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We discuss three boundary value problems in the flow and heat transfer analysis in flow-
ing granular materials: (i) the flow down an inclined plane with radiation effects at the
free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the
shearing motion between two horizontal flat plates with heat conduction. It is assumed
that the material behaves like a continuum, similar to a compressible nonlinear fluid
where the effects of density gradients are incorporated in the stress tensor. For a fully
developed flow the equations are simplified to a system of three nonlinear ordinary dif-
ferential equations. The equations are made dimensionless and a parametric study is per-
formed where the effects of various dimensionless numbers representing the effects of
heat conduction, viscous dissipation, radiation, and so forth are presented.
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1. Introduction

Multiphase studies present challenging and interesting problems for engineers, physi-
cists, and mathematicians. Different approaches, such as experimental, theoretical, and
computational techniques, often combined, have been used. From a mathematical point
of view, understanding the behavior and response of each phase, whereby the mate-
rial is modeled based on sound and physical principles, is the first step towards un-
derstanding the more complex multicomponent flows which also include interactions
among the different constituents. Some of the early studies were concerned with the en-
gineering and structural design of bins and silos. The inaccuracies of these theories, es-
pecially for the dynamic conditions of loading or emptying, occasionally have resulted
in failure of the bin or silo [Savage [49]]. In many engineering applications such as
discharge through bin outlets, flow through hoppers and chutes, flow in mixers, and
slurry transports, one needs information on the flow pattern and particle distribution.
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A poor understanding of the flow of granular materials can have serious economic con-
sequences in the design and handling of large-scale solids transport plants. Engineers
have been forced to resort to costly, cut-and-try methods of design. In order to de-
sign equipment such as bins and silos, combustors, hoppers, chutes, hydrocyclones, and
so forth in an effective and economical way, a thorough understanding of the various
factors governing the flow characteristics of granular materials must be obtained. Heat
transfer plays a major role in storage, handling, and processing of bulk solids such as
grains, powders, pharmaceutical products, and so forth. Flowing granular streams are
being considered for some solar power plants and fusion reactor chambers (see Gudhe
et al. [19]). In fossil fuel applications, the self-heating of coal stockpiles has a long his-
tory of posing significant problems to coal producers because it lowers the quality of coal
and may result in hazardous thermal runaway. Precise prediction of the self-heating pro-
cess is, therefore, necessary in order to identify and evaluate the control strategies for safe
coal mining, storage, and transportation. In a number of applications, granular materi-
als are heated prior to processing, or cooled after processing (see Patton et al. [38]). It
can be seen that very little fundamental work, from a mathematical point of view, has
been devoted to these types of heat transfer processes in granular materials (see Kaviany
[26]).

Granular materials exhibit nonlinear phenomena like yield stress and normal stress
differences, the latter is usually referred to as dilatancy (see Reynolds [45]). The normal-
stress phenomenon is a characteristic of nonlinear fluids and nonlinear elastic solids. For
flowing granular materials, where particles are colliding with and sliding over each other,
methods in continuum mechanics can be used. In this approach one assumes that the ma-
terial properties of the ensemble may be represented by continuous functions. One of
the early continuum models for flowing granular materials was proposed by Goodman
and Cowin (see [17, 18]) and Cowin (see [9, 10]). Another approach is based on the
techniques used in the kinetic theory of gases (see Goldhirsch [16]). In these cases, the ef-
fects of the interstitial fluid are neglected and the granular material is modeled as a single
phase continuum. In general, however, one should take a multicomponent approach (see
Rajagopal and Tao [42]).

The two important constitutive relations needed for the study of flow and heat transfer
in granular materials are the heat flux vector and the stress tensor. For most applications
the Fourier’s law of heat conduction is assumed for the heat flux vector, where an effec-
tive thermal conductivity is prescribed. In this paper, we use this approach. For the stress
tensor, we use a model developed by Rajagopal and Massoudi [39], where the effects of
density gradients are included. This model has been used to study various problems such
as flow in a vertical pipe (cf. Gudhe et al. [20]), heat transfer and flow on an inclined plane
(see Gudhe et al. [19]), and flow due to natural convection (cf. Massoudi and Phuoc [31]).
At the same time this model has been used within the context of mixture theory to study
problems of practical interest in multiphase applications (Massoudi et al. [32]). Recent
review articles by Savage [49], Hutter and Rajagopal [21], and de Gennes [11], and books
by Mehta [34], Duran [12], and Antony et al. [1] address many of the interesting issues
in the field of granular materials.
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In this paper, we review and discuss three important boundary value problems: (i) the
flow down an inclined plane with the effects of radiation heat transfer at the free sur-
face; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing
motion between two horizontal flat plates, where the effects of viscous dissipation are
included. It is assumed that the material behaves like a continuum, similar to a compress-
ible nonlinear fluid. For a fully developed flow the equations are simplified to a system of
three nonlinear ordinary differential equations. The equations are made dimensionless
and a parametric study is performed, where the effects of various dimensionless num-
bers representing the effects of heat conduction, viscous dissipation, and so forth are
presented.

2. Governing equations

The balance laws, in the absence of chemical reactions and electromagnetic effects, are the
conservation of mass, linear momentum, angular momentum, and energy (see Truesdell
and Noll [56]). The conservation of mass in the Eulerian form is given by

∂ρ

∂t
+ div(ρu)= 0, (2.1)

where ∂/∂t is the partial derivative with respect to time. The balance of linear momentum
is

ρ
du
dt
= div T + ρb, (2.2)

where d/dt is the material time derivative, b is the body force, and T is the Cauchy stress
tensor. The balance of angular momentum (in the absence of couple stresses) yields the
result that the Cauchy stress is symmetric.

The energy equation in its general form is

ρ
dε

dt
= T ·L−div q + ρr, (2.3)

where ε denotes the specific internal energy, q is the heat flux vector, r is the radiant
heating, and L is the velocity gradient. Thermodynamical considerations require the ap-
plication of the second law of thermodynamics or the entropy inequality. The local form
of the entropy inequality is given by (see Liu [27, page 130])

ρη̇+ divφ− ρs≥ 0, (2.4)

where η(x, t) is the specific entropy density, φ(x, t) is the entropy flux, and s is the entropy
supply density due to external sources, and the dot denotes the material time derivative.
If it is assumed that

φ = 1
θ

q,

s= 1
θ
r,

(2.5)
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where θ is the absolute temperature, then (2.4) reduces to the Clausius-Duhem inequality

ρη̇+ div
q
θ
− ρ r

θ
≥ 0. (2.6)

For a complete study of a thermo-mechanical problem the second law of thermodynam-
ics has to be considered (see Collins and Houlsby [8]). In other words, in addition to other
principles in continuum mechanics such as material symmetry, frame indifference, and
so forth, the second law also imposes certain restrictions on the type of motion and/or
the constitutive parameters. Since, there is no general agreement on the functional form
of the constitutive relation and since the Helmholtz free energy is not known, a complete
thermodynamical treatment of the present model used in our studies is lacking. Instead,
we use the results of Rajagopal et al. (see [40, 43]) to obtain restrictions on the material
parameters, while using simple and reasonable expressions for the undetermined coeffi-
cients. In order to “close” the governing equations, we need constitutive relations for T,
q, and r.

At this juncture it would be appropriate to point out that in theories for rapid flow
of granular materials based on a kinetic theory approach, the fluctuations in the velocity
field give rise to the notion of “granular temperature.” The convective heat transport,
within the context of such theories, is determined by the fluctuations in the velocity field.
In the continuum approach that we have taken, the fluctuations in the velocity field are
ignored, and the phenomenon of heat transfer is incorporated in the energy equation. To
include in addition to the energy equation, the notion of granular temperature would be
inconsistent with our approach. The continuum approach is applicable when the packing
of the material is reasonably compact, that is, high volume fraction, and the fluctuations
from the mean are not significant.

3. Constitutive equations

3.1. Stress tensor. Reynolds (see [45, 46]) observed that for a shearing motion to occur
in a bed of closely packed particles, the bed must expand to increase the volume of its
voids. He termed this phenomena dilatancy. Reiner [44] proposed a continuum model to
describe the mechanics of wet sand. This model does not take into account how the vol-
ume fraction affects the stress; however, using his model, Reiner [44] showed that the ap-
plication of a nonzero shear stress produces a change in volume. McTigue [33] extended
the Reiner-Rivlin model to granular materials. Bagnold [3, 4] performed experiments on
neutrally buoyant, spherical particles suspended in Newtonian fluids undergoing shear
in coaxial rotating cylinders. He distinguished three different regimes of flow behavior,
which he termed macro-viscous, transitional, and grain-inertia. The interesting phenom-
enon was the presence of a normal stress proportional to the shear stress, similar to that of
the quasistatic behavior of a cohesionless material obeying the Mohr-Coulomb criterion
(see Spencer [51], Schaeffer [50]). Many investigators have modeled flow of particles as a
fluid phenomenon, even as a compressible fluid (see Tardos [54]). Many researchers have
formulated nonlinear fluid-type models to describe the behavior of granular materials
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(see Reiner [44], McTigue [33], Savage [48], Goddard [15], Astarita and Ocone [2]). For
a review see the article by Elaskar and Godoy [13].

In this paper, we use Rajagopal and Massoudi’s model [39] where the Cauchy stress
tensor T depends on the manner in which the granular material is distributed, that is, the
volume fraction ν, its gradient, and the symmetric part of the velocity gradient tensor D.
That is,

T= f(v,∇v,D). (3.1)

Using standard procedures in mechanics such as frame-indifference, isotropy, and so
forth, certain restrictions on (3.1) can be found (cf. Truesdell and Noll [56]). Additional
restrictions on the form of the constitutive expression can also be obtained from internal
constraints, such as incompressibility and thermodynamics restrictions due to Clausius-
Duhem inequality (cf. Müller [36]). A constitutive model that predicts the possibility
of normal stress-differences and is properly frame invariant was given by Rajagopal and
Massoudi [39]:

T= [βo(ν) +β1∇ν ·∇ν +β2 trD
]

1 +β3D +β4∇ν⊗∇ν +β5D2, (3.2)

where

D= 1
2

[∇u + (∇u)T
]
,

ρ = γν,
(3.3)

where γ is constant. The material parameters βo–β5 are assumed to have the following
forms:

βo = kν, k < 0,

β1 = β∗1
(
1 + ν + ν2),

β2 = β∗2
(
ν + ν2),

β3 = β∗3
(
ν + ν2),

β4 = β∗4
(
1 + ν + ν2),

β5 = β∗5
(
1 + ν + ν2).

(3.4)

The above representation can be viewed as Taylor series approximation for the material
parameters (see Rajagopal et al. [40]). Such quadratic dependence, at least for the vis-
cosity β3, is on the basis of dynamic simulations of particle interactions (see Walton and
Braun [57]). Further restrictions on the coefficients have been obtained by using the fol-
lowing argument. Since the stress should vanish as ν→ 0, we can conclude that

β50 = β30 = β20 = 0. (3.5)

This is a principle of the limiting case. That is, if there are no particles, then ν and gradν
are zero, and the stress should be zero; however, the kinematical terms D, D2, and trD,
multiplied by β2, β3, and β5 do not necessarily go to zero when there are no particles.
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Homogenization Motion

ν= 0

ν= 1
ν(X̃ , t)

ν(x̃, t)

X̃ = x̃(X̃ , t)

Ωo

Ωt

Ωo : reference configuration

Ωt : present configuration

Figure 3.1

Therefore, to ensure this we impose the above restrictions. Furthermore, Rajagopal and
Massoudi [39] and Rajagopal et al. [43] have shown that

k < 0 (3.6)

as compression should lead to densification of the material. They gave the following rhe-
ological interpretation to the material parameters: β0(ν) is similar to pressure in a com-
pressible fluid and is to be given by an equation of state, β2(ν) is like the second coefficient
of viscosity in a compressible fluid, β1(ν) and β4(ν) are the material parameters connected
with the distribution of the granular materials, β3(ν) is the viscosity of the granular ma-
terials, and β5 is similar to what is referred to as the “cross-viscosity” in a Reiner-Rivlin
fluid.

Looking at (3.2) with (3.4) it can be shown that this model is capable of predicting
both normal stress differences in a simple shear flow problem (for details see Massoudi
and Mehrabadi [30]). In our analysis in this paper, for simplicity, we assume β5 is zero
and as a result only one of the normal stress differences is nonzero. Furthermore, the
volume fraction field ν(x, t) plays a major role in this model. That is, even though we talk
of distinct solid particles with a certain diameter, in this theory, the particles through the
introduction of the volume fraction field have been homogenized, as shown in Figure 3.1.
In other words, it is assumed that the material properties of the ensemble are continuous
functions of position. That is, the material may be divided indefinitely without losing any
of its defining properties. A distributed volume

Vt =
∫

νdV (3.7)

and a distributed mass

M =
∫
ρsνdV (3.8)
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can be defined, where the function ν is an independent kinematical variable called the
volume distribution function and has the property

0≤ ν(x, t) < νmax < 1. (3.9)

The function ν is represented as a continuous function of position and time; in reality,
ν in a granular system is either one or zero at any position and time, depending upon
whether one is pointing to a granule or to the void space at that position. That is, the real
volume distribution content has been averaged, in some sense, over the neighborhood
of any given position. The classical mass density or bulk density, ρ, is related to ρs and ν
through

ρ = ρsν. (3.10)

It should be mentioned that in practice ν is never equal to one; its maximum valued, gen-
erally designated as the maximum packing fraction, depends on the shape, size, method
of packing, and so forth.

3.2. Heat flux vector. The constitutive relation for the heat flux vector is assumed to be
given by the Fourier’s law of conduction where the heat flux vector q is linearly related to
the temperature gradient:

q=−K∇θ, (3.11)

where K is an effective or modified form of the thermal conductivity. The dependence
of thermal conductivity on material properties and volume fraction is one of the chal-
lenging problems in mechanics of microstructure materials. There have been some stud-
ies with regard to porous materials but few with regard to flowing granular materials.
For example, Kaviany (see [26, page 129]) presents a thorough review of the appropriate
correlations for the thermal conductivity for packed beds and the effective thermal con-
ductivity in multiphase flows. Massoudi (see [28, 29]) has recently given a brief review
of this subject and has also proposed and derived a general constitutive relation for the
heat flux vector for a flowing granular media. In this paper, we use the following simple
approximations (see Bashir and Goddard [5]):

K = Km(1 + 3ξν),

ξ = ψ− 1
ψ + 2

,
(3.12)

where ψ is the ratio of conductivity of the particle to that of the matrix and Km is the
thermal conductivity of the matrix. We use this approximation for two of the boundary
value problems considered in this paper, namely, the natural convection problem and the
shearing motion. For the inclined flow problem, we use the more nonlinear case due to
Jeffrey [24] which includes the second-order effects in the volume fraction:

κ= κm
[
1 + 3βν + β̂ν2]+O

(
ν3), (3.13)
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where

β̂ = 3β2 +
3β3

4
+

9β3

16

(
α+ 2

2α+ 3

)
+

3β4

26
+ ··· , (3.14)

where

β = α− 1
α+ 2

,

α= k2

k1
,

(3.15)

where α is the ratio of conductivity of the particle to that of the matrix, κ the effective con-
ductivity of the suspension, κm the conductivity of the matrix, and ν is the solid volume
fraction.

4. Boundary value problems

Whenever nonlinear constitutive relations are studied, the solution procedures for solv-
ing the governing equations, whether analytical or computational, are more complicated.
Exact solutions are very rare in heat transfer studies of nonlinear materials or multiphase
flows. Next to the exact solutions, finding solutions to simple boundary value problems
are extremely desirable. Most of the constitutive relations used in mechanics, whether
non-Newtonian models, turbulence models, and so forth, when substituted in the gen-
eral governing equations, that is, the balance laws, would produce a system of partial dif-
ferential equations which at times are impossible to solve completely with the numerical
techniques currently available. Therefore, from a modeling point of view, it is worth-
while to study problems where due to simplification of the kinematics of the flow or
the boundary conditions, one obtains a system of (nonlinear) ordinary differential equa-
tions. The solution to these simpler problems would be useful for at least two different
reasons: (i) they provide insight into the nature of these nonlinear constitutive relations,
and (ii) they provide cases where the accuracy or convergence of solutions to the general
multidimensional equations can be tested. Other interesting phenomena such as stability
and uniqueness of solutions also sometimes arise. Furthermore, the higher order terms
in the constitutive relations require additional boundary conditions, and this itself is an
important problem to study.

In most applications the solid particles are transported via a fluid: for example, in coal
water slurries, the liquid is either water or oil. In these problems, the driving force is the
fluid’s pressure gradient, and as a result the motions of the constituents are coupled. In
certain cases the driving force is due to the boundary (as in the shearing motion) or due
to the gravitational effects (or some other fields such as buoyancy, electric, or magnetic
fields), and if the particles are densely packed, the effects of the interstitial fluid can be
ignored; in such cases one can use the continuum mechanics of a single constituent to
study the flow of the granular media (where u and D are not zero). The three problems
selected in this paper represent a few of these special cases where the driving force is
due to gravity (Section 4.1), temperature gradient (Section 4.2), and shearing motion
(Section 4.3).
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4.1. Free surface flow down an inclined plane. Flow of granular materials down an in-
clined plane occurs naturally as in the cases of avalanches and mudslides; it is also used
for transporting and drying of bulk solids (such as agricultural and pharmaceutical prod-
ucts). It is a viscometric flow (see Truesdell [55]) and one which amends itself to funda-
mental theoretical and experimental studies. Hutter et al. (see [22, 23]) showed that the
existence (or nonexistence) of solutions for fully developed flow down an inclined plane
depends on the type of boundary conditions that are imposed. Rajagopal et al. [43] also
studied existence and uniqueness of solutions to the equations for the flow of granular
materials down an inclined plane, where the thermal effects were also included. They
used the model developed by Rajagopal and Massoudi [39]; in that study they delineated
a range of values for the material parameters, which ensures existence of solutions to
the equations under consideration. They also proved rigorously that for a certain range
of values of the parameters no solutions exist, while for others there is a multiplicity of
solutions.

In this section of the paper, we will look at the flow down a heated inclined plane (see
also Gudhe et al. [19]). In many problems, viscous dissipation is ignored. There are many
cases in polymer rheology and lubrication, for example, where viscous dissipation cannot
be neglected (see Szeri and Rajagopal [53], Szeri [52]). For densely packed granular ma-
terials, as particles move and slide over each other, heat is generated due to friction and
therefore, in such problems, the viscous dissipation should be included. It is assumed that
the flow is fully developed (see Figure 4.1). The free surface is exposed to high ambient
temperature and as a result a modified Stefan-Boltzmann correlation for radiation is used
at that surface (see Fuchs [14, page 331]).

We make the following assumptions:
(i) the motion is steady;

(ii) the effects of radiant heating r are imposed at the free surface;
(iii) the constitutive equation for the stress tensor is given by (3.2) and the consti-

tutive equation for the heat flux vector is that of Fourier’s law, given by (3.11),
(3.13)–(3.15);
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(iv) the density (or volume fraction), velocity, and temperature fields are of the form

ν= ν(y),

u= u(y)i,

θ = θ(y).

(4.1)

With the above assumptions, the equation of conservation of mass is automatically satis-
fied and the momentum and the energy equations in their reduced forms become

(i) y-direction momentum:

k
dν

dy
+ 2
(
β∗1 +β∗4

)(
1 + ν + ν2) dν

dy

d2ν

dy2
+
(
β∗1 +β∗4

)
(1 + 2ν)

(
dν

dy

)3

= γgνcosα; (4.2)

(ii) x-direction momentum:

β∗3
(
ν + ν2)d2u

dy2
+β∗3 (1 + 2ν)

dν

dy

du

dy
=−2γνg sinα; (4.3)

(iii) heat transfer:

2Km
(
1 + aν + bν2)d2θ

dy2
+Km(a+ 2bν)

dν

dy

dθ

dy
=−β∗3

(
ν + ν2)

(
du

dy

)2

. (4.4)

From (4.2) it is clear that we need two boundary conditions for the volume fraction ν,
and (4.3) and (4.4) indicate that two conditions are required for the velocity and the tem-
perature fields, respectively. We can also see that (4.2) is not coupled to the other two
equations, and it can therefore be integrated first. Once the volume fraction field is deter-
mined, (4.3) can be solved for “u,” and finally (4.4) is integrated to find the temperature
field “θ.”

At the surface of the inclined we assume the no-slip condition for the velocity and a
constant temperate θw. Thus,

at y = 0 :

⎧⎨
⎩
u= 0,

θ = θw.
(4.5)

At the free surface, the no-traction boundary condition is imposed on the stress tensor,
and as a result we obtain two expressions for the velocity gradient and the volume fraction
(see (4.6), (4.7)), and for the temperature we apply the Stefan-Boltzmann condition (the
importance of radiation boundary condition for composite plates is discussed by Miller
and Weaver [35], for fluid-particle flow by Chamkha [7], and for packed beds by Wu
and Chu [58]; equation (4.8) is really our first approximation, and a more appropriate
one for the case of granular materials might be to introduce into the equation a function
for the dependence of the volume fraction, for example, q = f (ν)εσ(θ4

h − θ4
s )) (see also

Saldanha da Gama [47]) when the surrounding temperature is designated as θ∞ and the
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temperature at the free surface is θh. Thus, we have, at y = h,

du

dy
= 0, (4.6)

kν +
(
β∗1 +β∗4

)( dν

dy

)2

= 0, (4.7)

q = εσ(θ4
h − θ4

∞
)
. (4.8)

We can see that we still need an additional boundary condition for ν. There are at least
two options: (i) we can impose a distribution function for ν at the wall, which could have
a constant value (this may mean gluing particles to the surface), or (ii) we can give an
average value for ν integrated over the cross section (a measure of the amount of particles
present in the system). These two conditions can be written as

ν= νo at y = 0,

N = 1
h

∫ h
0

νdy.
(4.9)

Equations (4.2)–(4.4) are made dimensionless before they are solved numerically. This is
a procedure which we will follow throughout the paper. Let us define the dimensionless
distance y, the velocity u, and the temperature θ by the following equations (see Na [37]):

y = y

h
, u= u

u0
, θ = θ

θw
, (4.10)

where uo is a reference velocity, θw is the wall temperature, and h is the constant height to
the free surface. The above equations then become

R1
dν

dy
+R2

(
1 + ν + ν2) dν

dy

d2ν

dy2 +
R2

2
(1 + 2ν)

(
dν

dy

)3

= νcosα,

R3ν
(
1 + ν2)d2u

dy2 +R3(1 + 2ν)
dν

dy

du

dy
=−νsinα,

(
1 + aν + bν2)d2θ

dy2 + (a+ 2bν)
dν

dy

dθ

dy
=−R4ν(1 + ν)

(
du

dy

)2

,

(4.11)

where

R1 = k

γgh
, R2 = 2

(
β∗1 +β∗4

)
γgh3

, R3 = β∗3 u2
w

2h2γg
,

R4 = β∗3 u2
w

2Kmθw
, R5 = εσθ3

wh

Km
,

(4.12)
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and the boundary conditions become

at y = 0 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u= 0,

θ = 1,

ν= νo,

at y = 1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dy
= 0,

R1ν +
R2

2

(
dν

dy

)2

= 0,

dθ

dy
= −R5

1 + aν + bν

(
θ

4
y=1− θ

4
∞
)

; where θ∞ = θ∞
θw

,

(4.13)

N =
∫ 1

0
νdy. (4.14)

In this problem we will use condition (4.14) for the volume fraction. The dimensionless
parameters have the following physical interpretations: R1 could be thought of as the ratio
of the pressure force to the gravity force; R2 is the ratio of forces developed in the material,
due to the distribution of the voids, to the force of gravity; R3 is the ratio of the viscous
force to the gravity force (related to the Reynolds number); R4 is a measure of viscous
dissipation, which is the product of the Prandtl number and the Eckert number; and R5

is a measure of the emissivity of the particles to the thermal conductivity. It follows from
Rajagopal and Massoudi [39] that R1 must always be less than zero for the solution to
exist and R3 and R4 must be greater than zero, since the viscosity is positive. In addition
to these dimensionless numbers, values for N , a, b, and α are to be given a priori.

The objective is to conduct a parametric study to see how the various parameters (R1,
R2, R3, R4, and R5) affect the solution. The volume fraction equation has a nonunique
solution as discussed by Rajagopal et al. [43] and Gudhe et al. [19]. Such a nonunique
solution stems from the boundary condition at y = h by (4.7), where one can see that
for a given value of the volume fraction at y = h there exist two possible conditions of
the derivative of the volume fraction: one is negative and the other is positive. Thus,
there must be two solutions to satisfy these conditions: one solution in which ν must
increase monotonically from y = 0 to y = 1 so that the positive condition, (dν/dy)y=1 >
0, is satisfied and one in which ν must decrease monotonically to satisfy the negative
condition at the free surface, (dν/dy)y=1 < 0. Typical results of such multiple solutions
are shown in Figure 4.2. However, due to gravitational effect particles must settle down
toward the surface of the inclined plane rather than floating upward to the free surface.
For this reason, the solution in which ν decreases as one approaches the free surface is
chosen as the correct solution.

The effects of parameters R1, R2, and R3 on ν are shown in Figure 4.3. The distribution
of the volume fraction, however, is independent of parameter R3. For example, by keep-
ing other parameters constant the volume fraction decreases from 0.355 at the inclined
plane to 0.2 at the free surface for all values of R3 from 0.01 to 1.0. Since R3 represents
the viscous forces, R1 the pressure force, and R2 the material forces due to normal stress
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Figure 4.2. Multiple solutions of the volume fraction equation.

effects, this result indicates that the distribution of the volume fraction is dominated by
the material forces and the pressure rather than the viscous forces.

The effects of R1, R2, and R3 on the velocity profiles are shown in Figure 4.4. The ve-
locity profile has a parabolic shape with the maximum value at the free surface. The value
of the free surface velocity increases as R2 increases but it decreases when R1 increases.
Although R3 does not have a significant effect on ν, it has a strong influence on the ve-
locity distribution. The results indicate that as R3 increases the flow slows down and the
velocity profile approaches a straight line.

For the temperature calculations we chose a= 0.75 and b = 1. The effect of R3 on the
temperature distribution is shown in Figure 4.5 with the surrounding temperature being
higher than the surface temperature, θ∞ = 3.5. For R3 = 0.01 the maximum temperature
is found to be located in a region within the flowfield and the temperature decreases as
one approaches the inclined plane and the free stream. This is the effect of viscous heat
generation. As R3 increases the temperature profile becomes linear, increasing monoton-
ically from the inclined surface toward the free stream. This is because the flow slows
down as R3 increases as shown in Figure 4.4, and the viscous dissipation term and the
convection term in the energy equation are not as significant as the conduction term. In
this case, the flowfield is heated primarily through conduction.

The effects of R4 on the temperature profile are shown in Figure 4.6, where the tem-
perature profiles and the free surface temperature are calculated as a function of R4 while
other parameters are kept constant. Two different cases are investigated: the cooling case,
that is, when the temperature of the environment is lower than the surface temperature
and the heating case, that is, when the environment temperature is higher than the sur-
face temperature. An increase in R4 means that the heat generated by viscous dissipation
term is increased. As a result, this generated heat must be transferred to the surface and be
removed from the free surface through radiation. Increasing R4, therefore increases both
the maximum temperature in the flowfield and the free surface temperature. For exam-
ple, when the environment is hotter than the free surface, as R4 increases, the free surface
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Figure 4.6. Effect of R4 on the dimensionless temperature profile.

temperature increases slightly. When the environment temperature is lower than the sur-
face temperature, an increase in R4 results in a significant increase in the free surface
temperature. For all cases, the maximum temperature and the free surface temperature
are always higher than both the surface and the surrounding temperatures.
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Figure 4.7. Effect of parameter R5 on the dimensionless temperature profile.

The effect of R5 on the temperature profile for cooling and heating cases is shown
in Figure 4.7. For both cases the maximum temperature is found to be inside the flow-
field and heat is transferred toward both the inclined surface and the free stream. This
is primarily due to the viscous dissipation effect which raises the flowfield temperature
to a higher value than both the surface temperature and the environment temperature.
The parameter R5 represents the heat transfer (due to radiation) at the free surface and
its magnitude is a measure of how much of the heat generated by the viscous dissipa-
tion term can be transferred away. Thus, an increase in R5 leads to a decrease in the free
surface temperature until it reaches the environment temperature. When this condition
is reached, the solution becomes independent of R5. The free surface temperature could
be less than or greater than the inclined surface temperature and the environment tem-
perature depending on the competition between R4 and R5. For a constant R4, if R5 is
small, the heat generated due to viscous dissipation cannot be sufficiently removed by
the radiation process. In this case the free surface temperature is higher than both the
inclined surface and the environment temperature. If R5 is large, however, the radiative
heat removal can sufficiently balance the heat generated. In this case the free surface tem-
perature is low and it decreases as R5 increases. If R5 continues to increase, the free surface
temperature will reach the surrounding temperature.

4.2. Natural convection between two vertical walls. Flow due to natural (free) convec-
tion between two vertical walls has certain applications in the operation of a Clusius-
Dickel column for separating isotopes where the combined effects of thermal diffusion
and free convection are considered. (See Bird et al. [6, page 300] for the solution of this
problem when the fluid is assumed to be a Newtonian one.) Rajagopal and Na [41] stud-
ied the same problem for the case of a homogenous incompressible fluid of grade three.
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Figure 4.8

The coupling of the momentum and energy equation due to the Boussinesq’s approxi-
mation presents added complications. In this section, we consider the flow due to natural
convection of granular materials. It is assumed that the densely packed material is situ-
ated between two infinite vertical walls which are at different temperatures (Figure 4.8).
In this arrangement, the particles near the hot wall are heated and the particles near the
colder wall are cooled. As a result of such a temperature difference a natural convection
flow ensues and the particles move. It is expected that such a flow depends on the compe-
tition between various forces such as the pressure force, the viscous and buoyancy forces,
the gravity force, the force developed in the materials, and so forth and the transport
properties.

We assume:
(i) the motion is steady;

(ii) radiant heating “r” is ignored;
(iii) the constitutive equation for the stress tensor is given by (3.2) and the constitu-

tive equation for the heat flux vector is that of Fourier’s law, given by (3.11);
(iv) the density, velocity, the temperature fields, and the body force are of the form

ν= ν(x), u= u(x)j, θ = θ(x), ρb=−ρsν
[
1− γ(θ− θm

)]
gj, (4.15)

where θm is a reference temperature, (e.g., θm = (θ1 + θ2)/2), g is the acceleration due
to gravity, γ is the coefficient of thermal expansion, and j is the unit vector in the y-
direction. For thermal conductivity we assume (3.12). Using the following dimensionless
parameters:

x = x

a
, u= u

u0
, θ = θ− θm

θ1− θ2
(4.16)
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we obtain the following dimensionless forms of the equations, dropping the bars for sim-
plicity:

(
R2 +

d2ν

dx2

)
dν

dx
= 0, (4.17)

R3ν
(
1 + ν2)d2u

dx2
+R3(1 + 2ν)

dν

dx

du

dx
− ν +R6νθ = 0,

(1 + 3ξν)
d2θ

dx2
+ 3ξ

dν

dx

dθ

dx
=−R4ν(1 + ν)

(
du

dx

)2

,

(4.18)

where

R2 = ka2

2
(
β∗1 +β∗4

) , R3 = β∗3 u
2
0

2a2γg
,

R4 = β∗3 u
2
0

2Km
(
θ1− θ2

) , R6 = γ
(
θ1− θ2

)
,

(4.19)

and the boundary conditions are

at x =−1 :

⎧⎪⎨
⎪⎩
u= 0,

θ = 1
2

,

at x = 1 :

⎧⎪⎨
⎪⎩
u= 0,

θ =−1
2

,

dν

dx
= 0 at y = 0,

N =
∫ 1

−1
νdy.

(4.20)

The dimensionless parameters R2, R3, and R4 have the same physical interpretations as
those given in the previous section; the additional dimensionless number R6 is a measure
of the buoyancy effects due to thermal expansion. Thus, the solutions to the above equa-
tions with respect to R2, R3, R4, R6, N , and ξ as parameters will reveal the characteristics
of the natural convection flow and heat transfer between the hot and the cold surfaces.
We will only focus on the importance of the effects of R1 and R3 as typical examples for
such an application; a full treatment is given in Massoudi and Phuoc [31].

For a given value of N , (4.17) describes the distribution of the volume fraction in x-
direction under the competition between the pressure force and the force developed in
the materials due to the distribution of the particles. Such a competition is represented by
the dimensionless parameter R1 which is defined as the ratio of the pressure force to the
force developed in the materials due to the volume fraction distribution. Typical results
showing the effect of the dimensionless parameter R1 on the distribution of the volume
fraction are plotted in Figure 4.9 for N = 0.9 and R1 ranging from −1.0 to 1.0. These
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Figure 4.9. Distribution of the volume fraction: effect of parameter R1.

values are chosen so that two possible patterns of the distribution of the materials could
be demonstrated. The results indicate that the volume fraction ν decreases as the absolute
value of R1 is decreased and it becomes constant (equal to N/2) when R1 is zero. When
R1 is not zero, however, two distribution patterns are obtained depending on the sign of
R1. When R1 is positive (the pressure force has the same sign as the force developed in the
materials) ν reaches its maximum value at x = 0 and its minimum values are at the walls.
This means that the region near the center has more particles than the regions near the
walls. When R1 is negative (the pressure force has the opposite sign to the force developed
in the materials) ν has a minimum value at x = 0 and maximum values are at the walls.
More particles are packed near the walls than the region near the center.

The effects of R1 on the velocity profile are shown in Figure 4.10, when R2, R3, R4, and
N are kept constant and R1 =−1.5, 0.0, and 1.3. Negative R1 (R1 =−1.5) represents the
situation under which the concentration of the materials is denser near the walls than in
the region near the centerline. Positive R1 (R1 = 1.3) is for the case where there are more
particles in the center region than in the regions near the walls. And R1 = 0 represents
the case that the material is uniformly distributed. The results on the velocity profiles
indicate that the particles move with forward velocities in the region near the hotter wall
and reversed velocities in the region near the colder wall.

The effects of the dimensionless parameter R3 on the temperature profiles are shown
in Figure 4.11. Parameter R3 has a strong effect on the heating process. When R3 is small
the heat transfer at the hot wall (x = −1) has negative values. Thus this wall acts as a
heat source that heats the particles. When R3 is large, however, the heat transfer at x =−1
reverses its sign and becomes positive. The hot wall now acts as a heat sink and heat is
transferred from the particles to the wall.
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Figure 4.10. Effect of R1 on the dimensionless velocity profiles.
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Figure 4.11. Effect of R3 on the dimensionless temperature profiles.

4.3. Shearing motion and viscous dissipation. In this section, we will look at the flow
and heat transfer to granular materials packed between two long horizontal parallel plates,
where the lower plate is fixed and heated and the upper plate is set into motion and is at a
lower temperature than the lower plate (see Figure 4.12). As the flow begins the particles



22 Heat transfer studies in granular materials

y

x

uw ; θh < θo

h

uo = 0; νo; θo

Figure 4.12

roll over each other and slide, and due to the nonlinear effect (dilatancy) the upper plate
will have to move outward (upward) to allow for the motion of the particles. This prob-
lem can be thought of as a limiting case of flow between two long vertical cylinders, where
the inner cylinder is heated and the outer cylinder is rotating with a constant speed. This
arrangement could be used to measure the viscosity of the material or to dry the particles,
for example.

We now make the following assumptions:
(i) the motion is steady;

(ii) radiant heating r can be ignored;
(iii) the constitutive equation for the stress tensor is given by (3.2) and the constitu-

tive equation for the heat flux vector is that of Fourier’s law, given by (3.11);
(iv) the density (or volume fraction), velocity, and temperature fields are of the form

ν= ν(y),

u= u(y)i,

θ = θ(y).

(4.21)

With the above assumptions, the conservation of mass is automatically satisfied and the
momentum and the energy equations are given in their reduced dimensionless forms
with

y = y

h
, u= u

uw
, θ = θ− θh

θo− θh , (4.22)

where uw is the shearing velocity at the top plate and h is the distance between the two
plates, as

R1
dν

dy
+R2

(
1 + ν + ν2) dν

dy

d2ν

dy2 +R3(1 + 2ν)
(
dν

dy

)3

= ν, (4.23)

ν(1 + ν)
d2u

dy2 + (1 + 2ν)
dν

dy

du

dy
= 0, (4.24)

(1 + 3ξν)
d2θ

dy2 + 3ξ
dν

dy

dθ

dy
=−R4ν(1 + ν)

(
du

dy

)2

, (4.25)
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where

R1 = k

γgh
, R2 = 2

(
β∗1 +β∗4

)
γgh3

, R3 = 1
2
R2, R4 = β∗3 u2

w

2Km
(
θo− θh

) (4.26)

and the boundary conditions become

at y = 0 :

⎧⎪⎨
⎪⎩
u= 0,

θ = 1,

at y = 1 :

⎧⎪⎨
⎪⎩
u= 1,

θ = 0.

(4.27)

Case (a)

ν= νo at y = 0,

ν= νh at y = 1,
(4.28)

or
Case (b)

ν= νo at y = 0,

N =
∫ 1

0
νdy.

(4.29)

Due to the assumed forms of the volume fraction, velocity, and temperature fields, given
by (4.21), the two momentum equations in the x and y directions are not coupled and
therefore (4.23) can be solved independently of the velocity and temperature equations.
Once the volume fraction is known, (4.24) is integrated to obtain the velocity field and
finally the temperature is obtained by solving (4.25). If the volume fraction, velocity, and
temperature are functions of x and y (or z), then we obtain a system of partial differ-
ential equations which would have to be integrated simultaneously. The dimensionless
parameters have the same physical interpretations as those given by (4.12).

In solving (4.22)–(4.26), we use the boundary conditions (4.27) and (4.29), and we
guess the values for the unknown conditions of (du/dy)y=0, (dν/dy)y=0, and (dθ/dy)y=0,
initially. Typical results for the volume fraction profiles are shown in Figures 4.13 and
4.14. It is clear that both parameters R1 and R2 have significant effects on the volume
fraction distribution. The range of R2 for a solution to exist also depends strongly on
the value of R1. For example, with R1 = −50 the solution does not exist if R2 is smaller
than 20, but when R1 =−5 the solution exists for R2 as low as 2.5. Although the volume
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Figure 4.13. Distribution of the volume fraction as a function of the dimensionless distance: effect of
R1.
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Figure 4.14. Distribution of the volume fraction as a function of the dimensionless distance: effect of
R2.

fraction depends strongly on both R1 and R2, the effects of these parameters on the veloc-
ity and the temperature distributions seem to be not as significant. For the temperature
distribution, however, the effects are due mostly to the parameter ξ which is related to the
thermal conductivity and R4 which is the product of the Prandtl number and the Eckert
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Figure 4.15. Temperature distribution as a function of the dimensionless distance: effect of R4.
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Figure 4.16. Temperature distribution as a function of the dimensionless distance: effect of R4 and ξ.

number, representing the competition between the viscous dissipation and the heat con-
duction. Therefore, the shape of the temperature curves and the direction of the heat
transfer depend on these parameters. If ξ is large and R4 is small, the heat generated is
conducted away and the temperature decreases from the hotter plate to the colder plate.
On the other hand, if ξ is small and R4 is large, the heat generated cannot be conducted



26 Heat transfer studies in granular materials

away. As a result, the flow field is heated significantly and heat is transferred toward both
plates. In Figure 4.15, the profiles are obtained for N = 0.4, R1 = −5, R2 = 100, and ξ is
kept constant at 0.5. For R4 up to 5.0 the highest temperature is at the bottom plate. For
R4 = 10 and 15.0 the temperature curves have their maximum values at y = 0.2 and 0.3,
respectively.

In Figure 4.16 the temperature curves are plotted forN = 0.4, R1 =−10, and R2 = 100.
It can be seen that for R4 = 0.5 the temperature decreases from the hot plate to the cold
plate. The heating is primarily due to the heat conducted from the hot plate and for higher
values of ξ the heating takes place faster. The plot for R4 = 15 and ξ = 5.0 shows that heat
is transferred from the hot plate to the particles. With the same value of R4 the curve
obtained with ξ = 0.25 shows that heat is transferred from the granular materials to the
plates and the maximum temperature is located in a region between the plates.

5. Summary

Three different boundary value problems involving heat transfer in granular materials,
namely, (i) the fully developed flow down a heated inclined plane, (ii) flow due to natural
convection, and (iii) flow due to shearing motion are studied. The granular material is
assumed to behave like a continuum, very similar to a compressible non-Newtonian fluid.
The effects of the interstitial fluid are ignored, both in the flow and in the heat transfer
analysis. In reality, there will always be some fluid in the pores and in certain cases such
as fluidized beds where the fluid interacts with the solid phase; we cannot use an analysis
for the single phase dense granular materials as we have presented here. In those cases,
multiphase flow theories are more appropriate (see Johnson et al. [25], Rajagopal and Tao
[42]).

We can see that the equations of motion and energy, for steady fully developed flows,
are of the following compact forms (see Table 5.1):

a1ν′ + a2ν′ν′′ + a3(ν′)3 = a4ν,

b1u
′′ + b2ν′u′ + b3θ = b4ν,

c1θ
′′ + c2ν′θ′ + c3(u′)2 = 0.

(5.1)

For Problem 1,

a1 = R1; a2 = R2
(
1 + ν + ν2); a3 = R3(1 + 2ν); a4 = cosα;

b1 = R3ν
(
1 + ν2); b2 = R3(1 + 2ν); b3 = 0; b4 =−νsinα;

c1 =
(
1 + ν + ν2); c2 = (a+ 2bν); c3 = R4ν(1 + ν).

(5.2)
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Table 5.1

Problem 1 Problem 2 Problem 3

a1 R1 R2 R1

a2 R2
(
1 + ν + ν2

)
1 R2

(
1 + ν + ν2

)

a3 R3(1 + 2ν) 0 R3(1 + 2ν)

a4 cosα 0 1

b1 R3ν
(
1 + ν2

)
R3ν

(
1 + ν2

)
ν
(
1 + ν2

)

b2 R3(1 + 2ν) R3(1 + 2ν) (1 + 2ν)

b3 0 R6ν 0

b4 −νsinα 1 0

c1
(
1 + ν + ν2

)
(1 + 3ξν) (1 + 3ξν)

c2 (a+ 2bν) 3ξ 3ξ

c3 R4ν(1 + ν) R4ν(1 + ν) R4ν(1 + ν)

For Problem 2,

a1 = R2; a2 = 1; a3 = 0; a4 = 0;

b1 = R3ν
(
1 + ν2); b2 = R3(1 + 2ν); b3 = R6ν; b4 = 1;

c1 = (1 + 3ξν); c2 = 3ξ; c3 = R4ν(1 + ν).

(5.3)

For Problem 3,

a1 = R1; a2 = R2
(
1 + ν + ν2); a3 = R3(1 + 2ν); a4 = 1;

b1 = ν
(
1 + ν2); b2 = (1 + 2ν); b3 = 0; b4 = 0;

c1 = (1 + 3ξν); c2 = 3ξ; c3 = R4ν(1 + ν).

(5.4)

The main reason for doing a parametric study, via nondimensionalizing the equations of
motion is that we can gain some insight into a class of problems. Since the material pa-
rameters β0–β5 have not been measured experimentally, it is not possible to compare our
results to any experiment. However, qualitatively, we can see that since the material pa-
rameters are, in general, functions of the volume fraction, there is a stronger nonlinearity
in the equations, and therefore, numerically it will be more difficult to obtain solutions.
These simple boundary value problems with all the basic assumptions specified should
serve as limiting cases for more complicated flow geometries and flow conditions. Obvi-
ously, the effects of the interstitial fluid, slip at the wall, particle shape, and so forth, are
important issues which need to be studied.
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Nomenclature

Symbol Explanation

b Body force vector

D Symmetric part of the velocity gradient

g Acceleration due to gravity

h Characteristic length

l Identity tensor

K Thermal conductivity

L Gradient of the velocity vector

N Dimensionless average volume fraction

q Heat flux vector

t Time

T Cauchy stress tensor

u Velocity vector

x Spatial position occupied at time t

βi Granular material constitutive coefficients, i= 0 to 5

ν Volume fraction

ρ Bulk density

ρ0 Reference density

θ Temperature

div Divergence operator

∇ Gradient symbol

⊗ Outer product
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