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In this paper, an accurate and efficient image matching method based on phase correlation is proposed to estimate disparity
with subpixel precision, which is used for the stereovision of narrow baseline remotely sensed images. The multistep strategy is
adopted in our technical frame; thus the disparity estimation is divided into two steps: integer-pixel prematching and subpixel
matching. Firstly, integer-pixel disparity is estimated by employing a cross-based local matching method. Then the relationship of
corresponding points is established under the guidance of integer-pixel disparity.The subimages are extracted through selecting the
corresponding points as the center. Finally, the subpixel disparity is obtained by matching the subimages utilizing a novel variant of
phase correlation approach.The experiment results show that the proposedmethod canmatch different kinds of large-sized narrow
baseline remotely sensed images and estimate disparity with subpixel precision automatically.

1. Introduction

Stereovision is an advanced task in remote sensing and
photogrammetry [1]. The aim of stereovision is to estimate
the disparity through matching two or more images of same
scene in different views and extract digital elevation model
(DEM) through the disparity [2]. Intuitively, the disparity
represents the displacement vectors between corresponding
pixels that horizontally shift from the left image to the right
image [3]. The stereovision of narrow baseline remotely
sensed imagery is a new research hotspot for stereovision in
recent years [4]. Automatic subpixel image matching is the
essential technique for narrow baseline stereovision [5]. We
will brief review the stereovision with different baseline and
subpixel imagematchingmethod in the remaining part of this
section, respectively.

1.1. Principle of Stereovision. The process of DEM extracting
can be represented by a stereovision model [6], as shown in
Figure 1. B and H express the baseline and the altitude of a
satellite. L and R are the left and right images captured by

the satellite from different views; h represents the height of
ground object to be measured. A and B are the 3D points
of the real world scene, which are projected to the three 2D
locations a, 𝑎󸀠, and 𝑏󸀠 in L andR.The 2Dpoints ofA andB in L
are coincident; thus the disparity d of the two corresponding
points a and 𝑎󸀠 equals the distance between 𝑎󸀠 and 𝑏󸀠 in R. D
represents the mapping of d in the 3D scene; according to the
similar triangles of geometry principle, the equation 𝐷/𝐵 =ℎ/(𝐻 − ℎ) is established. Assume that the ground sample
distance (GSD) of the sensed image is G (meters/pixel); the
height h of ground object can be generated: ℎ = 𝑑𝐺/(𝐵/(𝐻 −ℎ)). Because the altitude of satellite is much larger than the
height of ground object, that is, 𝐻 ≫ ℎ, the height h can
be approximated as ℎ ≈ 𝑑𝐺/(𝐵/𝐻). It can be known that
the precision of h is proportional to the precision of disparity
and GSD and is inversely proportional to the B/H ratio. In
most real sensors, H and G are limited and fixed; therefore,
only two aspects can be used to enhance the precision of h:(1) Improve the precision of disparity to subpixel level [7];(2) increase the length of baseline, that is, increasing the B/H
ratio. In traditional stereovision of remotely sensed imagery,
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Figure 1: Stereovision model.

B/H ratio is usually set to about 1, called stereovision of
wide baseline remotely sensed imagery. Even if the disparity
precision is only up to the integer-pixel level, the DEM can be
extracted accurately.

1.2. Comparison of Wide Baseline and Narrow Baseline Stereo.
The stereovision of wide baseline remotely sensed imagery
can not perform well in urban areas with dense buildings
[8]. The captured process of the wide baseline remotely
sensed image pair is shown in Figure 2(a). Due to the long
baseline and large viewing angle, there is a large occlusion
area and large geometric distortion between the images. In
addition, the interval time of two imaging processes is long;
the illumination condition has changed greatly. The above
interference factors will lead to a high false matching rate
in stereovision of wide baseline remotely sensed imagery.
Therefore, it requires a lot of manual and postcorrection to
extract DEM [9]. In order to solve this problem of DEM
extraction in urban areas, stereovision of narrow baseline
remotely sensed imagery technique has emerged and gradu-
ally become a new research focus in stereovision and remote
sensing [10, 11]. The captured process of the narrow baseline
remotely sensed image pair is shown in Figure 2(b). Due
to the short baseline and small viewing angle, there is a
small occlusion area and little geometric distortion between
images. When 𝐵/𝐻 → 0 (i.e., a very narrow baseline),
then occlusions will be minimized, essentially because each
image view becomes more geometrically similar. In addition,
the interval time of two imaging processes is short; it can
be considered that the illumination condition is similar to
the same time. Due to above advantages, the stereovision
of narrow baseline remotely sensed imagery is suitable for
extracting DEM in the urban areas [8]. Two sets of simulated
remotely sensed image pairs provided by Beijing Institute
of Space Mechanics and Electricity are shown in Figure 3.
Figure 3(a) is simulated wide baseline remotely sensed image
pair with a B/H ratio of 1, and Figure 3(b) is simulated narrow
baseline remotely sensed image pair with a B/H ratio of 0.05.
From the comparison of Figures 3(a) and 3(b), we can see that
the occlusion range and the geometric distortion of narrow
baseline image pair are less, and there is a higher degree
of similarity between left and right image. It is beneficial to

improve the accuracy of imagematching; thus fully automatic
DEM extraction can be achieved through stereovision of
narrow baseline remotely sensed imagery.

However the reduction of B/H ratio will inevitably lead
to the reduction of precision for DEM extracting. If the
stereovision of narrow baseline is going to extract the DEM
as precise as the stereovision of wide baseline, the disparity
needs to achieve 1/𝑇 pixel precision, where 𝑇 is the ratio of
wide baseline and narrow baseline [6]. For example, when
B/H is 0.05, the precision of disparity needs to achieve 1/20
pixels to satisfy the DEM extraction. Therefore, the key
technique for the stereovision of narrow baseline remotely
sensed imagery is the high precision subpixel imagematching
[5, 7].

1.3. A Survey of Subpixel Image Matching Method. Auto-
matic subpixel image matching is one of the most essential
techniques in stereovision. It can be divided into three
major categories: interpolation based method, fitting based
method, and phase correlation method [12]. Interpolation
based method includes the original image interpolation
method and the matching cost interpolation method. The
matching cost interpolation method is the representative
algorithm, which combines the advantages of high efficiency
and accuracy [13, 14]. The initial cost volume is interpolated
by various interpolation function, and the subpixel disparity
is estimated by searching the extremum of interpolated cost
volume. At present, this method is usually used for the
auxiliary system of driverless vehicles, robot navigation, and
unmanned aerial vehicle. The original image interpolation
method significantly increases the computing load, limits the
possible precision to the chosen upsampling rate, and also
may introduce interpolation artifacts [5]. The fitting based
method generally postprocess the cost volume or disparity
plane by fitting method to estimate the subpixel disparity.
The cost volume fitting method fits the peak neighborhood
of cost volume into a parabola; then the subpixel disparity
is estimated by searching the extreme of parabola [15, 16].
The disparity plane fitting method models the disparity
field by segmentation constraints, and subpixel disparity is
obtained by fitting disparity plane [17–20]. The fitting based
method is efficient, but the disparity precision is low. Phase
correlationmethod provides high efficiency and accuracy via
fast Fourier transform and other supplementary approaches
under ideal conditions. In general, the main peak location of
the inverse Fourier transform of the normalized cross-power
spectrum was interpolated with the parabolic, Gaussian, and
sinc functions to get the subpixel disparity [21–24].

In this paper, a subpixel image matching method based
on phase correlation is proposed to estimate the disparity
with subpixel precision for stereovision of narrow baseline
remotely sensed imagery. The rest of this paper is organized
as follows. The principle of phase correlation is introduced
briefly in Section 2. A novel improved phase correlation
method with subpixel precision is described in detail in
Section 3. The complete algorithm is described in Section 4.
Experimental evaluation is presented in Section 5. Finally, the
paper is concluded in Section 6.
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Figure 2:The captured process of the remotely sensed image pair. (a) Traditional wide baseline stereo configuration and (b) narrow baseline
stereo configuration.
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Figure 3: Two sets of simulated remotely sensed image pairs provided by Beijing Institute of Space Mechanics and Electricity. (a) Simulated
wide baseline remotely sensed image pair with a B/H ratio of 1 and (b) simulated narrow baseline remotely sensed image pair with a B/H
ratio of 0.05.

2. Phase Correlation

Phase correlation method is based on the well-known
Fourier-domain shift property. This states that a translation
between two images in the spatial domain will be expressed

in the frequency domain as a linear phase difference between
their Fourier transform [5]. Let 𝑓1 and 𝑓2 be two images
with translation relationship, the size of image is 𝑀 × 𝑁,𝑓1 = 𝑓(𝑥, 𝑦), 𝑓2 = 𝑓(𝑥 + Δ𝑥, 𝑦 + Δ𝑦), and (Δ𝑥, Δ𝑦) are
horizontal and vertical translations, respectively. Let 𝐹1(𝑢, V)
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and 𝐹2(𝑢, V) denote the 2D discrete Fourier transform (DFT)
of two images:

𝐹1 (𝑢, V)
= 1

𝑀𝑁
𝑀−1∑
𝑥=0

𝑁−1∑
𝑦=0

𝑓 (𝑥, 𝑦) exp(−𝑗2𝜋 ( 𝑢𝑥
𝑀 + V𝑦

𝑁 )) ,

𝐹2 (𝑢, V) = 𝐹1 (𝑢, V) exp(−𝑗2𝜋 ( 𝑢Δ𝑥
𝑀 + VΔ𝑦

𝑁 )) ,
(1)

where 𝑥 and 𝑦 are spatial domain variables, 𝑥 =0, 1, 2, . . . , 𝑀 − 1, 𝑦 = 0, 1, 2, . . . , 𝑁 − 1. 𝑢 and V are frequency
domain variables, 𝑢 = 0, 1, 2, . . . , 𝑀 − 1, V = 0, 1, 2, . . . , 𝑁 − 1.
The normalized cross-power spectrum 𝑄(𝑢, V) of two images
is calculated as

𝑄 (𝑢, V) = 𝐹1 (𝑢, V) 𝐹∗2 (𝑢, V)󵄨󵄨󵄨󵄨𝐹1 (𝑢, V) 𝐹∗2 (𝑢, V)󵄨󵄨󵄨󵄨
= exp (−𝑗2𝜋 ( 𝑢Δ𝑥

𝑀 + VΔ𝑦
𝑁 )) ,

(2)

where 𝐹∗2 (𝑢, V) is complex conjugate of 𝐹2(𝑢, V). The phase
correlation PC(𝑥, 𝑦) of two images is calculated by 2D inverse
discrete Fourier transforms (IDFT) of 𝑄(𝑢, V):

PC (𝑥, 𝑦) = 𝐹−1 (𝑄 (𝑢, V)) = 𝛿 (𝑥 + Δ𝑥, 𝑦 + Δ𝑦) , (3)

where 𝐹−1(⋅) is IDFT function. 𝛿(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) is a 2D
pulse function which exists as peak at position (Δ𝑥, Δ𝑦).
The peak location (Δ𝑥, Δ𝑦) corresponds to the translation
between images.

Phase correlation is a common method to estimate
the translation between images. Only phase information of
images is utilized; thus it is almost not affected by noise and
radiation difference andmore robustness than spatial domain
method. But the digital image is a discrete function whose
Fourier transform is a discrete transform, so only the integer-
pixel translation (int(Δ𝑥), int(Δ𝑦)) can be obtained by search-
ing the peak location.

3. Improved Phase Correlation with
Subpixel Precision

To estimate the subpixel translation, various algorithms have
been proposed. In [23], Foroosh et al. achieved the subpixel
estimation by approximating the Dirichlet function derived
from the normalized cross-power spectrum. Nagashima et
al. propose a fitting method to enhance the matching pre-
cision from integer-pixel level to subpixel level, which fits a
curve surface by using the neighborhood data around phase
correlation peak [21]. However, these methods only take into
account the peak and its neighborhood; the distribution of
phase correlation function is neglected; thus, the precision
of translation estimation is low in stereovision of remotely
sensed imagery. An improved phase correlationmethod used
for subpixel estimation is designed in this section. The flow
chart is shown in Figure 4. Due to the periodicity of DFT,
an image can be considered to “wrap around” at an edge;

therefore, discontinuities, which are not supposed to exist in
real world, occur at every border in 2D DFT computation
[21]. A 2DHanning window function is applied to reduce the
effect of discontinuities at image borders. The 2D Hanning
window function is defined as

𝑤 (𝑥, 𝑦) = 1 + cos (𝜋𝑥/𝑀)
2

1 + cos (𝜋𝑦/𝑁)
2 . (4)

The subpixel translation between two images can be
obtained by downsampling high resolution images with
integer-pixel translation. Therefore, the phase correlation of
two images can be approximated by 2D sinc function:

PC (𝑥, 𝑦) ≈ sin (𝜋 (𝑥 + Δ𝑥))
𝜋 (𝑥 + Δ𝑥)

sin (𝜋 (𝑦 + Δ𝑦))
𝜋 (𝑦 + Δ𝑦) . (5)

In theory, sinc function can approximate the distribution
of phase correlation in ideal condition. However the phase
correlation peak is decreased in remotely sensed images
matching due to the interference of random noise, image
aliasing, edge effects, and other influences. Therefore, the
sinc function can not describe the distribution of phase
correlation accurately. In our method, the sinc function is
improved by introducing phase correlation coefficient:

PC (𝑥, 𝑦) ≈ 𝛼 sin (𝜋 (𝑥 + Δ𝑥))
𝜋 (𝑥 + Δ𝑥)

sin (𝜋 (𝑦 + Δ𝑦))
𝜋 (𝑦 + Δ𝑦) , (6)

where 𝛼 is the phase correlation coefficient, 𝛼 ≤ 1. When
the translation is integer-pixel and there is no interference
factor, 𝛼 = 1; when the translation is subpixel or there
are interference factors, 𝛼 < 1. Due to this improved
phase correlation method is applied to the stereovision of
narrow baseline remotely sensed imagery, and the image pair
is treated by epipolar rectification before matching. Thus,
the phase correlation PC(𝑥, 𝑦) can be separated in spatial
domain, and a 1D function expression is given which only
exists as translation in horizontal direction:

PC𝑥 (𝑥) ≈ 𝛼 sin (𝜋 (𝑥 + Δ𝑥))
𝜋 (𝑥 + Δ𝑥) . (7)

The peak position (Δ𝑥, 0) is the translation which is
expected to be estimated. To locate the high precision
subpixel peak position, a peak evaluation method based on
uniformly spaced sampling is proposed. Assume that 𝑝 is the
real peak position of sampled-data, as shown at the bottom
left corner of Figure 4, and 𝑝 − 𝑘 and 𝑝 + 𝑘 are a pair of
points located 𝑘 pixels away from 𝑝. The phase correlation
values PC𝑥(𝑝 − 𝑘), PC𝑥(𝑝), and PC𝑥(𝑝 + 𝑘) of three sample
points used for peak evaluation are satisfying the following
relationship:

𝛼 sin (𝜋 (𝑝 − 𝑘 + Δ𝑥))
𝜋 (𝑝 − 𝑘 + Δ𝑥) = PC𝑥 (𝑝 − 𝑘) (8a)

𝛼 sin (𝜋 (𝑝 + Δ𝑥))
𝜋 (𝑝 + Δ𝑥) = PC𝑥 (𝑝) (8b)

𝛼 sin (𝜋 (𝑝 + 𝑘 + Δ𝑥))
𝜋 (𝑝 + 𝑘 + Δ𝑥) = PC𝑥 (𝑝 + 𝑘) . (8c)



Mathematical Problems in Engineering 5

Apply 2D
Hanning window Phase

correlation

Approximation by

the modified sinc
function

Images after applied window

Phase correlation
function

1

0

Peak evaluation based on uniformly spaced

Images f1 and f2

0
50

100
150 200

250
300

0

100
200

300
0

0.05

0.1

0.15

0.2

0.25

𝛼 PCx(pi)

k1 k1
k2 k2

ki ki

kSkS

PCx(pi − ki) PCx(pi + ki)

sampling where ki = ki−1 + Δk

Figure 4: Flow chart of improved phase correlation image matching method.

Add (8c) to (8a); the above equation group can be
rewritten as

𝛼
𝜋 (sin (𝜋 (𝑝 + Δ𝑥))) = PC𝑥 (𝑝) (𝑝 + Δ𝑥) (9a)

𝛼
𝜋 (sin (𝜋 (𝑝 − 𝑘 + Δ𝑥)) + sin (𝜋 (𝑝 − 𝑘 + Δ𝑥)))

= PC𝑥 (𝑝 − 𝑘) (𝑝 − 𝑘 + Δ𝑥)
+ PC𝑥 (𝑝 + 𝑘) (𝑝 + 𝑘 + Δ𝑥) .

(9b)

Equation (9b) can be rewritten by using the difference
product formula:

𝛼
𝜋 (sin (𝜋 (𝑝 + Δ𝑥))) = PC𝑥 (𝑝) (𝑝 + Δ𝑥) (10a)

𝛼
𝜋 (2 sin (𝜋 (𝑝 + Δ𝑥)) cos (𝜋𝑘))

= PC𝑥 (𝑝 − 𝑘) (𝑝 − 𝑘 + Δ𝑥)
+ PC𝑥 (𝑝 + 𝑘) (𝑝 + 𝑘 + Δ𝑥) .

(10b)

Add (10a) to (10b); the equation group ((10a) and (10b))
can be rewritten as

PC𝑥 (𝑝 − 𝑘) (𝑝 − 𝑘 + Δ𝑥) + PC𝑥 (𝑝 + 𝑘) (𝑝 + 𝑘 + Δ𝑥)
= 2 ⋅ PC𝑥 (𝑝) (𝑝 + Δ𝑥) cos (𝜋𝑘) .

(11)

The above equation can be expressed as a linear expres-
sion of Δ𝑥:

(PC𝑥 (𝑝 − 𝑘) + PC𝑥 (𝑝 + 𝑘) − 2 ⋅ cos (𝜋𝑘)PC𝑥 (𝑝))
⋅ Δ𝑥

= 2 ⋅ 𝑝 ⋅ cos (𝜋𝑘)PC𝑥 (𝑝) − (𝑝 − 𝑘)PC𝑥 (𝑝 − 𝑘)
+ (𝑝 + 𝑘)PC𝑥 (𝑝 + 𝑘) .

(12)

Through (12), the horizontal translation Δ𝑥 with subpixel
precision can be estimated:

Δ𝑥 = 2 ⋅ 𝑝 ⋅ cos (𝜋𝑘)PC𝑥 (𝑝) − (𝑝 − 𝑘)PC𝑥 (𝑝 − 𝑘) + (𝑝 + 𝑘)PC𝑥 (𝑝 + 𝑘)
PC𝑥 (𝑝 − 𝑘) + PC𝑥 (𝑝 + 𝑘) − 2 ⋅ cos (𝜋𝑘)PC𝑥 (𝑝) . (13)
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To reduce the influence of noise, the peak evaluation is
performed by selecting multiple sets of uniformly spaced
sampled-datawhich are all the data on the𝑥 axis, and the least
square is applied to solve the optimal translation. Assume that𝑆 sets of uniformly spaced sampled-data (𝑝𝑖− 𝑘𝑖, 𝑝𝑖, 𝑝𝑖− 𝑘𝑖)𝑖∈𝑆
are selected for peak evaluation; 𝑝𝑖, 𝑘𝑖 are determined as
follows: 𝑝1 = 𝑝2 = ⋅ ⋅ ⋅ = 𝑝𝑆 = argmax𝑥 PC𝑥(𝑥), 𝑘1 = 1,𝑘2 = 𝑘1 + Δ𝑘, . . . , 𝑘𝑆 = 𝑘𝑆−1 + Δ𝑘, (Δ𝑘 = 1). Equation (12) can
be rewritten as

[[[[[[
[

𝑎 (𝑝1, 𝑘1)
𝑎 (𝑝2, 𝑘2)

...
𝑎 (𝑝𝑆, 𝑘𝑆)

]]]]]]
]

⋅
[[[[[[
[

Δ𝑥
Δ𝑥

...
Δ𝑥

]]]]]]
]

=
[[[[[[
[

𝑏 (𝑝1, 𝑘1)
𝑏 (𝑝2, 𝑘2)

...
𝑏 (𝑝𝑆, 𝑘𝑆)

]]]]]]
]

, (14)

where 𝑎(𝑝𝑖, 𝑘𝑖)𝑖∈𝑆 = PC𝑥(𝑝𝑖 − 𝑘𝑖) + PC𝑥(𝑝𝑖 + 𝑘𝑖) − 2 ⋅
cos(𝜋𝑘𝑖)PC𝑥(𝑝𝑖), and 𝑏(𝑝𝑖, 𝑘𝑖)𝑖∈𝑆 = 2 ⋅ 𝑝𝑖 ⋅ cos(𝜋𝑘𝑖)PC𝑥(𝑝𝑖) −(𝑝𝑖 − 𝑘𝑖)PC𝑥(𝑝𝑖 − 𝑘𝑖) + (𝑝𝑖 + 𝑘𝑖)PC𝑥(𝑝𝑖 + 𝑘𝑖). The
objective of (14) is min(∑𝑆𝑖=1 |𝑏(𝑝𝑖, 𝑘𝑖) − 𝑎(𝑝𝑖, 𝑘𝑖) ⋅ Δ𝑥|2).
Assume that 𝐴 = [𝑎(𝑝1, 𝑘1), 𝑎(𝑝2, 𝑘2), . . . , 𝑎(𝑝𝑆, 𝑘𝑆)]𝑇 and
𝐵 = [𝑏(𝑝1, 𝑘1), 𝑏(𝑝2, 𝑘2), . . . , 𝑏(𝑝𝑆, 𝑘𝑆)]𝑇, then the horizontal
translation Δ𝑥 with subpixel precision can be obtained by
solving the least square linear equation:

Δ𝑥 = (𝐴𝑇𝐴)−1 𝐴𝑇𝐵. (15)

4. Complete Subpixel Image
Matching Algorithm

The input of our algorithm is rectified narrow baseline
remotely sensed image pair, and output is the disparity with
subpixel precision. Because the stability of phase correlation
method is poor when the disparity search range is large [9],
therefore, a multistep strategy is adopted in our technical
frame, and the disparity estimation is divided into two steps:
integer-pixel prematching and subpixel matching. The com-
plete framework of our algorithm is shown in Figure 5. Firstly,
integer-pixel disparity is estimated by employing an effective
cross-based matching algorithm [25]. Then relationship of
corresponding points is established under the guidance of
integer-pixel disparity. The subimages are extracted through
selecting the corresponding points as center. Finally, subpixel
disparity is obtained by matching the subimages utilizing the
improved phase correlation proposed in Section 3.

Assume that a narrow baseline remotely sensed image
pair consists of left image 𝐿 and right image 𝑅, which can
be expressed as a classic stereo model 𝐿(𝑥, 𝑦) = 𝑅(𝑥 +𝑑(𝑥, 𝑦), 𝑦). The disparity 𝑑(𝑥, 𝑦) is used to describe the
geometric position variation between 𝐿 and𝑅, which consists
of two parts, integer-pixel disparity 𝑑𝑧(𝑥, 𝑦) and subpixel
disparity 𝑑𝑠(𝑥, 𝑦); that is, 𝑑(𝑥, 𝑦) = 𝑑𝑧(𝑥, 𝑦) + 𝑑𝑠(𝑥, 𝑦).
The details of our subpixel image matching algorithm are
described as follows from step (a) to step (g).

(a) Assume (𝑥0, 𝑦0) is the pixel which is to be matched.
In the first step, the cross-based support window of (𝑥0, 𝑦0) is
defined. Firstly, an upright cross is established for (𝑥0, 𝑦0). It
consists of two orthogonal line segments: horizontal segment

𝜑𝐻(𝑥0, 𝑦0) and vertical segment 𝜑𝑉(𝑥0, 𝑦0). A quadruple{ℎ−, ℎ+, V−, V+} denotes the left, right, up, and bottom arm
length, respectively, and the length of each arm is determined
by searching for the extreme point in that direction based on
the color similarity. The upright cross skeleton is defined as

𝜑𝐻 (𝑥0, 𝑦0)
= {(𝑥, 𝑦) | 𝑥 ∈ [𝑥0 − ℎ−, 𝑥0 + ℎ+] , 𝑦 = 𝑦0} ,

𝜑𝑉 (𝑥0, 𝑦0)
= {(𝑥, 𝑦) | 𝑥 = 𝑥0, 𝑦 ∈ [𝑦0 − V−, 𝑦0 + V+]} .

(16)

Then the cross-based support window𝜑(𝑥0, 𝑦0) is defined
based on the upright cross skeleton. 𝜑(𝑥0, 𝑦0) is a com-
bination of each horizontal segment 𝜑𝐻(𝑥, 𝑦) where (𝑥, 𝑦)
traverses over the vertical segment 𝜑𝑉(𝑥0, 𝑦0). The formula
of 𝜑(𝑥0, 𝑦0) is defined as

𝜑 (𝑥0, 𝑦0) = ⋃
(𝑥,𝑦)∈𝜑𝑉(𝑥0 ,𝑦0)

𝜑𝐻 (𝑥, 𝑦) . (17)

(b) The matching cost of (𝑥0, 𝑦0) is calculated. Firstly,
the initial matching cost 𝐶𝑥,𝑦,𝑑𝑧 of each pixel in the support
window is calculated:

𝐶𝑥,𝑦,𝑑𝑧 = (1 − 𝛽) ⋅ min (󵄨󵄨󵄨󵄨𝐿 (𝑥, 𝑦) − 𝑅 (𝑥 + 𝑑𝑧, 𝑦)󵄨󵄨󵄨󵄨 , 𝜏1)
+ 𝛽
⋅ min (󵄨󵄨󵄨󵄨∇𝑥𝐿 (𝑥, 𝑦) − ∇𝑥𝑅 (𝑥 + 𝑑𝑧, 𝑦)󵄨󵄨󵄨󵄨 , 𝜏2) ,

(18)

where ∇𝑥 is horizontal gradient, 𝛽 balances the color and
gradient terms, and 𝜏1, 𝜏2 are truncation values. Then the
matching cost 𝐶𝐴𝑥0 ,𝑦0,𝑑𝑧 of (𝑥0, 𝑦0) is aggregated:

𝐶𝐴𝑥0 ,𝑦0,𝑑𝑧 = ∑
(𝑥,𝑦)∈𝜑(𝑥0 ,𝑦0)

𝐶𝑥,𝑦,𝑑𝑧 . (19)

(c) The integer-pixel disparity 𝑑𝑧(𝑥0, 𝑦0) of (𝑥0, 𝑦0) is
estimated by winner-takes-all strategy:

𝑑𝑧 (𝑥0, 𝑦0) = arg min
𝑑𝑧∈𝑆𝑑

𝐶𝐴𝑥0 ,𝑦0,𝑑𝑧 , (20)

where 𝑆𝑑 is the searching range of disparity.
(d) The relationship of corresponding points is estab-

lished under the guidance of integer-pixel disparity. Assume
that the integer-pixel disparity of pixel (𝑥0, 𝑦0) in 𝐿 is𝑑𝑧(𝑥0, 𝑦0); the corresponding point of (𝑥0, 𝑦0) in 𝑅 is (𝑥0 +𝑑𝑧(𝑥0, 𝑦0), 𝑦0).

(e) The subimages 𝐿 𝑠(𝑥0, 𝑦0) and 𝑅𝑠(𝑥0, 𝑦0) with same
size are extracted through selecting the corresponding points
as the center. Because the selection of the two subimages
is based on the guidance of the integer-pixel disparity, thus
there is only a small range of horizontal translation between𝐿 𝑠(𝑥0, 𝑦0) and 𝑅𝑠(𝑥0, 𝑦0).

(f) The subpixel horizontal translation Δ𝑥 between𝐿 𝑠(𝑥0, 𝑦0) and 𝑅𝑠(𝑥0, 𝑦0) is estimated by using the improved
phase correlation method proposed in Section 3. The Δ𝑥 is
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Table 1: General information of the test image pairs.

Test number Data source Image size GSD (m) Location True disparity (pixels)
1 Pleiades 7590 × 6510 0.5 USA: Washington 8.738
2 SPOT-5 2050 × 2100 2.5 China: Beijing 8.738
3 SPOT-6 2015 × 1950 1.5 China: Beijing 8.738
4 WorldView-3 2000 × 2000 0.3 Spain: Madrid 8.738
5 GeoEye-1 3000 × 3000 0.4 Holland: Amsterdam 8.738
6 GF-2 4500 × 4750 0.8 China: Karamay 8.738

equivalent to the subpixel disparity 𝑑𝑠(𝑥0, 𝑦0) of the center
pixel (𝑥0, 𝑦0).

(g) Finally, the disparity result is obtained by combining
the integer-pixel disparity and the subpixel disparity; that is,𝑑(𝑥0, 𝑦0) = 𝑑𝑧(𝑥0, 𝑦0) + 𝑑𝑠(𝑥0, 𝑦0).
5. Experiments and Analysis

We test the proposed subpixel matching method for stere-
ovision of narrow baseline remotely sensed imagery on a
standard personal computer with Intel(R) Core(TM) i7 CPU,
and the algorithm is implemented utilizingVS2010+OpenCV.
The results analysis includes two aspects: precision analysis
and complexity analysis. Constant parameter settings are
used for all experiments. The parameters of this method are
set as 𝛽 = 0.11, 𝜏1 = 7/255, and 𝜏2 = 2/255.
5.1. Test on SimulatedNarrow Baseline Remotely sensed Images
Generated by Translation. To evaluate thematching precision
of proposed method, six urban scenes of narrow baseline
remotely sensed image pairs, including Pleiades, SPOT-5,
SPOT-6, WorldView-3, and GF-2, are used to perform image
matching. For each image pair, the original image is utilized
as the reference image (often called the left image), and the
original image is moved 8.738 pixels along the x-axis as the
target image (called the right image). Thus the true disparity
is known to be 8.738 pixels for all the matching points of each
image pair. Table 1 shows the general information of the test
image pairs used in these experiments.

Figure 6 shows the distribution of matched points for the
test narrow baseline remotely sensed image pairs. Because the
image size is different for each image pair, the step size of grid
is different too.The step sizes of grid in Tests 1–6 are set to 540× 540 pixels, 160× 160 pixels, 180× 180 pixels, 170× 170 pixels,
300 × 300 pixels, and 380 × 380 pixels.

In order to evaluate thematching precision of ourmethod
quantitatively, interpolation based method [14], fitting based
method [15], and traditional phase correlation method [23]
are used to compare with our method. Root mean square
error (RMSE) and mean error of matched points are used as
the assessment indices to evaluate these methods. Figure 7
shows quantitative evaluation results for the four subpixel
image matching methods. Here the traditional phase cor-
relation is called traditional PC for short. Figure 8 shows
statistical results of the quantitative evaluation. Figure 8(a)
shows statistical results where the RMSE is less than or

equal to 0.05 pixels. Figure 8(b) shows statistical results
where the RMSE is greater than 0.05 pixels and less than 0.1
pixels. Figure 8(c) shows statistical results where the RMSE
is greater than or equal to 0.1 pixels. From the experimental
results, one can see that the two PC methods have a high
matching precision, and the precision is better than that of
interpolation method and fitting method. In addition, the
matching precision is related to the spatial resolution of
the images. High spatial resolution corresponds to a high
matching precision. Because the peak evaluation method
based on uniformly spaced sampling is designed to fit the
phase correlation function, our method outperforms the
traditional PC method, about 66% matched points of our
method with RMSE less than or equal to 0.05 pixels.

5.2. Test on Simulated Narrow Baseline Remotely sensed
Images. To evaluate the precision of DEM extraction by
using the disparity estimated by our method, a simulated
narrow baseline remotely sensed image pair provided by
Beijing Institute of Space Mechanics and Electricity is
used to perform image matching. The simulated narrow
baseline remotely sensed image pair is generated by SE-
WORKBENCH software. The attached parameters file of the
image pair not only provides the true disparity, but also
provides the true elevation of targets and buildings in the
scene. Therefore, the precision of disparity and elevation
estimated by our method can be evaluated carefully. Table 2
shows the general information of the test image pair used in
these experiments. The B/H ratio of the image pair is 0.05,
and spatial resolution is 0.3meters/pixel. Overlap ratio of
left and right images is 60%, and the overlap area includes
22 targets and 40 buildings. Figure 9 shows the simulated
narrow baseline remotely sensed image pair and distribution
of targets and buildings. Figure 9(a) is the image pair,
Figure 9(b) is the distribution of targets, and Figure 9(c) is
the distribution of buildings. The targets and buildings are
marked with red numbers. Figure 10 shows the matching
results. Figure 10(a) is the distribution of matched points
for the buildings. Figure 10(b) is the distribution of matched
points for the targets.

To evaluate the matching precision of our method
quantitatively, interpolation based method [14], fitting based
method [15], and traditional phase correlation method [23]
are used to compare with ourmethod. RMSE of disparity and
mean elevation error are used as the assessment indices to
evaluate the precision of four methods, where the elevation
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Figure 6: The distribution of matched points for the test narrow baseline remotely sensed image pairs. (a–f) are the results of Pleiades,
SPOT-5, SPOT-6, WorldView-3, GeoEye-1, and GF-2 image pairs, respectively.
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Figure 7: The quantitative evaluation results for the four subpixel image matching methods. (a) RMSE and (b) mean error.



10 Mathematical Problems in Engineering

1 2 3 4 5
0

10

20

30

40

50

60

70

80

Test number

Our method
Traditional PC method [23]

Interpolation method [14]
Fitting method [15]

St
at

ist
ic

al
 re

su
lts

 w
ith

 R
M

SE
≤

0.
05

pi
xe

ls 
(%

)

(a)

1 2 3 4 5
0

10

20

30

40

50

60

Test number

St
at

ist
ic

al
 re

su
lts

 w
ith

0.
05

pi
xe

ls
<

RM
SE

<
0.

1 
pi

xe
ls 

(%
)

Our method
Traditional PC method [23]

Interpolation method [14]
Fitting method [15]

(b)

1 2 3 4 5
0

5

10

15

20

25

30

Test number

St
at

ist
ic

al
 re

su
lts

 w
ith

 R
M

SE
≥

0.
1

pi
xe

ls 
(%

)

Our method
Traditional PC method [23]

Interpolation method [14]
Fitting method [15]

(c)

Figure 8: The statistical results of the quantitative evaluation. (a) Statistical results of RMSE less than or equal to 0.05 pixels; (b) statistical
results of RMSE greater than 0.05 pixels and less than 0.1 pixels; and (c) statistical results of RMSE greater than or equal to 0.1 pixels.

error is the absolute difference between the true and the
extracted elevation. The simulated narrow baseline remotely
sensed image pair is matched 300 times by each subpixel
imagematchingmethod. Figures 11 and 12 show the statistical
results of fourmethods for targets and buildings, respectively.
The results show that the RMSE and the mean elevation
error obtained by our method are lower than the other
three methods for most targets and buildings. Table 3 shows
the average values of RMSE and mean elevation error. The
true average elevation of 22 targets is 67.818m, and the true
average elevation of 40 buildings is 112.353m. According to
the statistical results in Table 3, the mean elevation error
of targets estimated by our method is 0.303m, and the
mean elevation error of buildings estimated by our method
is 0.406m. Such precision can satisfy the requirements for

stereovision of narrow baseline remotely sensed imagery;
therefore, it is proved that the image matching method based
on phase correlation proposed in this paper has practical
application value.

5.3. Computational Complexity. Assume that there are 𝑁1
points needed to be matched. In integer-pixel prematching
step of our algorithm, the complexity of constructing the
cross-based support window for each point is 𝑂(1), and the
total complexity for all points of this prematching step is𝑂(𝑁1 ⋅ 𝑑), where 𝑑 is the disparity range.

In the subpixel matching step, the core algorithm is based
on the phase correlation; therefore, the complexity is unre-
lated to the disparity range but related to the size of subimage.
Assume that there are 𝑁2 pixels in the extracted subimage.
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(a)

(b) (c)

Figure 9:The simulated narrow baseline remotely sensed image pair and distribution of targets and buildings. (a)The image pair with a B/H
ratio of 0.05. (b) The distribution of targets. (c) The distribution of buildings.

The complexity of fast DFT is 𝑂(𝑁2 ⋅ log𝑁2), the complexity
of Hanning window is 𝑂(𝑁2), the complexity of normalized
cross-power spectrum is 𝑂(𝑁2), and the complexity of IDFT
of normalized cross-power spectrum is 𝑂(𝑁2 ⋅ log𝑁2). The
peak evaluation is a least square fitting operation for 𝑆 sets
of uniformly spaced sampled-data essentially. The minimum
value of 𝑆 is 1; that is, the peak position is located at the most
left or right of sampled-data. However, the maximum value
of 𝑆 is ((√𝑁2 − 1)/2); this means the peak position is located
at the center of sampled-data; thus 𝑆 ≤ ((√𝑁2 − 1)/2). The
complexity of subpixel peak position evaluation utilizing the
least squaremethod is𝑂((√𝑁2−1)/2)2, which is equivalent to𝑂(𝑁2). The complexity of a single point matching in subpixel
matching step is 𝑂(𝑁2 ⋅ log𝑁2); thus the complexity of total
points is𝑂(𝑁1 ⋅𝑁2 ⋅log𝑁2).The complexity of complete image
matching algorithm is 𝑂(𝑁1 ⋅𝑑)+𝑂(𝑁1 ⋅𝑁2 ⋅ log𝑁2). Because
the complexity of subpixel matching is higher than that of
integer-pixel prematching, the complexity of our algorithm
is 𝑂(𝑁1 ⋅ 𝑁2 ⋅ log𝑁2).

In order to clearly illustrate the complexity of our
algorithm, we compare with the classical normalized cross
correlation (NCC) algorithm [2]. Assume that the support
window of NCC is 𝜑; in the practical image matching, 𝜑 ≈𝑁2 ≪ 𝑁1. When log𝑁2 ≈ 𝑑, the complexity of our method

is similar to that of NCC. Generally, the size of subimage is
30 × 30∼40 × 40 pixels; the number of pixels in subimage is
900∼1600; thus the value range of log𝑁2 is 9.814∼10.644.The
disparity range of narrow baseline stereo image pair is usually
within 20 pixels. In our experiment, the disparity range is 17
pixels; log𝑁2 ≈ 𝑑 is established; therefore, the complexity of
our method is similar to that of the classical NCC method.

6. Conclusion

Through the analysis of narrow baseline remotely sensed
imagery stereovision, a subpixel image matching approach
based on improved phase correlation is proposed. The cross-
based local matching method is employed for prematching
the image pair, and the obtained integer-pixel disparity
reduces the search range of subpixel matching. A high
precision subpixel matching step is implemented under the
guidance of integer-pixel disparity. A peak evaluationmethod
based on uniformly spaced sampling is designed to improve
the precision of disparity estimation. The experimental
results show that our method has superior performance on
precision and efficiency, and it is beneficial to the stereovision
of narrow baseline remotely sensed imagery.
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Figure 10: The matching results. (a) The distribution of matched points for the buildings. (b) The distribution of matched points for the
targets.
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Figure 11: The statistical results of targets. (a) Comparison of RMSE. (b) Comparison of mean elevation error.
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Figure 12: The statistical results of buildings. (a) Comparison of RMSE. (b) Comparison of mean elevation error.

Table 2: The general information of the test image pair.

Target number Elevation
(meter)

True disparity
(pixel)

Building
number

Elevation
(meter)

True
disparity

Building
number

Elevation
(meter)

True disparity
(pixel)

1 73 12.167 1 111.42 18.570 21 97.3 16.217
2 65 10.833 2 131.54 21.923 22 131.33 21.888
3 63 10.500 3 147.13 24.522 23 165.92 27.653
4 65 10.833 4 153.77 25.628 24 134.85 22.475
5 67 11.167 5 123.43 20.572 25 85.14 14.190
6 61 10.167 6 104.77 17.462 26 92.28 15.380
7 67 11.167 7 98.22 16.370 27 71.51 11.918
8 82 13.667 8 88.81 14.802 28 83.5 13.917
9 74 12.333 9 75.07 12.512 29 169.2 28.200
10 72 12.000 10 98.46 16.410 30 131.22 21.870
11 75 12.500 11 79.79 13.298 31 98.42 16.403
12 65 10.833 12 72.94 12.157 32 98.42 16.403
13 60 10.000 13 155.81 25.968 33 154.57 25.762
14 64 10.667 14 111.81 18.635 34 115.5 19.250
15 63 10.500 15 133.81 22.302 35 105.21 17.535
16 61 10.167 16 100.81 16.802 36 133.07 22.178
17 76 12.667 17 92.21 15.368 37 157.59 26.265
18 64 10.667 18 120.38 20.063 38 66.3 11.050
19 62 10.333 19 162.39 27.065 39 72.5 12.083
20 66 11.000 20 145.29 24.215 40 72.44 12.073
21 92 15.333 — — — — — —
22 55 9.167 — — — — — —

Table 3: The RMSE and mean elevation error of four methods.

Algorithms Targets Buildings
RMSE (pixel) Mean elevation error (meter) RMSE (pixel) Mean elevation error (meter)

Interpolation method [14] 0.103 0.619 0.114 0.681
Fitting method [15] 0.169 1.012 0.133 0.797
Traditional PC method [23] 0.061 0.368 0.071 0.422
Our method 0.051 0.303 0.068 0.406
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[2] J. Delon and B. Rougé, “Small baseline stereovision,” Journal of
Mathematical Imaging and Vision, vol. 28, no. 3, pp. 209–223,
2007.

[3] C. C. Pham and J. W. Jeon, “Domain transformation-based
efficient cost aggregation for local stereomatching,” IEEETrans-
actions on Circuits and Systems for Video Technology, vol. 23, no.
7, pp. 1119–1130, 2013.

[4] D. Fan, E. Shen, L. Li et al., “Small baseline stereo matching
method based on phase correlation,” Journal of Geomatics
Science and Technology, vol. 30, pp. 154–157, 2013.

[5] G. L. K. Morgan, J. G. Liu, and H. Yan, “Precise subpixel
disparity measurement from very narrow baseline stereo,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 48, no. 9,
pp. 3424–3433, 2010.

[6] J.-L. Bian, C.-G.Men, and X. Li, “A fast stereomatchingmethod
based on small baseline,” Journal of Electronics and Information
Technology, vol. 34, no. 3, pp. 517–522, 2012.

[7] N. Sabater, J. M. Morel, and A. Almansa, “How accurate can
block matches be in stereo vision?” SIAM Journal on Imaging
Sciences, vol. 4, pp. 472–500, 2011.

[8] L. Igual, J. Preciozzi, L. Garrido et al., “Automatic low baseline
stereo in urban areas,” Inverse Problems and Imaging, vol. 1, pp.
318–348, 2007.

[9] E. Shen, D. Fan, and X. Sun, “Smallbaseline stereo matching
method based on SGM and phase correlation,” Journal of China
University of Mining and Technology, vol. 44, no. 1, pp. 183–188,
2015.

[10] N. Sabater, G. Blanchet, L. Moisan, A. Almansa, and J.-M.
Morel, “Review of low-baseline stereo algorithms and bench-
marks,” in Image and Signal Processing for Remote Sensing XVI,
783005, 12, Toulouse, France, October 2010.

[11] T. Arai and A. Iwasaki, “Fine image matching for narrow base-
line stereovision,” in Proceedings of the 32nd IEEE International
Geoscience and Remote Sensing Symposium (IGARSS ’12), pp.
2336–2339, Munich, Germany, July 2012.

[12] J. Inglada, V. Muron, D. Pichard, and T. Feuvrier, “Analysis of
artifacts in subpixel remote sensing image registration,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 45, no. 1,
pp. 254–264, 2007.

[13] V.-C. Miclea, C.-C. Vancea, and S. Nedevschi, “New sub-pixel
interpolation functions for accurate real-time stereo-matching
algorithms,” in Proceedings of the 11th IEEE International Con-
ference on Intelligent Computer Communication and Processing
(ICCP ’15), pp. 173–178, IEEE, Cluj-Napoca, Romania, Septem-
ber 2015.

[14] I. Haller and S. Nedevschi, “Design of interpolation functions
for subpixel-accuracy stereo-vision systems,” IEEE Transactions
on Image Processing, vol. 21, no. 2, pp. 889–898, 2012.

[15] C. Stentoumis, L. Grammatikopoulos, I. Kalisperakis, and G.
Karras, “On accurate dense stereo-matching using a local adap-
tivemulti-cost approach,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 91, pp. 29–49, 2014.
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