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Climate change has become a challenging and emerging research problem inmany research related areas. One of the key parameters
in analyzing climate change is to analyze temperature variations in different regions. The temperature variation in a region is
periodic within the interval. Temperature variations, though periodic in nature, may vary from one region to another and such
variations are mainly dependent on the location and altitude of the region and also on other factors like the nearness of sea and
vegetation. In this paper, we analyze such periodic variations using recurrence plot (RP), cross recurrence plot (CRP), recurrence
rate (RR), and correlation of probability of recurrence (CPR)methods to find similarities of periodic variations between and within
climatic regions and to identify their connectivity trend. First, we test the correctness of our method by applying it on voice and
heart rate data and then experimentation is performed on synthetic climate data of nine regions in the United States and eight
regions in China. Finally, the accuracy of our approach is validated on both real and synthetic datasets and demonstrated using
ANOVA, Kruskal–Wallis, and z-statistics significance tests.

1. Introduction

No location on the earth will have exactly the same climate as
another; many do have very similar climatic characteristics,
which depend on various factors such as latitude and longi-
tude of the region, temperature, humidity, air pressure, wind,
cloudiness, and nearness of sea and vegetation. Temperature
is one of the important factors in climate change. The
temperature of a region affects humans and biological and
physical systems in all continents [1]. Currently, temperature
is rising all over the world because greenhouse gases are
trapping more heat in the earth’s atmosphere. Effective
and urgent solutions are needed to identify its impact on
agriculture, energy, water supplies, health, plants, animals,
ecosystems, forests, recreation, and so forth. Decisions about
temperature change are complex and costly and have long-
term implications. It is therefore vital that such decisions are
based on the best available evidence. We need to understand
the quality and provenance of that evidence and to find
whether any assumptions have been made in generating
it. Understanding temperature change patterns and their
periodic variations across time (such as yearly, monthly, and

daily changes) and their changes across environmental space
is of great significance.

Climate change adjustment refers to dealing with the
present or future expected impacts of climate change. There
are various ongoing research efforts on the collection of
climate data, the analysis of climate changes, and the model-
ing of climate processes. Finding correlations or similarities
among climate data is one of the central themes of many
scientific analyses. A good example is climate data analysis
to understand temperature changes over wide ranges of
time. It has many applications to agriculture [2, 3], fisheries,
ecosystems, water resources, energy infrastructure, business
[2, 4], food industry [2, 5, 6], and disaster planning. In
addition, climate impacts have also been assessed in potato
[7], maize [8], coffee [9], rice [10], sugar [11], wine grape
production [12], and so forth. For example, climate change
eventually increases the additional price for the agricul-
tural crops such as rice, wheat, maize, and soya beans,
which tends to cause a higher substantial fall in cereals
consumption.

To identify such climate change pattern, we proposed a
recurrence based approach to analyze temperature variations
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Figure 1: (a) Regions in the United States. (b) Regions in China.

in various climatic regions. The major contributions of our
approach are summarized as follows:

(1) Identify the periodic variations of temperature by
analyzing trends using recurrence plot (RP) for time
series data.

(2) Discover the climate differences or similarities of
the periodic variations existing between two regions
using cross recurrence plot (CRP), for example, nine
regions in the United States (Ohio Valley, Upper
Midwest, Northeast, Northwest, South, Southeast,
Southwest, West, and Northern Rockies and Plains)
and eight regions in China (South China, the mid-
dle and lower reaches of the Yangtze River, North
China, Northeast China, the east of Northwest China,
the west of Northwest China, Tibet, and Southwest
China), shown in Figures 1(a) and 1(b).

(3) Extract similarities among regions by using tech-
niques such as recurrence rate (RR), RP, CRP, and
correlation of probability of recurrence (CPR) on
temperature data.

(4) Calculate the number of connections in each bin
over time by binning CPR into three categories of
relatedness (weak, moderate, and strong).

We have demonstrated the potentials of this approach for
nine regions in the US, eight regions in China, and synthetic,
voice, and heart rate data. In this paper, we analyzed nine
connected regions in the US using monthly temperature data
spread over 120 years. Using RP, we proved the periodic
behavior of the variations. Using CRP, we provided the
method to test whether two regions have similar variations.
RR andCPR are used to show the correlation of probability of
occurrence of temperature points between time series of two
regions. Substantial experiments indicate that the proposed
approach successfully provides useful interpretation of simi-
lar or dissimilar patterns between and within regions related
to climate change.

2. Literature Review

Climate data (temperature) are usually multidimensional
arrays of floating-point numbers. These arrays typically have
one temporal dimension and two or three spatial dimensions,
which describes the evolvement of climate parameters in
a time span. The volume of climate data is expanding
exponentially day by day and it brings about some challenges
for climate data archiving, sharing, and analyzing. A lot of
research has been done to analyze financial, stock, economic,
and other time series data using recurrence plots, but very few
analyses are available for climate data based on recurrence
analysis [13–15]. Climate data is analyzed using several other
techniques. We are explaining some of them.

Sukharev et al. [16] presented a correlation analysis for
time varying multivariate climate datasets. They used 𝑘-
means clustering method and graph partitioning algorithm
to find patterns and connections. The correlation of a single
or a couple of variables is also analyzed using pointwise cor-
relation coefficients and canonical correlation analysis. Liu
et al. [17] proposed a lossless compression algorithm for the
time-spatial climate floating-point arrays.They used adaptive
prediction, XOR differencing, and multiway compression to
eliminate more data redundancy efficiently and also tried
to exploit the correlations among the multidimensions to
remove more data redundancy. Sap and Awan [18] used
kernel methods for unsupervised partitioning of data to find
spatiotemporal patterns in complex and nonlinearly separa-
ble climate data. Hendrix et al. [19] described a methodology
for capturing and identifying the estimation of a climate
network. They performed this by splitting the climate data
into a set of overlying decadal time intervals and creating a
network for each of these datasets representing the complex
interdependencies in the climate system over a particular
decade.

RPs and RQA have been successfully used in a large num-
ber of scientific disciplines [20] and are particularly used for
modeling financial and economic time series. In recent years,
several researchers concentrated on RPs and RQA techniques
to study deterministic dependencies in financial data. These
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techniques are used in various fields such as stock market
[21], exchange rates [22], electricity prices [23], and heart beat
interval [24]. Furthermore, synchronicity and convergence
are also examined amongmember nations of the Euro region
for GDP using cross recurrence analysis [25]. Silva et al.
[26] gave an overview of recurrence plots as a representation
domain for time series classification, in which Campana-
Keogh (CK-1) and Kolmogorov complexity based distances
are used to measure the closeness between recurrence plots
and to estimate image similarity, respectively.

From the above literature we observed that various
analyses are performed using recurrence plots to find hidden
data relationships in a sequence of time series datasets, such
as stocks, exchange rates, financial data, heart rates, voice, and
electricity processes, but very little research has been done
to find and visualize the interrelationship in temperature
periodic trends for climate data using RP, CRP, and CPR.
At the same time, we also observed that no significant
research has been done to indicate the difference between
and within the temperatures of various climatic regions.
So, we decided to use recurrence based methods RR, CRP,
and CPR to identify the differences in climate on the basis
of temperature for nine US and eight Chinese regions and
also the probabilistic correlations between time series. The
accuracy of the recurrence based approach is validated on
real and synthetic datasets and analyzed using ANOVA,
Kruskal–Wallis, and 𝑧-statistical significance tests [27, 28].

The rest of the paper is organized as follows. In Section 3,
we discuss the brief introduction of terms used in our
approach. Section 4 represents the proposed approach. Sec-
tion 5 shows the experimentation results on various datasets
and the validation of the proposed method by applying the
significance test. Section 6 concludes the work done in this
paper.

3. Materials and Methods

3.1. Recurrence Plots (RPs). Recurrence plots are used to
analyze periodic data by visualizing the recurrent behavior of
dynamical systems which does not stay constant and changes
periodically. It is also applicable to analyze the behavior of
nonlinear dynamical andnonstationary systems, for example,
temperature. It is used for the study of difference or similarity
within a process on time series data. A recurrence plot
(RP) is a visual tool that shows the recurrence patterns of a
dynamical system [29]. Recurrence is defined as return of the
trajectory of a system to a previous state. Recurrence occurs
when the system returns to the neighborhood of an earlier
point in the phase space. The distributions of recurrence
points and diagonal lines along the main diagonal provide an
evaluation of the similarity of the phase space trajectories of
both dynamical systems.

A cross recurrence plot (CRP) is a tool for nonlinear
data analysis, which can be used for the study of differences
between dynamical systems. The basic idea of this approach
is to compare the phase space trajectories of two tasks in the
similar phase space. CRP can be used in order to study the
similarity of two different phase space trajectories. On the
other hand, the CRP discloses all possible times when the

phase space trajectory of the first system visits approximately
a similar area in the phase space trajectory of the second
system.The data length of both systems can differ in the CRP
matrix which leads to a nonsquare matrix.

We use an extension of the method of recurrence plot to
themethod of cross recurrence plot, which compares the time
dependent behavior of two processes, which are recorded
in a time series. Here, we have two time series, each one
represented by trajectories 𝑋𝑖 and 𝑌𝑗 in the phase space. The
test for equality of each point of trajectory𝑋𝑖 with each point
of trajectory 𝑌𝑗 by taking the embedding dimension 𝑚 and
delay time 𝜏 results in an𝑁𝑋 ∗ 𝑁𝑌 array.

CR𝑖,𝑗 = Θ (𝜀𝑖 −
𝑋𝑖 − 𝑌𝑗

) , 𝑋𝑖, 𝑌𝑗 ∈ 𝑅𝑚, (1)

where 𝑋𝑖 = {𝑥𝑖, 𝑥𝑖+𝜏, . . . , 𝑥𝑖+(𝑚−1)𝜏} and 𝑌𝑗 = {𝑦𝑗, 𝑦𝑗+𝜏, . . . ,
𝑦𝑗+(𝑚−1)𝜏}. 𝑖 is 1 ⋅ ⋅ ⋅ 𝑁𝑋, 𝑗 is 1 ⋅ ⋅ ⋅ 𝑁𝑌, 𝑁 is the number of
points, 𝜀 is threshold distance, Θ(⋅) is the Heaviside function
(i.e.,Θ(𝑎) = 0 if 𝑎 < 0 and 1 if 𝑎 ≥ 0), and ‖ ⋅ ‖ is a norm. CR is
a matrix of {0𝑠, 1𝑠} and an RP is a visual representation of CR
obtained by marking a black and white dot for every 1 and 0.
Embedding dimension𝑚 and delay time 𝜏 can be obtained by
correlation dimension and autocorrelation function. In this
paper, we select the fixed embedding dimension 𝑚 = 2 and
delay time 𝜏 = 4.

Next, we give some measures to analyze RP and CRP
using the sine wave. In order to present the idea of RP and
CRP, some figures of the sine wave are presented to guide
the description. The sine wave is a geometrical waveform
which oscillates (moves up or down) periodically (i.e., the
same pattern occurs after a particular time interval). The
functionality of the sine is used to build models for processes
that repeat in cycles or involve oscillations. Examples that
present oscillations include the monthly and seasonal cycles
of temperature, heart beats, voice, music, population cycles,
and tides.

So, we can say that the sine wave follows the periodic
pattern and distinct patterns emerge in its RP. If the data
is collected from systems having periodic variations, then
a distinct pattern can be seen in its RP; for example, data
of climate, voice, and heart rate show a distinct pattern in
RP. Also, the distance between diagonals indicates the signal
periodicity. Therefore, we can visualize and study the motion
of the dynamical system and infer some characteristics that
generated the time series. To show the periodic variations
clearly, first we explain the RP and CRP on the sine wave,
based on which further other datasets are considered. Fig-
ure 2 shows the plot of different sine waves and their RPs.
We have generated different sine waves in MATLAB using
the sin() function. In Figure 2, we can visualize that the same
pattern emerges in RP if series are periodic in nature.

If two time series are periodic and exhibit similarity,
then the same pattern emerges in CRP also. CRP of sine
waves is shown in Figure 3. CRP discovers all possible points
when one sine wave (simple sine wave) visits approximately
a similar area of the other sine wave (phase shift). We can
see that, in Figure 3(a), clearer patterns emerged because
both sine waves are almost the same (i.e., same frequency
cycle, but differing by 0.8 phase shift). Even in Figure 3(b),
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(i) Simple sine wave (starting point = 0) 

(ii) Sine wave with phase shift (starting point = 0.8)

(iii) Sine wave (starting point = 0) 
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Figure 2: Recurrence plots for sine waves.
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(b) Sine wave with different frequency cycles

Figure 3: CRP for sine wave.

fewer patterns emerged because of their different frequency
cycles. So, we can conclude that individual series can follow
recurrent behavior, but when they are plotted together, that
recurring pattern will not necessarily be followed. Figure 4
shows recurrence rate (RR) graph, described in the next
section for all three sine waves shown in Figure 2.

3.2. Probability of Recurrence (𝜏-Recurrence Rate). The prob-
ability of recurrence 𝑝(𝜏) is the recurrence rate of a diagonal
line situated at 𝜏 steps from the main diagonal, that is,
CR𝑖,𝑗+𝜏 ∀𝑖, 𝑗 = 1, . . . , 𝑁 − 𝜏. This evaluation gives the
probability of a (𝑗 + 𝜏)th point falling in the 𝜀-neighborhood
of the 𝑖th point.

RR = 𝑝 (𝜏) = 1
𝑁 − 𝜏

𝑁−𝜏

∑
𝑖,𝑗=1

CR𝑖,𝑗+𝜏. (2)

Figure 5(a) represents RP for northeast climate time series
and shows a similar probability of occurrence to a prior state
for all values of 𝜏 in Figure 5(b).

3.3. Correlation of Probability of Recurrence (CPR). CPR is
based on RPs and was originally devised to quantify phase
synchronization between two systems or stationary time
series. It represents the probability of recurrence of the
first system and second system. CPR describes the cross-
correlation coefficient between the probabilities of recurrence
of two trajectories �⃗� and ⃗𝑦 [20, 30]:

CPR = ⟨𝑝 ⃗𝑥 (𝜏) 𝑝 ⃗𝑦 (𝜏)⟩ , (3)

where ⟨⋅⟩ represents the expectation value. All the 𝑝(𝜏)
curves in Figure 5(b) start from 𝑝(0) = 1, because the
calculated recurrence rate always occurs 1 at 𝜏 = 0, the main

diagonal. CPR ≈ 1 implies that two time series variations
are periodically synchronized. To predict CPR correctly, we
consider an appropriate 𝑝(𝜏) value where 𝜏 is greater than
autocorrelation time of the systembecausemostly a highCPR
value is predicted for all trajectories having a similar initial
portion of the 𝑝(𝜏) curve.

CPR = ⟨𝑝 ⃗𝑥 (𝜏 > 𝜏𝑠) 𝑝 ⃗𝑦 (𝜏 > 𝜏𝑠)⟩ , (4)

where

𝜏𝑠 = max (𝜏𝑠 (�⃗�) , 𝜏𝑠 ( ⃗𝑦)) . (5)

Figure 6 illustrates the process involved in evaluating
the CPR. The CPR between Ohio Valley and Southeast is
calculated using (4) and (5), which is 0.785. In this study,
this indicates that two climate time series (Ohio Valley
and Southeast) with a high CPR tend to recur at similar
times, suggesting some similarity (strong connectivity; refer
to Figure 15(a)) in their trends.

3.4. ANOVA. Analysis of variance [28] is used to analyze
differences among the group mean values and can identify
the significant difference between group means if it exists.
ANOVA’s 𝐹-statistic is calculated as follows.

(i) The variation between the groups is calculated as

Between sum of squares (BS)

= 𝑚1 (𝑍1 − 𝑍)2 + 𝑚2 (𝑍2 − 𝑍)2 + ⋅ ⋅ ⋅

+ 𝑚𝑖 (𝑍𝑖 − 𝑍)2 ,

Between mean squares (BM) = BS
degree of freedom

.

(6)
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Figure 4: Recurrence rate (RR) or 𝑝(𝜏) curve for sine wave.

(ii) The variation within the groups is calculated as

Within sum of squares (WS)
= (𝑚1 − 1) 𝜎21 + (𝑚2 − 1) 𝜎22 + ⋅ ⋅ ⋅ + (𝑚𝑖 − 1) 𝜎2𝑖 ,

Within mean squares (WM) = WS
(𝑀 − 𝑖) ,

(7)

where 𝜎 is the standard deviation, 𝑀 is the number
of samples, 𝑖 is the number of groups, and 𝑚𝑖 is the
number of samples in group 𝑖.

(iii) 𝐹-test statistic is calculated as

𝐹 = BM
WM

. (8)

3.5. Kruskal–Wallis Test. The Kruskal–Wallis test [28] is
a rank-based nonparametric test used to determine the

statistically significant differences between two or more
groups of an independent variable on a continuous or ordinal
dependent variable. It is used when (1) the data are ordinal
and do not meet the precision of interval data, (2) there
are serious concerns about extreme deviation from normal
distribution, and (3) there is considerable difference in the
number of subjects for each comparative group. 𝐾-statistics
can be calculated as follows:

Computing the 𝐾 statistic, 𝐾

= 12
𝑛 (𝑛 + 1) ∑

𝑅2𝑗
𝑛𝑗

− 3 (𝑛 + 1) ,
(9)

where 𝑛𝑗 is the number of items in sample 𝑗, 𝑅𝑗 is the sum of
the ranks of all items in sample 𝑗, and 𝑛 = 𝑛1 + 𝑛2 + ⋅ ⋅ ⋅ + 𝑛𝑘,
the total number of observations in all samples.
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Figure 6: Evaluation of CPR from 𝑝(𝜏). (a) Normalized yearly data for 120 years. (b) 𝑝(𝜏) curves for these time series with 𝜏𝑠 = 20 are shown
with a vertical line. (c) The product of Ohio Valley and Southeast in (b). The horizontal line is the mean of this series, which is the CPR.

4. The Proposed Method

In this section, first we have shown the proposed method
in an algorithmic form and then explained each step in
detail. The detailed processing of recurrence based simi-
larity identification approach is explained using nine US
regions. Experiments are performed on other datasets
also.

4.1. Recurrence Based Similarity Identification Algorithm.
This section presents a high level summary of the proposed
approach, shown in Algorithm 1.

Algorithmic steps involved in the proposed method are
explained as follows.

4.2. Data Preparation. In our approach, we used monthly
average temperature data for analysis. Since daily data fluc-
tuates more and suffers from estimation error, it is difficult to
analyze and compute for 120 years (43800 days). Instead of
daily data, monthly data is used because it is approximately
normally distributed, fast to compute, and easier to model
and it is easier to identify changes in trends and it helps in
better strategic decisions.

Sometimes the data collected from available reposito-
ries contains missing values, special characters, noise, and
outliers. So, first, we clean the data by replacing missing
values and special characters, determining presented noise,
and removing outliers and then further steps are performed
on clean data.
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Table 1: Monthly average temperature data.

US regions 1895/01 1895/02 1895/03 1895/04 1895/05 1895/06 1895/07 1895/08 2014/12
R1 18.8 15.6 27.6 43.5 57.1 67.2 65.7 66.7 ⋅ ⋅ ⋅ 31.6
R2 9.5 13.8 28.2 47.3 51.9 58.1 65.6 65.1 ⋅ ⋅ ⋅ 24.3
R3 24.4 29.8 34.3 44.3 49.4 56.1 62.2 62.6 ⋅ ⋅ ⋅ 33.3
R4 24.6 21.9 40.2 55 63 73.5 73.2 74.5 ⋅ ⋅ ⋅ 37.1
R5 39.2 34.8 53.1 63.4 69.2 77 79.3 80 ⋅ ⋅ ⋅ 46.9
R6 43.7 37.3 53.1 61.1 68.3 76.8 77.8 78.5 ⋅ ⋅ ⋅ 50.5
R7 30.3 30.3 40.8 51 58.4 65.1 70.4 70.6 ⋅ ⋅ ⋅ 36
R8 6.9 9.7 26 47.8 56.8 65.8 67.3 67.2 ⋅ ⋅ ⋅ 24.8
R9 35 40.1 44 51.1 58.8 66.2 71.7 71.8 ⋅ ⋅ ⋅ 31.6

Table 2: Normalized temperature values.

US regions 1895/01 1895/02 1895/03 1895/04 1895/05 1895/06 1895/07 1895/08 ⋅ ⋅ ⋅ 2014/12
R1 0.13 0.08 0.27 0.53 0.75 0.91 0.88 0.13 ⋅ ⋅ ⋅ 0.34
R2 0.13 0.19 0.37 0.62 0.68 0.76 0.85 0.13 ⋅ ⋅ ⋅ 0.32
R3 0.22 0.31 0.39 0.56 0.65 0.76 0.87 0.22 ⋅ ⋅ ⋅ 0.37
R4 0.15 0.11 0.38 0.61 0.73 0.89 0.88 0.15 ⋅ ⋅ ⋅ 0.34
R5 0.16 0.08 0.41 0.59 0.7 0.84 0.88 0.16 ⋅ ⋅ ⋅ 0.3
R6 0.2 0.07 0.39 0.56 0.71 0.88 0.9 0.2 ⋅ ⋅ ⋅ 0.34
R7 0.17 0.17 0.35 0.53 0.66 0.78 0.87 0.17 ⋅ ⋅ ⋅ 0.27
R8 0.12 0.16 0.37 0.64 0.76 0.87 0.89 0.12 ⋅ ⋅ ⋅ 0.35
R9 0.2 0.3 0.37 0.5 0.64 0.77 0.87 0.2 ⋅ ⋅ ⋅ 0.34
R1–R9 indicate the notations used for US regions: R1—Northeast; R2—Northern Rockies and Plains; R3—Northwest; R4—Ohio Valley; R5—South;
R6—Southeast; R7—Southwest; R8—Upper Midwest; R9—West.

Input←Multivariate Time series 𝑇
Output← Connectivity trend (Small, Moderate, Weak)
Method:

(1) DP← Data Preparation (T)
(2) S← Normalize (DP)
(3) CR← Cross recurrence (S)
(4) RR← Recurrence rate (CR)
(5) CPR← Correlation of probability of recurrence (RR)
(6) CT← CPR Value

Algorithm 1: Recurrence based similarity extraction.

Let 𝑇𝑖 represent the daily temperature data for year 𝑌𝑗.

Step 1. It is difficult to analyze daily temperature data for
120 years (43800 days), so we calculate monthly average
temperature to ease the analysis process as follows:

Average Temperature, ATmonth =
𝑌𝑗 (∑30𝑖=1 𝑇𝑖)

30 , (10)

where month = Jan, Feb, . . . ,Dec and 𝑗 = 1 to 120.

Table 1 describes the monthly average temperature data
for 120 years.

Data normalization is essential to fit all data in one
range for efficient organization of the data. We use 𝑍min−max

normalization method to scale data within the range of (0, 1).
Normalized results are shown in Table 2.

𝑋norm = (𝑋mn −min)
(max −min) , (11)

where 𝑋norm is the result of the normalized value of temper-
ature, 𝑋mn is the temperature value to be normalized, max
is the upper bound of the temperature value, and min is the
lower bound of the temperature value.

Step 2. In this step, we reduce the time span from 1440 points
to 120 points because it is difficult to get a clear visualization
of temperature data with large window size (120 years ∗
12 months = 1440) using RPs. Since seasonal calculation
represents the extent of seasonal influence for a particular
segment of the year and an average for that particular period
trend, therefore, to get an accurate analysis of the temperature
data and capture their trends, we compute the average in the
period of 4 cycles (spring, summer, autumn, and winter) and
each cycle involves 3 months.

Season also indicates regular fluctuations which are
repeated from year to year with about the same timing and
level of intensity. Seasonal effects are usually associated with
climatic changes and their variation is frequently tied to
yearly cycles.Therefore, the four seasons with 3-year intervals
are considered, which results in a reduced window size of
160 (40 years ∗ 4 months). Figure 7 shows the window size
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· · ·
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Monthly
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Monthly
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Monthly
(July, Aug, Sep)

Monthly
(Oct, Nov, Dec)

Figure 7: Data preprocessing.

reduction process by considering a 3-year time interval and
for 4 seasons (spring, summer, autumn, and winter).

4.3. Connectivity Trend Analysis. This connectivity trend
analysis enables quantifying a possible similarity and dissim-
ilarity between different regions. It is done by grouping the
CPR values into three categories as (a) strongly related (CT =
1), (b)moderately related (CT= 0), and (c) weakly related (CT
= −1) using (13). CPR values are calculated using (4) along
with the number of pairs for which the CPR value has to be
calculated using (12).

The total number of pairs is calculated as follows:

number of pairs = 𝑛 ∗ (𝑛 − 1)
2 , (12)

where 𝑛 is the number of regions.
Connectivity trend is defined as follows:

CT =
{{{{
{{{{
{

1, if |CPR| > 𝛼
0, if 𝛽 < |CPR| > 𝛼
−1, if |CPR| < 𝛽,

(13)

where 𝛼 and 𝛽 indicate algorithmic parameters to analyze
similarity and dissimilarity. Quantitatively, the similarity
between two periodic variations can be computed using CPR.

5. Experimentation

In this section, we perform experiments on both synthetic
and real-world datasets to test the performance of the
proposed method. All the experiments were conducted on a
Windows 7 machine with 2.30GHz CPU and 4.00GB RAM.
Here, we first describe the dataset, and then the correctness of
our approach is shown using heart rate and voice dataset and
finally results are calculated on synthetic and climate data.

The algorithmic parameters values are set to 𝛼 = 0.8 and 𝛽 =
0.5 for experimentation.

5.1. Dataset. We use our approach on both synthetic and
real datasets shown in Table 3. We apply it to data of dif-
ferent kinds but having similar characteristics (i.e., periodic
variations) to show the general applicability of the proposed
method. To test the applicability of the method, we used
datasets such as heart rate and voice where similarity or
dissimilarity is known. We compared the outcomes of our
method with the known results and found that they are
matching with the known results. Although these datasets are
unrelated, their characteristics are the same; that is, they have
time series data with periodic variations.

Synthetic datasets are generated (named C5Y120,
C10Y120, and C15Y120) using 𝑅 fNonlinear package [31].
In this package, to generate different nonlinear time series
for 120 points, we used tentSim, logisticSim, and henonSim
functions as follows:

(1) tentSim (𝑛, 𝑛.skip, parms = 𝑐 (𝑎 = 2)): C5Y120
(2) logisticSim (𝑛, 𝑛.skip, parms = 𝑐 (𝑟 = 4)): C10Y120
(3) henonSim (𝑛, 𝑛.skip, parms = 𝑐 (𝑎 = 1.4, 𝑏 = 0.3)):

C15Y120
Thenumber of time series points (𝑛 = 120) is the same for

all functions.These functions are used to generate datasets by
changing the number of initial values to be skipped from the
series (𝑛.skip) and the rest of the parameters are considered
by default.

US Climate dataset is obtained from the National Cli-
matic Data Center [32] over the period 1895–2014 for the
nine US regions (Ohio Valley, Upper Midwest, Northeast,
Northwest, South, Southeast, Southwest, West, and Northern
Rockies and Plains).

In China Climate data, the analysis is done on monthly
average temperature data to detect abrupt climate changes
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in all regions of China for the recent 50 years from 1965 to
2015. China is divided into eight climate regions as follows: (a)
South China, (b) the middle and lower reaches of the Yangtze
River, (c) North China, (d) Northeast China, (e) the east of
Northwest China, (f) the west of Northwest China, (g) Tibet,
and (h) Southwest China [32].

In heart rate variability data, the analysis is performed
on the PhysioBank [33] dataset for different age groups to
analyze the heart rate dynamic properties. There are a total
of forty 120min ECG recordings with 10 people from each
group (10–24 years old, 25–40 years old, and 45–67 years old)
and 10 elderly people (68–85 years old).The continuous ECG
was digitized at 250Hz.

In voice data, the quantification recurrence measure-
ments are extracted from sustained vowels of speech signals
recordings from Disordered Voice Database, Model 4337,
developed by Kay Massachusetts Eye and Ear Infirmary
(MEEI) Voice and Speech Lab [34]. The database includes
samples from patients with a wide variety of voice disorders.
We present analysis of speech signals to find the difference
between healthy voices and voices affected by vocal diseases
(normal, Reinke’s edema, nodule and vocal cord paralysis,
vocal polyps, laryngitis, and contact ulcers). All samples were
collected in a controlled environment with the following fea-
tures: low-noise level, constant microphone distance, direct
digital 16-bit sampling, and robust signal conditioning. The
selected cases comprise 50 patients with pathological voices
(10 with Reinke’s edema, 10 with nodule, 10 with laryngitis, 10
with vocal cord paralysis, and 10 with contact ulcers) and 10
patients with healthy voices.

5.2. Correctness of the Proposed Approach. The correctness of
our method is demonstrated by applying it to a variety of
applications to cope with different situations like heart rate
and voice dataset. These datasets are selected because they
follow a recurring pattern and have similar characteristics to
time series data.

First, we have demonstrated that there occurs a recurring
pattern in heart rate which is indicated by the RPs shown in
Figure 8(a). If the RP shows a distinct pattern, then there is
periodicity in variations. Figures 8(a)(A) and 8(a)(B) indicate
RPs of two persons from the same age group (10–24) and their
variations are the same so their RPs are similar, while Figures
8(a)(A) and 8(a)(C) indicate RPs of different age groups and
their variations are different so both are showing distinct
patterns. The similarity and dissimilarity between variations
can also be observed usingCRPplots. If variations are similar,
then CRP plots will show a periodic pattern as indicated by
Figure 8(b)(A) and if variations are different then no such
pattern is observed as indicated by Figure 8(b)(B).

In other words, we can say that if people belong to the
same dataset, their RP and CRP will both follow a recurring
pattern but at the same time it is not necessary that if they
are from different datasets they follow a recurring pattern in
RPs and their CRP will also follow the same, which indicates
that there exists a similarity between people belonging to the
same age group and difference between people of different age
groups (i.e., heart rates of young and old people). Similarly,
we can see the similarities and difference between the voice

of healthy people and that of people who have vocal cord
paralysis from Figures 9(a) and 9(b).

We also validated our heart and voice data results by the
results of previous researchers [35, 36]. They show that heart
rate of different age groups differs by plotting RPs. Similarly,
the results were observed for voice data.

Table 5 shows the probabilistic correlation of one group of
people with another group. It also validates our CRP results
by categorizing CPR into three categories. For example, we
got a higher number of connections in the strong category
and a smaller one in the weak category for a group of people
which indicates that the heart rate of one age group or the
voice of healthy people does not differ more within a group
but it differs with another group of people.

5.3. Climate Data Results. From Figure 10, we can see that
RPs of nineUS regions have similar periodic variationswhich
indicate that the occurrence of recurrent points along the
main diagonal for each region is the same. This means the
temperature of one region follows some periodic variation
which is different from another region. The recurrence
plot for nine regions with 3-year intervals with step size
𝜏 = 4 is shown in Figure 10. To show clearer structural
changes in the behavior of temperature data and to see
the similarities in patterns across the time series, we show
the RPs for the first 120 months. RPs for season-wise and
1440 months’ data are shown in Appendix 1 (Figures 17
and 18 in the Supplementary Material available online at
https://doi.org/10.1155/2017/7836720).

Figure 11 shows the CRP between time series of monthly
US data for a 10-year time period with lengths of 120 months.
We can observe that there is no occurrence of recurrent
points along the main diagonal. This means two time series
are different and the temperature variation of one region is
different from another region.

In Figure 11(a), we gotmore correlated points which show
the strong similarity between Northwest and West regions.
Similarly, Figures 11(b) and 11(c) show the weak and very
weak (less correlated points) connection. Figure 11(d) shows
moderate similarity. This relationship can be validated using
Figure 1(a). We can also observe that the regions follow
similar temperature periodic variations within a region but
differ with another region.

These climatic region similarities can also be validated
by their longitude and latitude location. For example, in
US regions, from Figure 1(a), we can see that Northwest
and Southeast regions are situated diagonally, so very low
similarity will appear in their temperature. In other words,
in the case of Northwest and Southeast regions, sunrays
have a direct impact on Northwest and less on Southeast
regions, so their temperature differs, which is shown by the
smaller number of points in CRP (Figure 11(c)). RPs and
CRP for some regions of China are shown in Figures 12 and
13.

Table 4 describes the autocorrelation of US regions for a
time period 1895–2014. It is calculated using (2). All region
recurrence rate values start from 1 because the probability
of recurrence is always 1 at 𝜏 = 0. Because of autocor-
relation, successive values can be treated as recurrences;

https://doi.org/10.1155/2017/7836720
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Figure 8

Table 4: Probability of recurrence.

US regions 1895/01 1895/03 1895/05 1898/01 1898/03 1898/05 2014/09 2014/11
R1 1 0.33 0.67 ⋅ ⋅ ⋅ 1 0.33 0.66 ⋅ ⋅ ⋅ 0.57 0.69
R2 1 0.33 0.68 ⋅ ⋅ ⋅ 1 0.33 0.73 ⋅ ⋅ ⋅ 0.71 0.69
R3 1 0.33 0.68 ⋅ ⋅ ⋅ 1 0.34 0.69 ⋅ ⋅ ⋅ 0.71 0.67
R4 1 0.33 0.69 ⋅ ⋅ ⋅ 0.99 0.33 0.7 ⋅ ⋅ ⋅ 0.43 0.66
R5 1 0.33 0.68 ⋅ ⋅ ⋅ 1 0.33 0.69 ⋅ ⋅ ⋅ 0.71 0.7
R6 1 0.33 0.67 ⋅ ⋅ ⋅ 1 0.34 0.7 ⋅ ⋅ ⋅ 0.43 0.7
R7 1 0.33 0.72 ⋅ ⋅ ⋅ 0.98 0.33 0.7 ⋅ ⋅ ⋅ 0.71 0.7
R8 1 0.33 0.67 ⋅ ⋅ ⋅ 1 0.33 0.68 ⋅ ⋅ ⋅ 0.57 0.66
R9 1 0.34 0.67 ⋅ ⋅ ⋅ 1 0.35 0.69 ⋅ ⋅ ⋅ 0.57 0.68
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(b) Cross recurrence plots for voice data

Figure 9

thus, a greater recurrence density occurs around the main
diagonal.

Figure 14 describes that the spatial distribution of the RR
corresponding to the monthly average temperature data of
all regions remains unchanged over the 120 months in the
US. The figure demonstrates that the monthly average tem-
perature data of each region are similar to the characteristics
of the distribution of climate types in the US. This indicates
that there exists a slight change in temperature of one region
for a particular month (say January) and shows a periodic
pattern.

Table 5 describes the number of connections in each bin
along time, that is, the results of correlation strength in three
categories (i.e., strong, moderate, and weak) calculated using
(13). Here, we calculate the CPR (see (4)) for both synthetic
and real datasets.

In Table 5, climate region CPR results are shown on
monthly data (i.e., correlation between regions). We can
interpret that most of the correlation is coming under the
weak category for all synthetic, US, and China climate

regions, which indicates that climate change of all regions
in the US and China is independent of climate change of
other regions. For example, in the US, regions fall under
three categories, which are strong (Northwest-West, Ohio
Valley-Southeast, andNortheast-Southeast), moderate (Ohio
Valley-Upper Midwest, Upper Midwest-South, Northeast-
OhioValley, Northwest-Southwest, Northwest-South,North-
ern Rockies and Plains-Southwest, and Northern Rockies
and Plains-South), and weak (the rest of the regions) (i.e.,
the regions having similar temperature variations either
latitude- or longitude-wise). Season-wise CPR results for
US and China climate regions are shown in Appendix 1
(Table 9).

To show the appropriateness of our climate region results,
we represent the correlation connectivity trend enabling
quantifying a possible similarity and dissimilarity between
US regions for all three categories in Figure 15. From Fig-
ure 15(a), we can see that Ohio Valley and Southeast follow
an almost similar climate change pattern by moving up and
down on the same time periods, which is the indication of
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Figure 10: Recurrence plots for US regions.

strong connectivity. Similarly, other connectivity trends can
be observed.

5.4. Validation Using Significance Testing: ANOVA, Krus-
kal–Wallis, and 𝑧-Test. It is not possible to give an accurate
analysis only on the basis of recurrence rate, recurrence
plot, and cross recurrence plots on time series. This should
be done using a statistical test and an appropriate null
hypothesis significance test. So, for the statistical significance
of our approach, we are using ANOVA, Kruskal–Wallis,
and 𝑧-significance test [27, 28] against the analysis obtained

from the recurrence based method on time series data. The
statistical methods can be used to analyze similarity between
two distinct pieces of data.

Both the Kruskal–Wallis test (often using ordinal data)
and one-way ANOVA (typically using interval data) are used
to analyze similarity between data series or to determine
the statistically significant differences between three or more
groups.

If the hypothesis of similarity of means is rejected, this
will show that the data does not have a similar pattern and
now a query occurs as to which pattern means are distinct.
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Figure 11: CRP for US regions.
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Table 5: CPR binning table for real and synthetic datasets.

Strong Moderate Weak
Synthetic datasets

C5Y120 2 1 7
C10Y120 5 4 36
C15Y120 9 11 85

Real datasets
US Climate data (36 pairs)
Nine regions 3 7 26
China Climate data (28 pairs)
Eight regions 4 5 19
Heart rate variability (45 pairs)
10–24 (age) 36 3 6
25–40 38 5 2
41–67 37 5 3
68–85 32 7 6
Voice data (45 pairs)
Healthy 38 4 3
Reinke’s edema 35 8 2
Nodule 36 5 4
Vocal cord paralysis 40 3 2
Laryngitis 37 5 3
Contact ulcers 33 7 5
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Figure 13: CRP for the regions in China: Southwest and Northeast.

The statistical methods used to resolve this query are known
as multiple paired comparison procedures. We calculated the
hypothesis by using two-tailed significance level estimates (𝑧-
test).

The hypothesis is as follows:

H0: 𝜇1 = 𝜇2, null hypothesis; there are no differences
between the groups (9 US regions, 8 climate regions,
6 types of voice, and 4 age groups of heart rate
variability).

H1: 𝜇1 ̸= 𝜇2, alternative hypothesis; differences exist.

Validation Using ANOVA Test. Table 6 describes the ANOVA
results representing BM (betweenmean squares of all groups)
and WM (within mean square of a group) and their 𝐹-
statistics value for each dataset.

We observed that the 𝐹-test statistic exceeds the signifi-
cance level of 𝐹crit (0.05) in all cases except healthy voice data
and heart rate variability data (10–24). For example, for US
Climate dataset as seen by the ANOVA test, the calculated
𝐹-test statistic (5.10) is greater than 𝐹-critical. From this test,
it is evident that there are statistically significant differences
existing in temperature values between the nine US regions.
Similarly, for regions of China, the result indicates that
there exists a significant gap between the eight climate
regions of China, which demonstrates the effectiveness and
reliability of the recurrence based approach in significant
climate change recognition in the US and China. In the
case of healthy voice data and heart rate variability data
(10–24), the calculated 𝐹-test statistic is less than 𝐹-critical.
This 𝐹-value indicates similarity within a group (i.e., the
same group of people have fewer changes in voice and heart
rate).

Validation Using Kruskal–Wallis Test. Table 7 describes the
calculated 𝑝 value of the Kruskal–Wallis test for all datasets,
which is less than 0.05 except for healthy voice data and heart
rate variability data (10–24). For example, for US Climate
dataset, as seen by the Kruskal–Wallis test function, the
calculated 𝑝 value is 2.2𝑒 − 16 which is certainly less than
the criterion 𝑝 value ≤ 0.05. From this test, it is evident
that there are statistically significant differences existing in
temperature values between the nine US regions. In the case
of healthy voice data and heart rate variability data (10–24),
the calculated 𝑝 value is greater than 0.05, which indicates
similarity within a group (i.e., the same group of people have
fewer changes in voice and heart rate).

Validation Using z-Test. We calculated the hypothesis at 𝛼 =
0.05 level that there is no difference between all groups
versus one group for all datasets. The results are shown in
Table 8, which describes the results of testing for similarity
of means between all groups for each dataset. Each group is
significantly different from the group of all.

From Table 8, we observed that, most of the time, our
hypothesis is rejected except for voice data.This indicates that
each group has an identity (i.e., there exists less similarity
between groups on the basis of temperature). We observed
that, for each dataset, there is some exception. For example,
in US Climate data, we got only one exception as Southwest,
which indicates that there exists less similarity between
groups on the basis of temperature. Similarly, we got the
exceptions for other datasets. This is a strong indication of
each group identity. In case of voice data,most of the time, our
hypothesis is acceptedwhich indicates similarity in a group of
the same type of people.

5.5. Scalability. To evaluate the scalability of the proposed
approach on the CPR value and number of pairs, experiments
are done with varying numbers of years. Figure 16(a) repre-
sents the correlation of Ohio Valley with Southeast and of
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Figure 14: Recurrence rate (RR), 𝑝(𝜏) of each region in the US for 120 months.

Table 6: ANOVA test.

Dataset BM WM 𝐹-statistics 𝐹-critical
C5Y120 9.45 1.85 5.10 2.13
C10Y120 8.78 3.48 2.52 2.13
C15Y120 6.47 1.18 5.48 2.13
US Climate data 0.32 0.06 5.10 2.13
China Climate data 1.26 0.17 7.41 2.13
Heart rate variability data (age 10–24) 2.45 1.97 1.24 2.13
Heart rate (4 groups) 3.27 1.26 2.59 2.13
Healthy voice data 1.34 0.82 1.63 2.13
Voice data (6 groups) 1.47 0.26 5.65 2.13
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Table 7: Kruskal–Wallis test.

Dataset 𝑝 value
C5Y120 1.4𝑒 − 13
C10Y120 1.4𝑒 − 11
C15Y120 1.2𝑒 − 11
US Climate data 2.2𝑒 − 16
China Climate data 1.9𝑒 − 12
Heart rate variability data (age 10–24) 1.623
Heart rate (4 groups) 1.2𝑒 − 12
Healthy voice data 1.412
Voice data (6 groups) 1.8𝑒 − 13

Southwest and Upper Midwest which indicates that there is
a slight change in relationship (i.e., CPR values) throughout
the years. In Figure 16(b), it could be seen that the category
of relatedness in US regions will be the same with a varying
number of years (i.e., extracted pairs belonging to a particular
category are not varying much).

6. Conclusion and Discussion

In this paper, we have presented a method to find out
similarity or dissimilarity between the two pieces of time
series data where each series has periodic variations in the
data. Normally, if the variations are periodic, then the two
time series may provide the same RP though their nature
of variations is different. Analyzing only the RP of the two
time series is not sufficient to test whether they have similar
periodic variations, so we applied CRP to test the similarity of
periodic variations. We have also indicated visual similarity

(connectivity) between the two time series using modified
CPR.

First, we have tested our approach on the datasets having
known similar or dissimilar periodic variations and found
that the result of our method matches the already established
results and, for that, we have used heart rate dataset, voice
dataset, and synthetic datasets generated using the sin()
function. After validating results on the known datasets,
we have extended the method for climate data which has
similar characteristics (i.e., time series data having periodic
variations). We have analyzed data of different climatic
regions and inferred that the regions which have similar
latitudes and longitudes also have similar variations, while
variation patterns change if regions have different latitudes
and longitudes which are consistent with the known results.
Our outcomes conclude that if the two time series are
periodic and have a similar recurrence pattern, this does not
mean that the same recurring pattern will emerge in CRP
also.

The analysis is done using methods such as quantitative
RR, recurrence plots (RPs), cross recurrence plot (CRP),
and correlation of probability of recurrence (CPR). First,
we have demonstrated the periodicity of temperature vari-
ations using the RP plot which is visualized using diag-
onal lines or square boxes. After that, we have used the
modified CPR approach to test similarity (connectivity) of
these periodic variations. We have statistically validated our
methodology by using ANOVA, Kruskal–Wallis, and 𝑧-
statistics. This quantitative analysis can effectively recognize
the changes of dynamic structure within and between groups.
The obtained results suggest that the proposed approach
provides a good potential for discrimination between groups
of data having periodic variations and can be used to analyze
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Table 8: Multiple group comparison.

Country 1 versus Country 2 𝑍-value Hypothesis results
US, nine regions

All regions versus Northern Rockies And Plains −9.13 Hypothesis failed
All regions versus Northwest −13.47 Hypothesis failed
All regions versus Ohio Valley −11.33 Hypothesis failed
All regions versus South 2.78 Hypothesis failed
All regions versus Southeast 19.82 Hypothesis failed
All regions versus Southwest 0.85 Hypothesis accepted
All regions versus Upper Midwest −12.06 Hypothesis failed
All regions versus West 5.79 Hypothesis failed

China, eight regions
All regions versus South China −3.009 Hypothesis failed
All regions versus middle and lower reaches of the Yangtze River −2.263 Hypothesis failed
All regions versus North China −1.280 Hypothesis accepted
All regions versus Northeast China 2.136 Hypothesis failed
All regions versus east of Northwest China −1.985 Hypothesis failed
All regions versus west of Northwest China 1.077 Hypothesis accepted
All regions versus Tibet −2.666 Hypothesis failed
All regions versus Southwest China 1.313 Hypothesis accepted

Voice identification in healthy people
All persons versus person 1 1.661 Hypothesis accepted
All persons versus person 2 1.302 Hypothesis accepted
All persons versus person 3 1.324 Hypothesis accepted
All persons versus person 4 4.228 Hypothesis failed
All persons versus person 5 0.541 Hypothesis accepted
All persons versus person 6 1.030 Hypothesis accepted
All persons versus person 7 1.44 Hypothesis accepted
All persons versus person 8 1.25 Hypothesis accepted
All persons versus person 9 1.51 Hypothesis accepted
All persons versus person 10 1.293 Hypothesis accepted
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Figure 16: Scalability of the CPR based approach in terms of (a) CPR value. (b) Number of pairs.
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the climate data which is provided in the form of time
series.

The economic growth of any region or country is
different from others on the basis of education, finance,
health, environment, business industries, living standard, and
agriculture productivity. Somehow, these parameters depend
on climate change; the economic time series data shows
periodic variations and cycles whichmay result in differences
in economic conditions. Our approach will also help experts
to make any climate based policies which affect investment,
environment, political stability, technological development,
and industrial output such as designing the policies of
environmental protection agencies.

In the future, wewill try to use recurrence basedmeasures
(RQA) with uniform scaling to evaluate recurring patterns
with other climate parameters (cloud, weather, pressure, rain-
fall, etc.) for a better understanding of their interconnection
and analyze their effects on economic growth. Furthermore,
we can try to parallelize the proposed approach, to reduce the
relative time of similarity analysis and memory consumption
on extremely large time series datasets.
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