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Reliability assessment is a critical consideration in equipment engineering project. Successful reliability assessment, which is
dependent on selecting features that accurately reflect performance degradation as the inputs of the assessment model, allows
for the proactive maintenance of equipment. In this paper, a novel method based on kernel principal component analysis (KPCA)
and Weibull proportional hazards model (WPHM) is proposed to assess the reliability of rolling bearings. A high relative feature
set is constructed by selecting the effective features through extracting the time domain, frequency domain, and time-frequency
domain features over the bearing’s life cycle data. The kernel principal components which can accurately reflect the performance
degradation process are obtained by KPCA and then input as the covariates of WPHM to assess the reliability. An example was
conducted to validate the proposed method. The differences in manufacturing, installation, and working conditions of the same
type of bearings during reliability assessment are reduced after extracting relative features, which enhances the practicability and

stability of the proposed method.

1. Introduction

The rolling bearing is one of the most important components
of rotating machinery [1], and its running state directly
influences the health of the entire system of equipment [2]. It
is also very easily damageable, as it not only supports load but
also permits relative motion [3, 4]. Effective rolling bearing
maintenance strategies can not only reduce the amount of
downtime and cost of maintenance, but also ensure the
normal operation of the equipment [5, 6]. Accurate reliability
assessment is essential for making predictive maintenance
decisions based on the real-time status of equipment.
Reliability assessment comes with two key challenges: the
construction of an appropriate reliability assessment model
and the selection of features which can accurately reflect per-
formance degradation process. Reliability assessment based
on real-time equipment conditions has become a popular
research topic in recent years [7], and advancements in infor-
mation technology and artificial intelligence have brought

about a number of valuable contributions to the literature. For
example, the proportional hazard model (PHM), first intro-
duced by the British statistician Cox [8] in 1972, is a powerful
statistical analysis methodology. It is an important statistical
regression model based on lifetime data and condition
monitoring data and has been successfully used for reliability
assessment in accelerated life testing. Ding et al. [9] used the
Weibull proportional hazard model (WPHM) to assess the
reliability of a rolling bearing in real time. Liao et al. [10] used
logistic regression model and PHM to assess the reliability
of an individual unit. Zhang et al. [11] used a mixed WPHM
to predict the failure of a mechanical system with multiple
failure modes.

The WPHM is a well-established mathematical model.
However, when it is applied in real equipment life prediction,
it is problematic as far as covariates selection, setting relia-
bility threshold, trend prediction, and other issues. In terms
of covariates selection, most previous studies concern direct
time domain statistical analysis where one or more time
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domain features are selected to build a reliability assessment
model. However, one single feature or features based on
one single domain cannot accurately reflect the performance
degradation process and thus impact the overall accuracy
of reliability assessment. Although time domain, frequency
domain, and time-frequency domain features can compre-
hensively reflect the performance degradation process of
bearings over their entire service lifetime, excessive parame-
ters lead to data redundancy. Further, selecting more covari-
ates of the WPHM makes the parameter estimation process
more challenging. The vibration signals of faulty machinery
are generally nonstationary and nonlinear under complicated
operating conditions [12, 13]. Therefore, it is crucial to select
the features through nonlinearly reducing dimensionality
and removing redundant features.

Kernel principal component analysis (KPCA), first pro-
posed by Scholkopf et al. [14, 15], is generalized principal
component analysis (PCA) that is applied to nonlinear cases
by nonlinearly mapping input samples to a higher dimen-
sional feature space before performing PCA per usual [16].
It has been successfully utilized in process monitoring and
fault diagnosis applications. Lee et al. [17] developed a new
nonlinear process monitoring technique based on KPCA.
Jiang et al. [18] proposed a fault diagnosis approach based on
KPCA and multiclass classifiers of a support vector machine.
He et al. [19] used the low-dimensional principal component
representations from the statistical features of measured
signals to characterize and monitor gearbox conditions. Su
et al. [20] used a Euclidian distance discriminating approach
to distinguish bearing fault data by adopting the first seven
principal components as inputs.

In order to overcome the weakness for the selection of
WPHM covariates, this paper proposes a novel method for
assessing the reliability of rolling bearings based on KPCA
and WPHM. The novelty of this research is in improving the
covariates selection method of WPHM, which has consid-
erable value in practical application. A high relative feature
set is constructed by selecting the effective features through
extracting the time domain, frequency domain, and time-
frequency domain features over the bearing’s life cycle data.
Then the first three kernel principal components (KPCs),
which can accurately reflect the performance degradation
process through KPCA, are selected as WPHM covariates to
assess the reliability. The feasibility and effectiveness of the
method were validated using bearing’s life cycle data, and it
can provide important basis for equipment proactive main-
tenance. The differences in manufacturing, installation, and
working conditions of the same type of bearings during relia-
bility assessment are reduced after extracting relative features,
which enhances the practicability and stability of the pro-
posed method compared to traditional assessment tech-
niques. It enriches the theory of covariates selection and is
more emphasis on application innovation.

The remainder of this paper is organized as follows.
Section 2 presents the fundamental theories of KPCA and
WPHM. Section 3 presents the proposed method for relia-
bility assessment in detail. Section 4 discusses the features
extraction method used to reflect the bearing performance
degradation process through KPCA. The case study we

Shock and Vibration

conducted to validate the proposed method reported in
Section 5, and conclusions are given in Section 6.

2. Fundamental Theory

2.1. Kernel Principal Component Analysis. KPCA essentially
works by nonlinearly mapping input samples to a highly
dimensional feature space F and applying a linear PCA to the
transformed signals. KPCA performs nonlinear data process-
ing more effectively than PCA.

In KPCA, a set of multidimensional signals x;, k = 1,2,
..., N, is mapped to ®(x;), k = 1,2,...,N, by nonlinear
mapping @ : R — F. Assume O(x;), kK = 1,2,...,N, has
been mean-centered. PCA is performed by finding the eigen-
values A > 0 and eigenvectors a ¢ F satisfying AV = SV,
where the sample covariance matrix of O(x;) is

N
Sr= =0 (x)®(x) . M
Nk:l

Substituting (1) into the eigenvector equation yields
M@ (x) V] =@ (x,)S;V, (k=1,2...,N). (2

The eigenvectors can be expanded as follows:
N
V= Za]q) (X]) > (3)

where a; is correlation coefficient. Substituting (3) into (2)
yields

N N
%Z“j ® () 20 (x;) | [@(x) @ (x))]

t t

J J (4)
N

=1Y a;[@(x0) - @ (x;)]
=1

and K is symmetric matrix, where
K=k (xi,xj) = [d) (x;)- @ (xj)] . (5)

Equation (4) can then be writtenas NAda = Ka. A, > A, >

© 2 A, > -+ > Ay are the corresponding eigenvalues of

K, and a;,a,,..., a,,...,ay are the eigenvectors of K. If )Lp

is the minimum eigenvalue (a nonzero number), normalized
eigenvectors can be obtained successfully:

(Vi,v))=1, i=12,...,p. (6)

Finally, the principal components for testing examples
{Y1,¥2 - -> ¥} can be calculated as follows:

[ (1) @ ()] [Vir-,V, ]

,a,| =P e R™,

7)
= Ktest [al’ e
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where

Kieww = [© () @ (%)) o = (K (V%) ] o

k(Yle) k(Yl’XN)

(8)

k(Ym’Xl) k(Ym’XN)

The above algorithm is based on the assumption that
®(x;) is mean-centered, but the assumption is suitable in
general. The mapping data to be mean-centered is expressed
as follows:

K = K - 1IyK - Kl + 1Kl ©)

where 1 is the N x N unit matrix of the coefficient which is
1/N.

The cumulative contribution rate (CCR) is utilized to
determine number P of principal components.

p .
=17
i=1"vi

The cumulative contribution rate (CCR) threshold is
referenced by [21, 22]. This threshold could be set at 85%,
90%, or 95%. In general, once the CCR exceeds 85%, the
first principal components contain most information of the
original feature set, so this paper is set at 85%.

There are three common types of kernel functions: poly-
nomial kernel function, radial basis Gaussian (RBG) kernel
function, and neural network kernel function. The transfor-
mation matrices of the RBG kernel function have positive
definiteness and a wide convergence field. It only contains
one parameter, and the calculation process is relatively simple
[23]. The RBG kernel function k(x,y) = exp{-|lx — y||2/202}
is utilized here, where o is a parameter related to the kernel
width. o can be obtained by optimizing the parameter of the
kernel function [24].

2.2. Weibull Proportional Hazard Model. The PHM builds a
mathematical relationship between the feature parameters of
the equipment running status and the reliability. According to
the feature parameters of the real-time operation, PHM can
get the device hazard rate in its current state, to assess the
current reliability of the equipment. The hazard rate at time ¢
is expressed as follows:

h(t,z,) =hy(t)exp(y-z), (11)

where h,(t) is the baseline hazard rate dependent on the
service time, z, is a row vector composed of monitoring values
at time ¢ that is time-dependent, and y is a column vector
composed of the regression parameters corresponding to the
monitoring variables. In the PHM, z, is regarded as a vector of
covariates that increases or decreases the system hazard rate
proportionally; its coeflicient vector y defines the influence of
the monitoring variables on the failure process.

The Weibull distribution is frequently used to model the
failure time of mechanical systems. The hazard rate function

of the Weibull distribution is commonly selected as the base-
line hazard rate of the PHM. The hazard rate for the two-
parameter Weibull distribution is written as follows:

hy () = S (%)ﬁl , (12)

where 8 > 0 and 7 > 0 are the shape and scale parameter of
the Weibull distribution, respectively.

The PHM with the Weibull baseline function is called the
WPHM, the hazard function of which is defined as follows:

g1
h(t,z,) = g (%) exp(y-z). (13)

According to the principle of reliability analysis [25],
reliability and failure probability density can be estimated as
follows:

R(t,2,) = exp [- Lth(s, zs)ds]

f(tz)=h(tz)R(tz) (14)
= 5 (%)ﬁ_l exp (y - z,) exp [— Lt h(s, z,) ds] .

The key of using WPHM to assess the operating status
of equipment is to estimate unknown parameters according
to the feature data and time data of the real-time status. The
maximum likelihood method is commonly applied to esti-
mate unknown WPHM parameters. In practice, a mechanical
system may be run until it fails but may be repaired prior to
failure. The lifetime data usually contains failure times and
suspension times to reflect this. To properly account for both
types of data, the likelihood function where the covariates are
time-dependent is defined as follows:

L(B.1y) = l__ilf (tpz,) f[R (tpz), (15)

where i indexes the failure times, s indexes the suspension
times, nis the number of failure samples, and m is the number
of suspension samples. By substituting (14) into (15), the
likelihood function can be rewritten as follows:

L(B.n.y) = l_[ﬁ< ) exp(y-z,)

i=1 n

n+m t]
. H exp [—J h(s,z,) ds] ,
j=1 0

where j indexes both the failure times and the suspension
times. The log-likelihood function is

InL(B,7, )_n1n< ) 2111( >1+§y-zti
ij h(s, z,)

(16)

17)



In the above equations, the covariates of WPHM are time-
dependent. When the covariates only relate to the current
time (i.e., they are non-time-dependent), the reliability and
the failure probability density can be, respectively, rewritten
as follows:

R (t,z,) = exp [— Lth(s, zt)ds]

ol @],
f'(t,z,) =h(t,z,)R (t,z,)

= g <%>ﬁ_1 exp (y-z,) exp [— (%)ﬁ exp (y - Zt)] :

Therefore, by substituting (18) into (17), the log-likelihood
function can be rewritten as follows:

n \B-1 n
lnL,(ﬁ,r/,y)=nln<§>+21n<%> +Zy-zti
i=1 i=1

() elr)

i=1

(19)

By setting the partial derivatives of (17) or (19) with
respect to the parameters 3, #, and y equal to zero, f, 7, and
¥ can be obtained via Newton iterative method. Unless the
initial value is suitable, the numerical solution is very difficult
to obtain.

With increase in the number of covariates, the complexity
of the maximum likelihood estimation increases substan-
tially. Therefore, the Nelder-Mead iterative algorithm [26, 27]
is applied to estimate these mixed parameters.

3. Proposed Method

A flowchart of the proposed method is shown in Figure 1.
The reliability assessment process takes place in a stepwise
manner:

(1) Select effective features that comprehensively reflect
the performance degradation process from the time
domain, frequency domain, and time-frequency
domain features of training bearings data to compose
the feature vector.

(2) Build a high relative feature set by extracting samples
from lifetime data of training bearings.

(3) Obtain KPCs and KPCs mapping from KPCA for the
high training lifetime relative feature set, and select
the first KPCs with CCR exceeding 85%.

(4) Build the high relative feature set from lifetime data
of the test bearing; obtain KPCs of the test bearing
through KPC mapping of the training bearings, and
then verify whether the KPCs of the test bearing
reflect the performance degradation process.
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TABLE 1: Test results.

Test order Failure bearing  Failure modes ~ Censored bearing

1 B3, B4
2 B5

B3(a), B4(b&c)
B5(c)

B1, B2
B6, B7, B8

(5) Take the KPCs of the training bearings as the WPHM
covariates to estimate the WPHM parameters.

(6) Take the KPCs of the test bearing as the WPHM
covariates to assess the test bearing reliability.

4. Performance Degradation Process of
Rolling Bearing

4.1. Experimental Setup. The rolling bearing life cycle test
data used in this paper was provided by the Center for Intel-
ligent Maintenance Systems (IMS), University of Cincinnati
[28]. The experimental data sets were generated from bearing
run-to-failure tests under constant load conditions on the
specially designed test rig as shown in Figure 2.

There are four test double row bearings (Rexnord ZA-
2115) on one shaft of the bearing test rig. The shaft is
driven by an AC motor and coupled with rub belts. A radial
load of 6,0001bs was added to the shaft and bearings by
a spring mechanism; the rotation speed was kept constant
at 2,000 rpm during the experiment. A magnetic plug is
installed in the oil feedback pipe to collect debris from the
oil as evidence of bearing degradation. The test was stopped
when the accumulated debris adhered to the magnetic plug
exceeded a certain level, causing an electrical switch to
close. Vibration data were collected every 20 minutes with a
National Instruments DAQCard-6062E data acquisition card
(data sampling rate 20 kHz and data length 20,480 points).
Data collection was conducted in the National Instruments
LabVIEW program. Table 1 summarizes the test results.
Figure 3 shows the components of the failure bearing.

Bearing 3 (Test 1) is used as test bearing and the other
bearings (Test 1 and Test 2) are used as training bearings.

4.2. Constructing High Relative Feature Set. More than 50 fea-
tures of time domain, frequency domain, and time-frequency
domain [29, 30] were extracted from the life cycle data of
seven training bearings. To ensure that the first three KPCs
contain as much useful information as possible, it is necessary
to minimize the dimension and ensure the validity of the
information of each dimension prior to using KPCA. First,
each feature was drawn to value-time figures by lifetime data;
next, the features that did not reflect the degradation process
(e.g., mean, skewness) were eliminated; the similar fea-
tures with poor performance degradation process were then
removed by comparison, such as empirical mode decomposi-
tion (EMD) normalized energy spectrum; finally, 11 features
that can comprehensively reflect different degradation stage
were selected through the comparison. They are as follows:

(1) Time domain: root mean square (RMS), kurtosis,
peak-peak value, and peak factor.
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Training bearings Test bearing

| Training bearing data set | | Test bearing data set

| Time domain | | Time-frequency domain || Frequency domain

1 1
1 1
1 1
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1 I
1 I
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1 I
1 I
1 1
1 1
1 1
1 1
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! | Selecting feature parameters I L
1 1

1
| L |
! High training lifetime i
! relative feature set !
1 1
1 1
1 I
1 I
1 1
1 1
1 1
1 1
1 I
1 I
1 1
1 T
1 1
1 1
1 I
1 I
1 1
1 1
1 1
1 1
1 I
1 I
1 1
1 1

High test lifetime
relative feature set

)

| KPCA |
| Training KPCs | | KPCs mapping I
WPHM parameter | Test KPCs |
estimation J/
— Test bearing performance
| Building WPHM | degradation process

Assessing reliability of
test bearing

FIGURE 1: The flowchart of the proposed method.

Accelerometers Radial load Thermocouples

| ¢
g o O o :|

Bearing 1 Bearing 2 Bearing 3 Bearing 4
Motor

(®)

FIGURE 2: Bearing test rig and sensor placement illustration: (a) bearing test rig; (b) sensor placement illustration.

(2) Frequency domain: spectrum mean, spectrum vari-  there are differences among them even in the same work
ance, and spectrum RMS. period. Take time domain features as an example; for bearings
1-8, the time domain features for stable trend of normal work

malized energy spectrum (E3), sample entropy (S3), period were selected and averaged as shown in Figure 4.

seventh frequency band normalized energy spectrum Figure 4 shows where there was a sizable difference in
(E7), and sample entropy (S7) (obtained via dbl0 time domain features from the stable trend of all eight bear-

ings. As shown in Figure 4(a), the average RMS of bearing 1
in the normal working period was 0.154 while that of bearing

Even the same type of bearings differ due to differences 5 was 0.077 The features should be standardized to reduce
in manufacturing, installation, and working conditions; thus  their influence on the assessment results. First, the features

(3) Time-frequency domain: third frequency band nor-

wavelet packet decomposition at three levels).
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(a) (®)

FIGURE 3: Components of failure bearing: (a) inner race defect; (b) roller element defect; (c) outer race defect.
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ey .
0.2 b« - v e ] : '
=1 :
C; E :
o :
4 I
L .
A ‘

0 1 1 1 I 1 1

1 2 3 4 5 6 7 8
Bearing Bearing
(a) Time domain—RMS (b) Time domain—peak-peak value
5 T T T T T T

Kurtosis

8 T T T T T T

Peak factor

Bearing

(c) Time domain—kurtosis

Bearing

(d) Time domain—peak factor

FIGURE 4: Mean time domain features in normal work period.

for stable trend of normal work period are averaged as
the standard values; then the ratio of original features to
the standard values is calculated to obtain relative features
(standardized features). Relative features can be defined as
follows:
X ()
b

where R(¢) is the relative feature, X(¢) is the original feature,
and b is the mean value of normal work period.

The advantages of relative features are discussed further
in Section 4.3.

For the seven training bearings, each had 100 samples
that can reflect the process of the lifetime (at a total of 700

R(t) = (20)

samples). A high training lifetime relative feature set of 700 x
11 was then composed accordingly. For the test bearing, a total
of 2,152 whole life cycle samples were used to obtain the 2152
x 11 high test lifetime relative feature set shown in Figure 5,
where (a)-(d) are the time domain features; (e)-(g) are the
frequency domain features; (h)-(i) are the normalized energy
spectrum of wavelet packet 3,7 bands; (j)-(k) are the sample
entropy of wavelet packet 3,7 bands; and (1) denotes whether
the vibration data was collected in the given test period. The
discontinuous points indicate a lack of data collection.

In order to effectively verify the following analysis,
according to the features of bearing 3, the degradation process
was divided into five stages as shown in Table 2. To show the
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FIGURE 5: High test lifetime relative feature data (overall degradation process).

TABLE 2: Point messages.

Period Point Date (day) Characteristics
° 0-17.69
Normal working stage X 17.69-28.99 The features are in normal range.
A 28.99-31.05
Early failure st o 31.05-32.53 When the surface defect just initiates, small spalling or cracks are
arly fature stage O 32.53-33.34 formed. Kurtosis has great fluctuation, but RMS increases slowly [31].
Healing stage n 33.34-33.49 The surface de'fect is later smoothed by the continuous rolling
contact. The vibration level decreases.
Medium wear stage v 33.49-34.11 As Fhe damage spreads over a broader area, the vibration level rises
again.
Severe wear stage % 34.11-34.17 As~t}11§ damage spreads over an enough area, the vibration level rises
quickly.

features of each degradation stage, Figure 5 was redrawn as
Figure 6. Figure 5 shows the overall trend and details of the
bearing degradation process, while Figure 6 shows the dif-
ferences in the features of the bearing degradation process at
different stages.

Many previous researchers have used RMS and kurtosis
as PHM covariates. Figure 6(a) shows that although RMS
can distinguish the normal working stage, early failure stage,
medium wear state, and severe wear stage, it is merely a time
domain feature and contains less information than principal
components. Figure 6(c) shows that kurtosis is only sensitive

to early failure. It fluctuates greatly with time and varies in
a large range in the early failure stage. Moreover, kurtosis in
medium wear stage and severe wear stage is slightly larger
than the normal working stage. Therefore, kurtosis, which
is unable to reflect the performance degradation process, is
suitable as an important indicator of early failure warning
rather than as a covariate. Most importantly, each feature is
inevitably subject to large or small fluctuations in the whole
life cycle. In this paper, the KPCA method can effectively
solve the above problems, and the details are shown in the
following section.
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FIGURE 6: High test lifetime relative feature data (individual degradation stages).

TaBLE 3: PCA and KPCA results.

PC1 PC2 PC3
A CCR (%) 1, CCR (%) 1 CCR (%)

High training original feature set

PCA 5.4784 49.80 2.1019 68.91 1.6367 83.79

KPCA 0.0017 49.44 0.000639 68.46 0.000502 83.40
High training relative feature set

PCA 7.0233 63.85 1.9339 81.43 0.9457 90.03

KPCA 0.0021 63.24 0.000582 80.71 0.000283 89.20

4.3. Assessment of Performance Degradation Process. High
training original feature set and high training relative feature
set were analyzed by PCA and KPCA (o = 57). The resulting
eigenvalues and CCR of the first three principal components
are shown in Table 3.

The CCR of the first three principal components of high
training original feature set was lower than high training
relative feature set. In other words, the dimension reduction
effect of high training original feature set was lower than high
training relative feature set. This fully verifies the advantages
of relative features. Hence high training relative feature set
was selected for subsequent analysis.

The first three principal components of high test relative
feature set can be obtained by KPCA. To verify the result

of KPCA, the first three KPCs were projected onto three-
dimensional coordinate system as shown in Figure 7(a), and
the first two KPCs were projected onto two-dimensional
coordinate system as shown in Figure 7(b).

As shown in Table 3, the contribution rate of the first ker-
nel principal component (KPCI) reached 63.24%, suggesting
that it contains most of the high test relative feature set infor-
mation. Figure 7 shows that the first principal component
well reflects the degradation trend of test bearing. The second
principal component (KPC2) and third principal component
(KPC3) contribution rates were 17.47% and 8.49%, respec-
tively, indicating that they contained little information. As
time progressed, the data points formed an obvious trend
direction with a fairly smooth change process in general. The
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2nd Kernel principal component.
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FIGURE 8: Principal component projection: (a) the first three principal components; (b) Ist principal component and 2nd principal component.

major degradation trend is KPCl positive direction, KPC2
negative direction, and KPC3 negative direction. The normal
period was concentrated within a small area. The early fault
period deviated from the main direction and developed into
KPCI positive direction, KPC2 positive direction, and KPC3
positive direction. The early fault period was easy to distin-
guish from other periods. The recovery period reverted to
the main direction. The medium wear stage and severe wear
stage continued to rapidly develop along the main direction.
Because we choose the kurtosis value which is sensitive in
the early failure stage, the kernel principal component degra-
dation trend direction was offset in early failure stage.

By comparison, the first three principal components were
projected as shown in Figure 8(a), and the first two KPCs are
projected onto two-dimensional coordinate system as shown
in Figure 8(b). The contribution rate of the first principal
component (PCl) was 63.85%, while the early fault data
point distribution range was large enough to overlap with

the medium wear stage and severe wear stage. The stages
were difficult to distinguish from each other in Figure 8, and
trend is rougher and with larger offset compared to Figure 7.
The bearing performance degradation process overall trend
is more obvious in Figure 7 as well. For example, in the early
fault stage (31.05-33.34/d), changes in peak-to-peak value,
kurtosis value, and peak factor change range are large and
fluctuate with time (Figures 5(b)-5(d)), so the offset is large
(Figure 8). KPCA, which exploits nonlinear analysis, results
in a well-offset early fault stage in Figure 7 while the change
trends are smoother and offset is smaller than Figure 8; in the
medium and severe wear stages (33.49-34.17/d), Figure 7 data
points show a clearer change trend overall than in Figure 8.
In conclusion, the first three KPCs contain most time
domain, frequency domain, and time-frequency domain
information as well as nonlinear components. Between the
sample points, the offset is relatively small and the trend is
obvious. These first three KPCs, which fully represent the
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TABLE 4: Parameter estimation of WPHM.
Parameters /§ i i 2 2
Estimates

. 1.8207 110.7 4.103 -0.5075 0.3837
(non-time-dependent)

Estimates

. 1.0723 36.24 7526 -1.6423 —0.8847
(time-dependent)
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FIGURE 9: Lifetime reliability (non-time-dependent covariates).

bearing performance degradation process, can be utilized as
covariates to establish a WPHM model that is highly stable
and reliable.

5. Bearing Reliability Assessment

The first three KPCs were selected as the covariates of WPHM
to assess the reliability. By substituting the failure and sus-
pension data of KPCs from the high training relative feature
set into (17) and (19), 3, 7, and J can be obtained as shown in
Table 4.

The KPCs of the high test relative feature set are plugged
into the WPHM with non-time-dependent covariates to
calculate the reliability, as shown in Figure 9.

The reliability of the normal working stage remained
stable between 0.99 and 0.90; the reliability of the early failure
stage fluctuated between 0.90 and 0.75; the reliability of the
healing stage fluctuated between 0.87 and 0.84; the reliability
of the medium wear state gradually fell to 0.50 from 0.75; and
the reliability of the severe wear stage fell rapidly from 0.50
to 0.45. The reliability variable accurately reflects the state of
the test bearing. When reliability drops to 0.90, the bearing
requires attention. When reliability drops to 0.75, it urgently
requires attention, and a maintenance plan should be enacted
immediately. When the reliability falls to 0.50, the equipment
must be stopped to avoid an accident.

By contrast, The KPCs of the high test relative feature set
were plugged into the WPHM with time-dependent covari-
ates to calculate the reliability as shown in Figure 10.

The reliability decreased at a generally steady rate in the
normal working stage and then began to decrease at a quicker
pace in the early failure stage. The reliability decline rate
increased sharply in the medium wear stage and severe wear
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FIGURE 10: Lifetime reliability (time-dependent covariates).

stage. Therefore, the reliability assessment of WPHM with
time-dependent covariates can reflect not only the degrada-
tion process of the bearing, but also the stage in its life cycle.

Considering the influence of the historical data, the relia-
bility assessment in WPHM with time-dependent covariates
is highly stable and credible. Therefore, it is better suited
to maintaining important equipment. However, reliability
as reflected in WPHM with non-time-dependent covariates
is only related to the present time without considering the
historical data; the complexity of calculation decreases, so it
is more suitable for normal equipment. More importantly, it
is more suitable for the reliability assessment of the bearings
which lack historical data or have been repaired.

Time-dependent covariates or non-time-dependent cova-
riates can be selected according to actual conditions. Whether
the covariates are time-dependent can be determined by the
actual needs of the WPHM. In conclusion, the results indicate
that this method can accurately assess reliability and timely
provide effective maintenance decisions.

6. Conclusion

In this study, KPCs based on KPCA were successfully used as
WPHM covariates to assess the reliability of rolling bearings.
Based on the relative multiple features, KPCs can sufficiently
describe the bearing performance degradation process. KPCs
as WPHM covariates provide accurate reliability to support
timely maintenance decisions. The relative features also
enhance the practicability and stability of the proposed
method compared to traditional assessment techniques.
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