑟 ≤ 𝑄𝑈,
𝑄𝑠 = 𝑘2𝑉𝜏𝑠 𝑓𝜑𝑠 𝑑𝛿𝑠 ≤ 𝑄𝑈.

(12)

The stable cutting region constraint of (11) and the surface
finish constraint of (17) follow the formulation of Narang and
Fischer (1993) [27]:

𝑉𝜆𝑟 𝑓𝑟𝑑𝜐𝑟 ≥ SC𝑈,
𝑉𝜆𝑠 𝑓𝑠𝑑𝜐𝑠 ≥ SC𝑈,

𝑓2𝑠8 × 𝑅 ≤ SR𝑈.
(13)

(iii) Cutting Parameter Relations

𝑉𝑠 ≥ 𝑘3𝑉𝑟, (14)

𝑓𝑟 ≥ 𝑘4𝑓𝑠, (15)

𝑑𝑟 ≥ 𝑘5𝑑𝑠, (16)

𝑑𝑟 = 𝑑𝑡 − 𝑑𝑠𝑛 . (17)

3. Proposed Solution Algorithm

The proposed HSAGA is based on the combination between
the GA algorithm and SA-based local search. In this section
we present a brief overview on SA and GA techniques. GA
is a randomized global search technique that solves problems
by imitating processes observed fromnatural evolution; it has
been introduced byHolland in 1960s and further described by
Goldberg [28]. So far, GA has been successfully adopted in
many complex optimization problems and shows its merits
over traditional optimization methods. GA starts with a
population of candidate solutions that evolves to reach near
optimal solution. Each candidate is usually coded as a binary
string “chromosome” in order to undergo reproduction; the
fitness of each individual is then evaluated after the operation
of decoding chromosome.
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On the other hand, The SA algorithm mimics the
behaviour of a physical system that is heated and then
cooled slowly, such as growing crystals or annealing metals.
Presented for the first time by Kirkpatrick et al. [29], it can
be used to solve many combinatorial process optimization
problems. This technique starts with selection of an initial
random process decision vector and moves to new neigh-
bourhood decision vector that improves objective function
value. SA techniquemay accept inferior decision vector based
on certain probabilistic measure “𝑝” called the Boltzmann
statistics (see (18)), which helps the algorithm to escape
entrapment in local optima and eventually reach the global
optima:

𝑝 = exp(−Δ𝐸/𝑇), (18)

where Δ𝐸 represents the difference in the objective value
between the generated solution 𝑥 and the current solution𝑥 (see (19)). “𝑇” is the annealing initial temperature

Δ𝐸 = 𝑔 (𝑥) − 𝑔 (𝑥) . (19)

GA optimization technique has strong global search ability,
but it also has limitations such as a premature and slow con-
vergence rate, as well as weak local search ability. On the other
hand, SA algorithmhas strong local search ability and no pre-
mature problems. In this paper, a Hybrid Simulated Anneal-
ing Genetic Algorithm (HSAGA) is proposed to overcome
the limits of each of the two techniques, bringing into play
their respective advantages, and improve the solving effi-
ciency.

3.1. Initialization. In this step of Genetic Algorithm a pop-
ulation of individuals (for each variable) is generated using
the random uniform distribution in the defined interval, for
both roughing and finishing operations. Feed rate (f) is a real
number generated between [𝑓𝐿, 𝑓𝑈]; cutting speed (V) and
depth of cut (d) are integer numbers generated in the ranges[𝑉𝐿, 𝑉𝑈], [𝑑𝐿, 𝑑𝑈], respectively. In order to take into account
the relation between 𝑑𝑟 and 𝑑𝑠, the depth of cut of roughing is
derived, subject to the fact that they lie between the accepted
limits of [𝑑𝐿, 𝑑𝑈]. It should be noted that the population size
“Popsize” has a considerable impact on quality solution and
computational duration; thus it needs to be fixed at the appro-
priate value. Each element of the solution space “𝑥” has a cost
value obtained using the objective function: 𝑔(𝑥).
3.2. Evaluation and Constraints Handling. The purpose of
this optimization is to compute the minimal cost of a turning
operation. A score function value is associated with each
element of solution space (competitiveness). The penalty
function is used to penalize the individuals who violate the
constraints.Themore the constraints are violated, the heavier
the penalty will be done. As a result, the fitness of them will
be small. In this way, unfeasible solutions have more chance
to be eliminated from the solution space. Using the objective
function the probability of selection is calculated as follows:

𝑒𝑖 = Δ𝑔
∑pop_size
𝑖=1 Δ𝑔/pop_size , (20)

where

Δ𝑔 = 𝑔worst − 𝑔𝑖. (21)

𝑔𝑖 is the value of objective function of the current element
“𝑖”. 𝑔worst is the worst value of the current solution space (the
maximum value of objective function).

The probability 𝑒𝑖 gives to the element the chance to be
reproduced based on its competitiveness.

3.3. Solution Encoding. Individuals which represent machin-
ing parameters have to undergo some genetic operations
such as crossover and mutation. To do so, they should be
encoded appropriately. A proper encoding scheme, which is
indicative of the characteristics of a solution, has considerable
influence on the performance of quality solution. In this step
we adopt the same encoding scheme of [4] where individuals
represented as string-bit block called (chromosomes) are
converted to a binary string and allocated to a 22-bit block.

The operation of converting each individual to a
binary string from a real number “𝑎” to a binary string{𝑏21, 𝑏20, . . . , 𝑏0} is calculated by using the following equation:

𝑎 = 𝑎 + 2.04/ (222 − 1) . (22)

𝑎 is then transformed to a binary string. For example, a feed
rate value of “0.729” has a string bock as follows:

(1010111010100111111001)2 . (23)

With this representation genetic operators can be applied to
individuals and they can be reconverted into integer or real
number again, using the binary mapping technique.

3.4. Genetic Simulated Annealing Operators Perturbation

3.4.1. Two Cut-Points Crossover. Crossover is a mechanism
for diversification that encourages GA to examine unvisited
regions. Two-point crossover calls for two randomly gen-
erated points to be selected on the parent strings and all
bits between the two points are swapped between the parent
strings, rendering two child strings. For example, two strings
of the first block, having cutting speed values of 78 and
108m/min, respectively, after crossover operation, become
110 and 76m/min, respectively:

String 1: 0000000000000001'001'110

String 2: 0000000000000001'101'100

New String 1: 0000000000000001'101'110

New String 2: 0000000000000001'001'100

(24)

3.4.2. Mutation and Neighbourhood Principle. Mutation is a
randommodification of randomly selected bits.This operator
performs modification into chromosomes with certain prob-
ability “𝑃𝑚” and is considered as a perturbation mechanism
to explore neighbours of possible solutions. For example, the
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previous new strings 1 (mutated positions are underlined)
become

New String 1: 0000000000000001001110. (25)

Applying the crossover and mutation operations, new dif-
ferent individuals from parent strings are generated. The
metropolis acceptance criterion expressed by (19) is then
applied to select which of individuals go into the next
generation. In fact, the Old_pop and New_pop go to the
next generation through competition; throughout this com-
petition, two elements are extracted from the new solution:
f_newbest and f_worst (the minimum and the maximum
solutions of the offspring individuals, resp.). The algorithm
accepts replacing the old solution in two cases:

(i) 1st case: if 𝑓_newbest is inferior to 𝑓_best (the best
solution of the parents population)

(ii) 2nd case: when 𝑓_newbest is superior to 𝑓_best and
the probability 𝑝 expressed by (19) is superior to
random value generated between [0, 1]

3.5. Cooling Schedule and Termination Condition. In this
paper, the linear pattern of temperature reduction has been
used, where the temperature is obtained from the following
equation:

𝑇𝑡+1 = 𝛼 × 𝑇𝑡. (26)

The termination condition is when the program makes 𝑘
iterations without improvement of the best solution. The
HSAGA algorithm is shown in Algorithm 1.

4. Results and Discussion

In this section, minimization of unit production cost as
reported in the literature is considered. The hybrid SAGA
optimization technique is conducted in order to compute the
optimal machining parameters of the metal cutting problem.
The example considered is a cylindrical workpiece with
500mm length and 50mm diameter and the desired depth
to cut is 6mm. Machining data is given in Table 1.

The hybrid SAGA is written in python 3.5 and runs on
Intel(R) Core(TM) i5-2430M CPU @2.4GHz, with 4GB of
RAM. A set of parameters are involved in the proposed algo-
rithm; Table 2 shows this optimization algorithm parameters.
As shown in the second column, a range is given for each
parameter. Thus, a tuning parameter is needed to select the
best values that ensure the program convergence and stability.

4.1. Parameters Tuning. In this stage, Taguchi method is used
to select suitable combination of the above-mentioned factors
levels. Widely used in robust design, Taguchi technique is
a universal approach [30]. The robust parameter design is
based on the minimization of the sensitivity of noise by
determination of factors levels. In such optimization, the
response at each setting of parameters is treated as a measure
to indicate the mean and the variance of some quality
characteristics. These two indicators are combined into a

Begin
Set 𝑑𝑡, 𝑇, 𝛼, and pop_size
Generate feasible solution Pop0
For 𝑖 = 1 to pop_size
Calculate fitness values 𝑔𝑖(Pop0)

end𝑓_best = min[𝑔]𝑘 = 1
while 𝑘 ≤ max_iteration:

While 𝑖 ≤ pop_size:
Select two individuals from Pop𝑡
If random ≤ 𝑃𝑐:

Apply crossover
If random ≤ 𝑃𝑚:
Apply mutation

end𝑖 = 𝑖 + 2
end
new-pop
for 𝑖 = 1 to pop_size:

Calculate new fitness values 𝑓𝑖(new-pop)
end𝑓_newbest = min[𝑓]𝑓_worst = max[𝑓]
if 𝑓_newbest < 𝑓_best:𝑘 = 1

Temp-pop = new-pop[𝑓_newbest, : ]
else if 𝑓_ newbest == 𝑓 _best:
Temp-pop = new-pop𝑘 + +
if 𝑓_newbest > 𝑓 _best:𝑘 = 1𝑧 = exp[−(𝑓_ newbest −𝑓_best)/𝑇]
if 𝑧 > random:
Temp-pop = new-pop[𝑓_ newbest , : ]

end
new-pop[ : , 𝑓_ worst _ ] = Temp-pop
Pop𝑡+1 = new-pop𝑇 = 𝑇 × 𝛼

end
Return optimal value

end

Algorithm 1: HSAGA proposed algorithm.

single performance measure so called the signal-to-noise
(𝑆/𝑁) ration. Taguchi proposed different categories of robust
parameter design, smaller better, larger better, and so on [31].
The category smaller better is the suitable function for our
problem, and it is expressed by

𝑆𝑁 = −10 log10(1𝑛
𝑛∑
𝑖=1

1𝑦2𝑖 ) , (27)

where 𝑗, 𝑦𝑖, and 𝑛 denote the trial number, response variable,
and the number of replications, respectively. In the proposed
algorithm, seven factors should be calibrated, each with three
levels.
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Table 1: Machining data.

Parameter Value
𝐷 50mm
𝐶0 6 ⋅ 1011
𝑉𝑠𝑈 500m/min
𝑓𝑟𝑈 0.9mm/rev
𝑑𝑟𝐿 1mm
𝑑𝑠𝑈 3mm
𝐹𝑈 200Kgf
𝑄𝑈 1000∘C
𝑘1 108
𝑘4 2.5
𝑄 1.75
] 0.95
𝜐 −1
𝑅 1.2mm
𝑘𝑡 2.5 $/min
𝑡𝑐 0.75min/piece
𝐿 300mm
𝑉𝑟𝑈 500m/min
𝑉𝑠𝐿 50m/min
𝑓𝑠𝐿 0.1mm/rev
𝑑𝑟𝑈 3mm
𝑇𝐿 25min
𝑃𝑈 5KW
𝜃 0.5
𝑘2 132
𝑘5 1.0
𝑅 0.75
𝜂 0.85
𝜏 0.4
𝛿 0.105
ℎ1 7 ⋅ 10−4
𝑑𝑡 6mm
𝑉𝑟𝐿 50m/min
𝑓𝑟𝐿 0.1mm/rev
𝑓𝑠𝑈 0.9mm/rev
𝑑𝑠𝐿 1mm
𝑇𝑈 45min
SC 140
SR𝑈 10 𝜇m
𝑘3 1.0
𝑃 5
𝜇 0.75
𝜆 2
𝜑 0.2
𝑘0 0.5 $/min
ℎ2 0.3
𝑡𝑒 1.5min/edge

Table 2: HSAGA parameters.

Parameters Range/values
Population size (Popsize) 20–100
Maximum iteration number 50–200
Crossover probability (𝑃𝑐) 70%–80%
Mutation probability (𝑃𝑚) 10%–30%
Initial temperature 500–900
Cooling rate (𝛼) 0.70–0.90
Penalty ($) 1–10

The selected L27 orthogonal array has 27 different com-
binations of parameter levels, which means that a total of
27 tests are conducted, and each test is replicated five times
in order to obtain more reliable results. Table 3 shows the
obtained results of each combination of factors proposed by
Taguchi method.

To illustrate the performance of Taguchimethod, Figure 2
presents evolution of mean S/N ratios of each factor. The
levels with the highest values of S/N ratio are selected as the
optimal value for each of them; these parameters values are
gathered in Table 4.

4.2. Comparisons with Other Results. Using the above-
mentioned algorithm factors, optimal cutting parameters
are obtained and related minimal cost is 2.06$. Table 5
summarizes the optimal machining parameters, constraints
values, and limitation; meanwhile it can be seen clearly that
all constraints are respected. Moreover, convergence curves
of the unit cost using HSAGA are given in Figure 3. It can
be observed from this figure that obtained costs solutions
are the same for each test, which indicates that the proposed
algorithm with selected parameter values based on Taguchi
method has good stability.

As presented in the Introduction, there are abundant
results in the literature which make it important to compare
our results with the others. The hybrid approach, used for
the work reported here, is compared with obtained results of
some research papers cited previously in the literature. Table 6
shows that our optimization technique gives better solution
compared to other optimization approaches.

5. Conclusion

This work deals with metal removal process and particularly
multipass turning operation. A new proposed optimiza-
tion approach is applied to find minimum unit production
cost of this turning operation. This approach is based on
combination of SA local search technique with GA global
optimization providing a strong possibility to GA of avoiding
local minima and having a marked improvement of its
performance. Compared to various optimization techniques,
obtained results show that HSAGA is an efficient optimiza-
tion technique and it can be interesting to be implemented in
CAPP.
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Table 3: L27 orthogonal array.

Popsize Temp 𝑃𝑐 Cool-Rate 𝑃𝑚 Max-It Pen. 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5
20 500 0,70 0,7 0,10 50 1 2,34 2,39 2,79 3,06 3,05
20 500 0,70 0,7 0,15 100 5 3,15 2,39 2,50 2,15 2,70
20 500 0,70 0,7 0,20 200 10 2,61 2,41 2,63 2,70 2,16
20 750 0,75 0,8 0,10 50 1 2,46 2,76 2,26 2,51 2,45
20 750 0,75 0,8 0,15 100 5 4,74 2,34 3,16 2,87 2,08
20 750 0,75 0,8 0,20 200 10 3,11 2,21 2,18 2,50 2,48
20 900 0,80 0,9 0,10 50 1 2,68 2,55 3,11 2,08 2,40
20 900 0,80 0,9 0,15 100 5 3,59 2,07 2,37 2,56 2,49
20 900 0,80 0,9 0,20 200 10 3,14 3,11 2,55 2,87 2,32
50 500 0,75 0,9 0,10 100 10 2,18 2,21 2,07 2,07 2,44
50 500 0,75 0,9 0,15 200 1 2,07 2,08 2,07 2,08 2,08
50 500 0,75 0,9 0,20 50 5 2,44 2,21 2,07 2,48 2,09
50 750 0,80 0,7 0,10 100 10 2,18 2,08 2,21 2,07 2,19
50 750 0,80 0,7 0,15 200 1 2,18 2,08 2,08 2,18 2,07
50 750 0,80 0,7 0,20 50 5 2,21 2,08 2,39 2,08 2,07
50 900 0,70 0,8 0,10 100 10 2,07 2,07 2,07 2,19 2,08
50 900 0,70 0,8 0,15 200 1 2,21 2,07 2,07 2,19 2,07
50 900 0,70 0,8 0,20 50 5 2,19 2,07 2,17 2,08 2,07
100 500 0,80 0,8 0,10 200 5 2,20 2,08 2,07 2,07 2,21
100 500 0,80 0,8 0,15 50 10 2,07 2,08 2,07 2,07 2,12
100 500 0,80 0,8 0,20 100 1 2,07 2,07 2,07 2,07 2,12
100 750 0,70 0,9 0,10 200 5 2,08 2,07 2,07 2,08 2,08
100 750 0,70 0,9 0,15 50 10 2,08 2,12 2,10 2,07 2,08
100 750 0,70 0,9 0,20 100 1 2,06 2,07 2,08 2,07 2,17
100 900 0,75 0,7 0,10 200 5 2,08 2,07 2,07 2,06 2,21
100 900 0,75 0,7 0,15 50 10 2,07 2,07 2,21 2,39 2,16
100 900 0,75 0,7 0,20 100 1 2,07 2,08 2,09 2,07 2,14

Popsize Temp Cool-Rate Max-It Penality

Main effects plot for SN ratios
Data means

Signal-to-noise: the smaller, the better

20 50 100 500 750 900 0,70 0,75 0,80 0,7 0,8 0,9 0,10 0,15 0,20 50 100 200 1 5 10
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Figure 2: The mean 𝑆/𝑁 plot for each level of the HSAGA factors.



8 Modelling and Simulation in Engineering

Test 1
Test 2
Test 3

2

2.5

3

3.5

4

4.5

5

U
ni

t c
os

t (
$)

100 200 300 400 500 600 7000
Generations

Figure 3: Trend of unit cost by HSAGA.

Table 4: HSAGA optimal parameters values.

Algorithm parameter Optimal value
Population size (Popsize) 100
Maximum iteration number 200
Crossover probability (𝑃𝑐) 70%
Mutation probability (𝑃𝑚) 10%
Initial temperature (𝑇) 500
Cooling rate (𝛼) 0.70
Penalty (Penal) 1

Nomenclature

𝑈𝑐: Unit production cost, excluding material
cost ($/piece)

CM: Cutting cost by actual time in cutting
($/piece)𝐶𝐼: Machine idle cost due to loading and
unloading operations and tool idle motion
time ($/piece)𝐶𝑅: Tool replacement cost ($/piece)𝐶𝑇: Tool cost ($/piece)𝑉𝑟 and 𝑉𝑠: Cutting speeds in rough and finish
machining, respectively (m/min)𝑉𝑟𝐿 and 𝑉𝑟𝑈: Lower and upper bounds of cutting speed
in rough machining, respectively (m/min)𝑉𝑠𝐿 and 𝑉𝑠𝑈: Lower and upper bounds of cutting speed
in finish machining, respectively (m/min)𝑑𝑟 and 𝑑𝑠: Depths of cut for each pass of rough and
finish machining, respectively (mm)𝑑𝑟𝐿 and 𝑑𝑟𝑈: Lower and upper bounds of depth of
roughing cut, respectively (mm)𝑑𝑠𝐿 and 𝑑𝑠𝑈: Lower and upper bounds of depth of
finishing cut, respectively (mm)

Table 5: Obtained optimal unit cost using HSAGA approach.

Variables Range/limit HSAGA result

Process
parameters

𝑉𝑟 (m/min) 50–500 111
𝑓𝑟 (mm/rev) 0.1–0.9 0.565
𝑑𝑟 (mm) 1.0–3.0 3
𝑉𝑠 (m/min) 50–500 171
𝑓𝑠 (mm/rev) 0.1–0.9 0.225
𝑑𝑠 (mm) 1.0–3.0 3

Constraints for
rough cut

𝑇𝑟 (min) ≤25–45 44.26
𝑓𝑟 (Kgf) ≤200 199.16
𝑃𝑟 (Kw) ≤5 4.22
SCr ≥140 2278

𝑄𝑟 (∘C) ≤1000 866

Constraints for
finish cut

𝑇𝑠 25–45 24.87
𝐹𝑠 (Kgf) ≤200 98.5
𝑃𝑠 (Kw) ≤5 3.25
SCs ≥140 2164

𝑄𝑠 (∘C) ≤1000 857
SR𝑈 (𝜇m) ≤10 5.3

Constraints on
variable
relations

𝐾3 ≥1.0 1.54
𝐾4 ≥2.5 2.51
𝐾5 ≥1.0 1

Minimum cost
($) 2.06

fr and 𝑓s: Feed rates in rough and finish machining,
respectively (mm/rev)

frL and frU: Lower and upper bounds of feed rate in
rough machining, respectively (mm/rev)
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Table 6: Comparison of obtained results of various optimization techniques.

References Opti. method Cutting parameters Unit cost ($) Viol. const.𝑉𝑟 𝑓𝑟 𝑑𝑟 𝑉𝑠 𝑓𝑠 𝑑𝑠
Present HSAGA 111 0.565 3 171 0.225 3 2.06 —
[25] FPA 109.66 0.5655 3 169.97 0.2262 3 2.03 —
[24] HGSS 499.99 0.8939 2.5 93.89 0.8836 1 2.22 Force
[23] Chaotic PSO 123.34 0.5655 3 169.97 0.2262 3 1.95 Tool life
[22] COA 123.34 0.5655 3 169.978 0.2262 3 1.959 Tool life
[21] Firefly 98.4 0.82 3 162.28 0.25 3 1.93 Force
[20] TLBO 110 0.565 3 170 0.226 3 2.28 Tool life
[18] GA 109.663 0.566 3 169.986 0.226 3 1.12
[17] Hybrid PSO — — — — — — 2.04

[16] HDRE
AIA

—
—

—
—

—
—

—
—

—
—

—
—

2.04
2.12

[15] HABC — — — — — — 2.04
[14] HRTLBO — — — — — — 2.04

[13]
DERE
ABC
DE

—
—
—

—
—
—

—
—
—

—
—
—

—
—
—

—
—
—

2.04
2.11
2.13

[12] ACO 109.66 0.565 3 169.97 0.226 3 2.07 —

[11] GA-AIS
PSO

133.28
141.7

0.8
0.71

2.9
2.8

333.23
330.74

0.8
0.71

2.5
2.3

1.5
1.6

Force
Force

[10] HPSO 109.66 0.5655 3 169.97 0.2262 3 2.03 Tool life
[9] PSO 106.69 0.897 2 155.89 0.28 2 2.27 —

[8] Analytic
method 103.05 0.9 3 162.02 0.24 3 1.96 Force

[7] ACO 103.05 0.9 — 162.02 0.24 — 1.62 Force
[6] GA — — — — — — 2.3
[5] GA — — — — — — 1.76
[4] SA-PS — — — — — — 2.29

fsL and fsU: Lower and upper bounds of feed rate in
finish machining, respectively (mm/rev)𝑁: Number of rough cuts, an integer𝑑𝑡: Depth of metal to be removed (mm)𝐷, 𝐿: Diameter and length of workpiece,
respectively (mm)𝑘0: Direct labor cost, including overheads
($/min)𝑘𝑡: Cutting edge cost ($/edge)𝑡𝑒 and 𝑡𝑟: Time required to exchange a tool and tool
replacement time, respectively (min)ℎ1 and ℎ2: Constants pertaining to tool travel and
approach/departing time, respectively
(min)𝑇𝑟 and 𝑇𝑓: Expected tool life for rough and finish
machining, respectively (min)𝑇𝑝: Tool life of weighted combination of 𝑇𝑟
and 𝑇𝑠 (min)Θ: Weight for 𝑇𝑝, 0 < 𝜃 < 1𝑇𝑈, 𝑇𝐿: Upper and lower bounds for tool life,
respectively (min)𝑝, 𝑞, 𝑟, and C0: 𝑝 = 1/𝛼, 𝑞 = 𝛽/𝛼, 𝑟 = 𝛾/𝛼, and 𝐶0 = 𝐶1/𝛼,
respectively

SC: Limit of stable cutting region𝑅: Nose radius of the cutting tool (mm)𝐹𝑟 and 𝐹𝑠: Cutting forces during rough and finish
machining, respectively (kgf)

FU: Maximum allowable cutting force (kgf)
K1, ], and 𝜇: Constants of the cutting force equation𝑃𝑟 and 𝑃𝑠: Cutting powers during rough and finish

machining, respectively (kW)
PU: Maximum allowable cutting power (kW)Η: Power efficiency𝜆, 𝜐: Constants related to expression of the

stable cutting region𝑄𝑟 and 𝑄𝑠: Constraint chip-tool interface
temperatures during rough and finish
machining, respectively (∘C)𝑄𝑈: Maximum allowable chip-tool interface
temperature (∘C)𝑘2, 𝜏, 𝜑, and 𝛿: Constants related to the equation of
chip-tool interface temperature𝑘3, 𝑘4, and 𝑘5: Constants for roughing and finishing
parameter relations

SRU: Maximum allowable surface roughness
(mm).
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