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This paper looks into the fundamental problem in computer vision: edge detection.Wepropose a new edge detector using structured
random forests as the classifier, which canmake full use of RGB-D image information fromKinect. Before classification, the adaptive
bilateral filter is used for the denoising processing of the depth image. As data sources, information of 13 channels from RGB-D
image is computed. In order to train the random forest classifier, the approximation measurement of the information gain is used.
All the structured labels at a given node are mapped to a discrete set of labels using the Principal Component Analysis (PCA)
method. NYUD2 dataset is used to train our structured random forests.The random forest algorithm is used to classify the RGB-D
image information for extracting the edge of the image. In addition to the proposed methodology, the quantitative comparisons of
different algorithms are presented.The results of the experiments demonstrate the significant improvements of our algorithm over
the state of the art.

1. Introduction

Edge is identified as an abrupt change in some low-level
image feature such as color or intensity. Edge detection
belongs to classification problem [1]. According to the feature,
an image pixel can be classified as an edge pixel or not. So
the core of the problem is to design a good classifier. There
are three methods based on the image types: gray image edge
detection algorithm, color image edge detection algorithm,
and RGB-D image edge detection algorithm.

The edge of the gray image is reflected by the change of
the edge gray value.This variation is generally reflected in the
roof change or step change. In the mathematics, it is reflected
in first derivative and second derivative. Therefore, there are
two main types of edge detection algorithm for gray images:
first-order differential image edge detection operator, such as
Sobel operator [2], Prewitt operator [3], Kirsch operator [4],
and Roberts operator [5], and second-order differential edge
detection operator, like Laplacian operator, LOGoperator [6],
and others such as Canny operator [7] and SUSAN operator
[8].

Compared to the gray images, color images contain more
RGB information and luminance information. The edge of
the color image is a collection of pixels that image color
changes dramatically in the local area.There are twomethods

of edge detection: scalar operation and vector operation.
Scalar operation converts the RGB vector of each pixel to
scalar processing. In scalar operation, one method is to
convert color image into gray image; another is three-channel
method based on graymethod, which divides the color image
into three channels. Each channel is calculated by gray level
method and the edge of color image is synthesized by three
channels according to predefined rules. In vector operation,
the RGB values of each pixel in the color image are considered
as the vector integral. In [9], the gray operator Prewitt is
extended to vector space. The gradient calculation method
of gray image is introduced to the color image by Di Zenzo
[10]. They calculate partial derivative to get the gradient
amplitude and direction of the color image. The paper [11]
extends quaternionmethod to the color image edge detection
method.

With the development of imaging device, the image
acquisition technology is getting better and better. Depth
image acquisition is becoming cheaper and more popular.
The algorithm of edge detection based on RGB-D image is
becoming more mature. In the paper [12], on the basis of the
gPb-ucm (Globalized Probability of Boundary-Ultrametric
Contour Map) algorithm [13], the algorithm combines the
depth information, RGB information, and texture informa-
tion for each direction.The support vector machines (SVMs)

Hindawi Publishing Corporation
Journal of Sensors
Volume 2016, Article ID 5328130, 10 pages
http://dx.doi.org/10.1155/2016/5328130



2 Journal of Sensors

Extracting feature and

Extracting feature and

mapping to feature space

mapping to feature space

Objects and their corresponding
class labels Feature space

Training

Testing

Feature dimension
generally is relatively

large

Figure 1: Process of edge detection.

with additive kernels [14] are used as the classifier. Dollar
and Zitnick [15] consider the depth information and the RGB
information (but not the texture information) and select the
structured random forest as the classifier, which is used for
edge detection. Its emphasis is on structural representation
of the random forest rather than the representation of feature
information. The depth information is used as a separate
image for the classification integration with the geometrical
features. In the paper [16], proposed approach firstly prepro-
cesses the original depth map of objects in indoor environ-
ments captured by an RGB-D camera system and then uses
the recovered depth map to detect sharp corners/edges on
objects and calculate their sharpness.The paper [17] proposes
a method that extracts occlusion edge in RGB-D frames by
deepConvolutionalNeural Networks. It avoids hand-crafting
of features for occlusion edges detection. The paper [18]
proposes a new probabilistic model, Contour Completion
Random Fields, which allows completing the boundaries of
occluded surfaces.

In this paper, we propose an improvedRGB-D image edge
detection algorithm based on structured forests [12, 15]. We
use adaptive bilateral filter to denoise the depth image and
make full use of the RGB-D image information and solve the
problem that the outline of the former is not obvious [12] and
the defect that the algorithm [15] misses details of the edge.

The rest of the paper is organized as follows: Section 2
refers to the information representation. Section 3 introduces
in detail structured forest algorithm. Section 4 describes
edge detection from RGB-D image. Section 5 shows the
experimental results. Section 6 sets out the conclusions and
presents lines for future work.

2. Representation

The Kinect sensor incorporates several advanced sensing
hardware items. Most notably, it contains a depth sensor,
a color camera, and a four-microphone array that provides
full-body 3D motion capture, facial recognition, and voice
recognition capabilities.

Figure 1 introduces the process of edge detection. Accord-
ing to Figure 1, our work is divided into two parts. Firstly, we
study how to describe the color information and the depth
information of the image. Secondly, we learn how to classify
these features’ information and how to extract the edge of the
image.

For each pixel, color features are studied, which include
brightness gradient (BG), color gradient (CG), and texture
gradient (TG). We also estimate its 3D location in the
scene and its surface normal orientation.The local geometric
information is used to calculate the edge information of each
pixel in three directions. A depth gradient (DG) indicates a
discontinuity of depth information, a convex normal gradient
(NG+) identifies the surface convex at a specified point in
a specified direction, and a concave normal gradient (NG−)
identifies the surface concaves at a specified point in a
specified direction.

Regarding color gradient and texture gradient in gPb
(Globalized Probability of Boundary) [12], they are important
to RGB-D image. These data mainly have the following three
rules: (1) it is a nonlinear noisemodel as |𝛿

𝑍
| ∝ 𝑍

2
|𝛿
𝑑
|, where

𝛿
𝑍
is the measurement error of depth information, 𝑍 is the

actual depth information, and 𝛿
𝑑
is the noncontinuity error of

depth observation (depending on the triangulation principle
of Kinect). This model leads to the systematic quantization
and the nonrandomness of the depth information. (2) The
lack of time synchronization between color channel and
depth channel leads to the deviation of dataset. (3) There is
lack of the depth information observations. We design the
geometric edge information extraction schemewith the phys-
ical interpretation in detail. We use the multiscale window
analysis, namely, adaptive joint bilateral filter, rather than
using interpolation to make up missing depth information.
In this system, least square method is used to fit the disparity
gradient instead of the points in the point cloud, and Savitzky
andGolay [19] parabolic is used to fit independent smoothing
orientation.

In order to estimate the local geometric edge information,
a disk is centered for each image. The disk is divided into
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two halves according to the predefined orientation, and
information was compared between two halves.This method
was proposed originally by Martin et al. [20] for the problem
of edge detection in monocular images. In our experiments,
4 disks with different radius varying from 5 to 20 pixels and
8 orientations are used. Three local geometric gradients DG,
NG+, andNG−were computed by the point cloud of 2 halves.
First, a planar model is used to represent the distribution
of points in each half. Then, the distance between the two
planes and the disk center is represented as DG, and the
angles between the normal and two planes are, respectively,
represented as NG+ and NG−. Figure 2 shows the details.

3. Structured Forests Algorithm

This paper chooses structured random forests as a classifier
due to the following four factors. (1)The classification is very
fast. The speed of the classifier based on the tree structure is
proportional to the depth of the tree, and the depth of the tree
is often low. (2)The effect of classification is very good.Neural
network adopts probing method to determine the network
structure, which leads to the low training efficiency of neural
network. Support vector machine (SVM) is to solve two-class
problem, but random forest is to solve themulticlass problem.
(3) The effect of parallelization is very good. Random forests
can be parallel to the different pixel locations and different
trees in the scene image, so the efficiency of the calculation
is high. (4) The addition of structural information makes the
classification more accurate.

The patches in the edges are good to exhibit the local
structure of images, such as linear or T-type junctions. Dollar
and Zitnick [15] use the structure of the local patches in
the image edge to propose an accurate and computationally
efficient edge detector. In [21], they improve the algorithm,

but partial image details aremissed. In this paper, the random
decision forest algorithm is applied to a structured learning
framework to predict the local edge information. Such a new
method for learning decision tree has good robustness, and
the structured label of the discrete can estimate standard
information gain.

3.1. Random Decision Forest. A decision tree 𝑓
𝑡
(𝑥) uses

recursive method to classify sample 𝑥 (𝑥 ∈ 𝑋) into left or
right subtree until it reaches a leaf node. In particular, every
node 𝑗 in the tree (eachnode can be viewed as aweak classifier
[22]) is associated with a binary partition function:

ℎ (𝑥, 𝜃
𝑗
) ∈ {0, 1} . (1)

If ℎ(𝑥, 𝜃
𝑗
) = 0, sample 𝑥 is classified into the right of the

node 𝑗 or else the left until it reaches a leaf node. After the
prediction of the tree, the output of the input 𝑥 is 𝑦 (𝑦 ∈ 𝑌),
which is in the leaf node.

The training of each tree is independent and the recursion
is used. For a given node 𝑗 and training set 𝑆

𝑗
⊂ 𝑋 × 𝑌, it is

important to find a parameter 𝜃
𝑗
of the partition function for

obtaining a good split of the data:

𝐼
𝑗

= 𝐼 (𝑆
𝑗
, 𝑆
𝐿

𝑗
, 𝑆
𝑅

𝑗
) , (2)

where 𝑆
𝐿

𝑗
= {(𝑥, 𝑦) ∈ 𝑆

𝑗
| ℎ(𝑥, 𝜃

𝑗
) = 0} and 𝑆

𝑅

𝑗
= 𝑆
𝑗

\

𝑆
𝐿

𝑗
. The norm of selecting the partition parameter 𝜃

𝑗
is to

maximize information gain 𝐼
𝑗
. The set 𝑆

𝐿

𝑗
is used to train the

left nodes and the set 𝑆
𝑅

𝑗
is used to train the right nodes.

The train is stopped if one of the following conditions is met.
The conditions are as follows. (1) The maximum depth is
achieved. (2) Information gain reaches the threshold. (3)The
number of samples is less than the threshold value.
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Input: training sample set 𝑆
𝑡

= {𝑋, 𝑌}, 𝑋 = {𝑥
1
, . . . , 𝑥

𝑁
}, 𝑌 = {𝑦

1
, . . . , 𝑦

𝑁
}

Output: random tree classifier
if all the training samples of 𝑆

𝑡
belong to the same category or |𝑆

𝑡
| = 𝑁 ≤ 𝑁

0
, then

return 𝐿𝑒𝑎𝑓𝑁𝑜𝑑𝑒(𝑝
𝑦
)

end if
select parameter space subset randomly: Γsub(𝑆𝑡) ⊂ Γ(𝑆

𝑡
)

for 𝑗 = 1 to |Γsub(𝑆𝑡)| do

𝐼
𝑗

= 𝐻(𝑆
𝑗
) − ∑

𝑘∈{𝐿,𝑅}

|𝑆
𝑘

𝑗
|

|𝑆
𝑗
|

𝐻(𝑆
𝑘

𝑗
)

end for
Compute the optimal parameter of the node classifier: 𝜃

𝑗

Set the current dataset of the left and right child nodes ⌀: 𝑆𝐿
𝑗

← ⌀, 𝑆𝑅
𝑗

← ⌀

for 𝑖 = 1 to 𝑁 do
if ℎ(𝑥

𝑖
, 𝜃
𝑗
) == 1 then

𝑆
𝐿

←󳨀 𝑆
𝐿

∪ {(𝑥
𝑖
, 𝑦
𝑖
)}

else
𝑆
𝑅

←󳨀 𝑆
𝑅

∪ {(𝑥
𝑖
, 𝑦
𝑖
)}

end if
end for
New left child node: 𝐿𝑒𝑓𝑡𝑁𝑜𝑑𝑒 = 𝐺𝑟𝑜𝑤𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑𝑇𝑟𝑒𝑒(𝑆

𝐿
)

New right child node: 𝑅𝑖𝑔ℎ𝑡𝑁𝑜𝑑𝑒 = 𝐺𝑟𝑜𝑤𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑𝑇𝑟𝑒𝑒(𝑆
𝑅
)

return 𝑃𝑎𝑟𝑎𝑒𝑛𝑡𝑁𝑜𝑑𝑒(𝜃, 𝐿𝑒𝑓𝑡𝑁𝑜𝑑𝑒, 𝑅𝑖𝑔ℎ𝑡𝑁𝑜𝑑𝑒)

Algorithm 1: Growth randomized tree (𝑆
𝑡
).

Input: Training sample set 𝑆 = {𝑋, 𝑌}, 𝑋 = {𝑥
1
, . . . , 𝑥

𝑁
}, 𝑌 = {𝑦

1
, . . . , 𝑦

𝑁
}

Output: Random Forest Classifier
for 𝑡 = 1 to 𝑇 do

Random sample the training set: 𝑆
𝑡

= 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑆)

Train the random tree: 𝑇𝑟𝑒𝑒𝑅𝑜𝑜𝑡
𝑡

= 𝐺𝑟𝑜𝑤𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑𝑇𝑟𝑒𝑒(𝑆
𝑡
)

end for
𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡 = {𝑇𝑟𝑒𝑒𝑅𝑜𝑜𝑡

1
, . . . , 𝑇𝑟𝑒𝑒𝑅𝑜𝑜𝑡

𝑇
}

return 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡

Algorithm 2: Random forest classifier training algorithm.

For multiclass classification, the standard definition of
information gain can be defined as

𝐼
𝑗
(𝜃
𝑗

| 𝑆) = 𝐻 (𝑆
𝑗
) − ∑

𝑘∈{𝐿,𝑅}

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
𝑘

𝑗
(𝜃
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝐻 (𝑆
𝑘

𝑗
(𝜃
𝑗
)) , (3)

where 𝐻entropy(𝑆) = − ∑
𝑦

𝑝
𝑦
log(𝑝
𝑦
) represents Shannon

entropy and 𝑝
𝑦
is the probability of the set 𝑆 with label 𝑦. The

Gini impurity 𝐻Gini impurity(𝑆) = ∑
𝑦

𝑝
𝑦
(1 − 𝑝

𝑦
) can be used in

(3) alternatively.
A decision forest is a collection of𝑇 independent decision

trees𝑓
𝑡
. For a given sample 𝑥, it uses decision tree𝑓

𝑡
(𝑥) to get

an output.The selection of ensemble models mainly depends
on the set of outputs 𝑌, which includes average regression,
voting mechanism for classification, and more complicated
ensemble models [22].

Leaf nodes of the decision treemay store any information.
Whether the leaf nodes are reached depends on the input 𝑥,
so the prediction on multiple trees must rely on the effective
integration mode (ensemble model). The output 𝑦 may be

stored in every leaf node, which allows using complicated
outputs 𝑌 including structural output results in the paper
[23].

There may be high variance and overfitting in the single
decision tree. In order to reduce high variance of the classifier,
the randomness is introduced in the tree’s growth process and
the training sample of the selection tree. The decision forest
trainsmultiple decision treeswithout relevance and combines
their outputs to improve the disadvantages. The critical part
of the training is to achieve the diversity of the decision tree.

In order to guarantee the diversity of the tree, the Boot-
strap Sampling is adopted to resample and the samples with
differences are generated.At the node level, the randomness is
introduced to generate the model of higher accuracy, which
is also proved to be very effective. For each node, Γsub was
selected from Γ (complete parameter space) randomly, and
Γsub is a subset of Γ. The algorithm of random forest classifier
training is shown in Algorithms 1 and 2.

In practical application, the accuracy of a single decision
tree is lost to meet the diversity of the ensemble model.
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Figure 3: Training process and testing process of structured random forests.

A similar approach is used to introduce approximate infor-
mation gain norm for the structured labels, that is, the
structured decision forest discussed in this paper.

3.2. Structured Random Decision Forests. In this part, the
random decision forest is extended to the structured output
space 𝑌. There are two main challenges in using structured
labels to train random forests. First, structured output space
is usually high-dimensional and complicated. Therefore, the
computation of evaluation on many structured label splits is
very expensive. Second, it is not an accurate method to define
the information gain of the structured labels.

In this paper, the approximation measurement of the
information gain is used to train the random forest classifier.
The optimal split function, which is described above, is not
necessary. We aim to map all the structured labels 𝑦 ∈ 𝑌

at a given node into a discrete set of labels 𝑐 ∈ 𝐶, where
𝐶 = {1, . . . , 𝑘}. A similar structured label 𝑦 is assigned to the
same discrete label 𝑐.

Calculation of information gain depends on measuring
similarity on 𝑌. However, for most structured output spaces
including those used for edge detection, the similarity calcu-
lation on𝑌 is not easy to define.Therefore, a mapping from𝑌

to temporary space𝑍 is defined, and the distance of the space
𝑍 is easy to measure. Finally, the two steps are as follows: (1)
mapping 𝑌 → 𝑍 (2) mapping 𝑍 → 𝐶. We will describe the
method in detail in the next installment.

For most structured output spaces including those used
for edge detection, a mapping form is defined as

Π : 𝑌 󳨀→ 𝑍. (4)

Thus we can approximate estimation dissimilarity of 𝑦 ∈ 𝑌

by the Euclidean distance over 𝑍.
The space 𝑍 may be high-dimensional. So we resample

𝑍 at 𝑚 dimensions and get a reduced mapping Π
𝜙

: 𝑌 →

𝑍. During training, different mappings Π
𝜙
are randomly

generated and applied to training labels 𝑌
𝑗
at each node 𝑗.

This method has two advantages: (1) computing Π
𝜙
is much

faster than computing Π; (2) extra randomness is introduced

during resampling 𝑍, which guarantees the diversity of the
tree.

We also introduced Principal Component Analysis to
reduce the dimensionality of 𝑍. PCA not only can denoise
𝑍, but also approximately keep the Euclidean distance
unchanged. In our experiment, when Π

𝜙
is used with 𝑚 =

256, the dimensionality processed by PCAmapping is atmost
5 dimensions.

There are lots of possibilities to calculate the information
gain while giving a mapping: Π

𝜙
: 𝑌 → 𝑍. We introduced

a simple and efficient method. Map a set of structured labels
𝑦 ∈ 𝑌 into other discrete labels 𝑐 ∈ 𝐶, where 𝐶 = {1, . . . , 𝑘}.
The labels similar to 𝑧 are assigned to the same discrete label 𝑐.
Discrete label may be dualistic (𝑘 = 2) or multivariate (𝑘 > 2)
andwe can use the standard information gain as defined in (3)
based on Gini impurity or Shannon entropy. It is important
to add the discretization separately in training each node and
also depend on the distribution of the label at a particular
node (different from [18]).

There are two methods for mapping a given 𝑍 into
discrete label 𝐶. One approach is to use 𝐾-means to cluster
𝑧 into 𝑘 clusters. Another approach is to quantize 𝑧 by PCA
based on log

2
(𝑘) dimensions and assign a discrete label 𝑐

according to the quadrant of 𝑧. The two methods are similar,
but the latter is faster. We select PCA with 𝑘 = 2 in the
experiment.

Finally, how to combine 𝑛 labels (𝑦
1

⋅ ⋅ ⋅ 𝑦
𝑛

∈ 𝑌) into a
single forecastingmechanism is defined.Thismechanism can
accomplish training (correlating labels to nodes) and testing
(merging multiple predictions) simultaneously. Similarly, we
use 𝑚-dimensional mapping Π

𝜙
to compute 𝑧

𝑖
= Π
𝜙
(𝑦
𝑖
) for

each label 𝑖. The labels 𝑦
𝑗
(𝑗 = 1 ⋅ ⋅ ⋅ 𝑛) with 𝑧

𝑘
-centered are

chosen, which make the sum of distance between 𝑧
𝑘
and 𝑧

𝑖

(𝑖 = 1 ⋅ ⋅ ⋅ 𝑛) minimize. Figure 3 shows training process and
testing process of structured random forests.

4. Edge Extraction from RGB-D Image

This part discusses how to apply the feature information
to the structure forest model and extract edges from a
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Figure 4: Process flow of edge extraction.

RGB-D image using this system.The system’s input imagewill
contain a variety of information, for example, RGBorRGB-D.
According to this information, the dualistic variable is used to
indicate whether it has edges or not. The method of semantic
image labeling is similar to that in the paper [23]. The label
in a small image block is independent of each other, which
provides a good candidate for the structure forest approach.

Given a segmented training image sample, the edge
between the patches is regarded as edge. An image patch is
segment membership for each pixel with segmentation mask
indicator or a dualistic edge map. The former is expressed as
𝑦 = 𝑌 = 𝑍

𝑑×𝑑, and the latter is expressed as 𝑦
󸀠

∈ 𝑌
󸀠

=

{0, 1}
𝑑×𝑑, where 𝑑 is means of patch width. An edge map 𝑦

󸀠

is deduced from segmentation mask 𝑦. Two representations
are both used in this paper. The main process flow of our
edge extraction algorithm for RGB-D image is as shown in
Figure 4.

How to compute input features 𝑥 and use 𝑥 for segmen-
tation mapping functions Π

𝜙
is discussed in the remainder

of this section. In addition, we introduce integrate multiple
prediction ensemble models.

A structured 16×16 segmentationmask is predicted from
a large 32×32 patch by ourmethod. For each image patch, we
add additional information channels; thus a feature vector𝑥 ∈

𝑅
32×32×𝐾 is generated, where𝐾 is the number of channels.We

use them in pixel lookups 𝑥(𝑖, 𝑗, 𝑘) and pairwise differences
𝑥(𝑖
1
, 𝑗
1
, 𝑘) − 𝑥(𝑖

2
, 𝑗
2
, 𝑘).

Inspired by the edge detection algorithm proposed by
Lim et al. [18], a similar set of color and gradient channels are
used in our paper. We compute 3-channel color information
and gradients with 2 normalized scales (original and half
resolution) in LUV color space. In addition, the gradient
channels of each scale are divided into 4 channels based on
the directions. We use the triangle filter with the radius of 2
and the downsampling with coefficient of 2. So the final result
is 3 kinds of color information, 2 kinds of magnitude, and 8
directions for a total of 13 channels information.

Because the factor of the downsampling is 2, there are 32 ⋅

32 ⋅ 13/4 = 3328 candidate feature points 𝑥(𝑖, 𝑗, 𝑘). Then we
compute the difference between the different feature points.
For every channel (8-pixel radius), triangular fuzzy is applied
and the resolution is 5×5 by the downsampling.We sample all
the candidate pairs and compute the difference. Finally, there
are (
5⋅5

2
) = 300 candidate features for each channel and 7228

candidate features for each patch.

In order to train decision trees, a mapping Π : 𝑌 → 𝑍

needs to be defined. Because we choose a structured label𝑦 of
16×16 segmentationmasks, one choice is to use Π : 𝑌 → 𝑌

󸀠,
where 𝑦

󸀠 is dualistic edge map corresponding to 𝑦. But the
Euclidean distance of space 𝑌

󸀠 cannot be computed.
We define another mapping Π, using 𝑦(𝑗) (1 ≤ 𝑗 ≤ 256),

to denote the 𝑗th pixel of mask 𝑦. Because the definition of 𝑦

is only related to the permutation, the generation of 𝑦(𝑗) has
no information about𝑦.We can check if𝑦(𝑗

1
) is equal to𝑦(𝑗

2
)

with 𝑗
1

̸= 𝑗
2
. In summary, a large-scale mapping function 𝑧 =

Π(𝑦) is defined, which encodes [𝑦(𝑗
1
) = 𝑦(𝑗

2
)] for every pair

of feature points with 𝑗
1

̸= 𝑗
2
. If the dimension of 𝑍 is (

256

2
),

we need only to compute an image patch with the subset of
𝑚 dimensions. We get a better result and capture the similar
segmentation masks with 𝑚 = 256 and 𝑘 = 2.

The output result of random forest ismore robust by com-
bining outputs of the decorrelated decision trees. However, it
is very difficult to achieve the fusion ofmultiple segmentation
masks (𝑦 ∈ 𝑌). Generally, multiple boundary mapping
(𝑦󸀠 ∈ 𝑌

󸀠) is used to achieve indirectly the fusion. This paper
takes advantage of the function that decision tree leaf node
is capable of storing any information. Besides segmentation
mask 𝑦, this paper learns corresponding boundary mapping
𝑦
󸀠, which enable multiple predictive results of the decision

tree to fuse averagely.
We use structured labels to capture entire image informa-

tion and reduce the number of decision trees𝑇which are used
to evaluate each pixel. So our method is very efficient. The
structured output is calculatedwith the density of 2 pixels. For
16 × 16 image patches, it receives 16

2
𝑇/4 ≈ 64𝑇 predictions

per pixel. In experiment, we set 1 ≤ 𝑇 ≤ 4.

5. Experiments

The images of our experiment are captured by Xbox Kinect
360 in the laboratory. We work with the NYUD2 dataset
and use the standard split of 795 training images and 654
testing images. These splits are carefully selected such that
images from the same scene are only in one of these sets.
Experimental results for laboratory scenes are shown in
Figures 5 and 6.

In Figures 5 and 6, RGB images are in the first row and
depth images are in the second row. The third row is the
algorithm proposed by Gupta et al. [12], who use SVMs as
classifier and combine the algorithm of depth image edge
detection. This algorithm is referred to as SG algorithm
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Figure 5: Comparison of three algorithms in different scene.
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Figure 6: Comparison of three algorithms in different scene.
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below. The fourth row is the algorithm proposed by Dollar
and Zitnick [15], who use structured forests method. This
algorithm is referred to as PD algorithm below. The fifth row
is our method.

In experiment, we choose four different scenes as the
detection object, and the details of the four scenes were
different. As shown in Figures 5 and 6, from scene 1 to scene
4, the details of the image are increasing. According to the
above results, we can find that, in the results of SG algorithm,
the lost edge information is too much, and the details of the
image nearly cannot be recognized. For example, in scene 1,
the edge of the display and the line of keyboard and mouse
are not clear; the keys of keyboard cannot be identified. From
the details of the image, PD algorithm and our method are
significantly better than SG algorithm.

According to the experimental results, the results from
algorithm proposed by Piotr Dollar mostly can be observed.
In the scene of the image details are less such as scenes 1 and
2; the performance is good. When the details of the image
are more such as scenes 3 and 4, the performance is poor, the
extracted image edge appears fuzzy, some of the boundary
is blurred, and the image details are lost more. For example,
the handle of drawer in scene 3 is missing. In scene 4, the
keyboard is lost, and the outline of the book is not clear.

According to Figures 5 and 6, this paper presents the
results of the improved algorithm, the image edge is clear
and accurate, and the details of the image are kept well.
When the details of the image are less, the performance of
our method is almost as good as PD algorithm. When the
details of the image are increased, our method is better than
PD algorithm. In particular, in the last scene, we propose
an improved algorithm that is significantly better than PD
algorithm in the presentation of the details of the desktop.

To quantitatively compare our algorithm with others
we work with the NYUD2 dataset. We report the standard
maximum 𝐹-measure, that is, 𝐹max, in Table 1. 𝐹-measure
is the harmonic mean of precision and recall traditionally,
which is given by

𝐹
𝛽

=

(𝛽
2

+ 1)Precision ⋅ Recall
𝛽
2 Precision + Recall

. (5)

When 𝛽 = 1, recall and precision are evenly weighted and
𝐹
1
measure is defined by

𝐹
1

=

2 ⋅ Precision ⋅ Recall
Precision + Recall

. (6)

Precision is the number of correct positive results divided
by the number of all positive results, and Recall is the number
of correct positive results divided by the number of positive
results that should have been returned. 𝐹-measure can be
interpreted as a weighted average of Precision and Recall, and
it can reflect the overall indicators.

We plot the precision-recall curve on edge in Figure 7 and
report the standard maximum 𝐹-measure metric (𝐹max) in
Table 1. As shown in Table 1, in our experiments, we report
three quantities for an algorithm, the Optimal Dataset Scale
(ODS) or best 𝐹-measure on the dataset for a fixed scale,

Table 1: Edge benchmarks on NYUD2.

ODS (𝐹max) OIS (𝐹max) AP
Gupta et al. 68.79% 71.35% 63.37%
Dollar and Zitnick 68.13% 69.98% 68.41%
Our algorithm 70.03% 72.11% 69.43%

0
0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

1

Pr
ec

isi
on

Gupta et al. (68.79)
Dollar and Zitnick (68.13)

Our algorithm (70.03)

Recall

Figure 7: Evaluation of edge detectors on NYUD2 benchmark.

the Optimal Image Scale (OIS) or aggregate 𝐹-measure on
the dataset for the best scale in each image, and the Average
Precision (AP) on the full recall range.

As shown previously, Dollar andZitnick proposed a novel
learning approach based on structured random forests to
classify a pixel as a contour pixel or not. However, their
approach treats the depth information as another image,
rather than encoding it in terms of geocentric quantities.
Gupta et al. encode depth information in terms of geocentric
quantities, like NG−, making full utilization of the informa-
tion of RGB-D image. We extract the advantages of the two
methods to obtain a new algorithm. As shown in Figure 4,
according to precision-recall curve, in ourmethod, regardless
of the size of the recall value, precision will get a relatively
stable value. For Gupta et al., when the precision value is
larger, the value of recall is too small. For Dollar and Zitnick,
when the recall value is larger, the value of precision is too
small.

6. Conclusions

This paper exploits the information of RGB-D images and
makes full use of the brightness, color, texture, and depth
information by means of a circular disc. Before classification,
the adaptive bilateral filter is used to deal with the depth
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image and the output of the random decision forest is
structured, which makes the classification more accurate.
Experimental results show that the proposed algorithm is
more accurate than the others, and the algorithm can also
show a high degree of accuracy in the scene where image
details are rich. But in the experiment, we also found that the
speed of the improved algorithm is not accelerated, the same
as the SG algorithm and PD algorithm. The next step is to
ensure the accuracy of the algorithm to improve the speed of
the algorithm.
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