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We consider sparse signal inversion with impulsive noise. There are three major ingredients. The first is regularizing properties;
we discuss convergence rate of regularized solutions. The second is devoted to the numerical solutions. It is challenging due to the
fact that both fidelity and regularization term lack differentiability. Moreover, for ill-conditioned problems, sparsity regularization
is often unstable. We propose a novel dual spectral projected gradient (DSPG) method which combines the dual problem of
multiparameter regularization with spectral projection gradient method to solve the nonsmooth ¢' + £' optimization functional.
We show that one can overcome the nondifferentiability and instability by adding a smooth > regularization term to the original
optimization functional. The advantage of the proposed functional is that its convex duality reduced to a constraint smooth
functional. Moreover, it is stable even for ill-conditioned problems. Spectral projected gradient algorithm is used to compute the
minimizers and we prove the convergence. The third is numerical simulation. Some experiments are performed, using compressed

sensing and image inpainting, to demonstrate the efficiency of the proposed approach.

1. Introduction

In the present manuscript we are concerned with ill-posed
linear operator equation:

Ax =y, €]

where x is sparse with respect to an orthonormal basis and
A : D(A) ¢ X — Y is a bounded linear operator. In prac-
tice, exact data y are not known precisely, but only an
approximation y‘S with

ly-»| <o (2)

is available. We call y° the noisy data and & the noise level.
It is well known that the conventional method for solving
(1) is sparsity regularization, which provides an efficient way
to extract the essential features of sparse solutions compared
with oversmoothed classical Tikhonov regularization.

In the past ten years, sparsity regularization has cer-
tainly become an important concept in inverse problems.
The theory of sparse recovery has largely been driven by
the needs of applications in compressed sensing [1, 2],

bioluminescence tomography [3], seismic tomography [4],
parameter identification [5], and so forth. For accounts of
the regularizing properties and computational techniques in
sparsity regularization we refer the reader to [5-7] and the
references given there. In general, sparsity regularization is
given by

2
ot alxl?,, (3)

. 5

min ”Ax -y
where IIxIIE,,P >, @[, XF (1 < p < 2), ais the
regularization parameter balancing the fidelity ||Ax — yallzz

and regularization term ||x||£,P. The functional in (3) is not
convexif p < 1,itis challenging to investigate the regularizing
properties and numerical computing method of minimizers.
Limited work has been done for p < 1; we refer the reader to
[8-11] for a recent account of the theory. In this paper, we will
focus our main attention on the situation of p = 1.

The aim of this paper is to consider a regularization
functional of the form

min  Ax-y°], + “;“’y (9. )] (4)
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We call (4) & + ¢! problem. A main motivation to investigate
the €' + €' problem is that noisy data y° often contain
impulsive noise. For Gaussian noise, > fidelity is a natural
choice. However, a typical nondifferentiable fidelity used in
application involving impulsive noise is the ¢! fidelity, which
is more robust than £2 fidelity [12].

¢' fidelity technique was motivated by [13] for signal
processing and later had attracted considerable attention in
image processing, especially in image denoising. In image
processing, £' fidelity typically combines with TV regulariza-
tion term. For details of £' + TV problems, we refer the reader
to [14-17]. Nowadays €' fidelity has received growing interest
in the inverse problems where solutions are sparse with
respect to an orthonormal basis. Minimizers of cost functions
involving €' fidelity combined with sparsity regularization
have been studied. We refer the reader to [18-23] and the
references given there.

For ¢' fidelity, regularizing properties must be handled
specifically. Burger and Osher [24] proved convergence rate
when the regularization parameter is chosen arbitrarily fixed
but sufficiently small; the authors call this phenomenon
exact penalization. The most curious situation is that, in
[25], the optimal convergence rate requires that regular-
ization parameter must be equal to a fixed value. In [26],
Grasmair et al. proved that source condition together with
finite basis injectivity (FBI) condition is weaker than the
restricted isometry property and obtained linear convergence
O(6). Flemming and Hegland discussed convergence rates
in ¢'-regularization when the basis is not smooth enough
[27]. Konig et al. obtained high order polynomial rates of
convergence in the special corrupted domain, even though
the underlying problem is exponentially ill-posed in the
classical sense [28].

Though ¢' fidelity is robust, more researchers prefer
to use £ fidelity because of its differentiability. Hence a
key issue for the €' fidelity is the numerical computing
methods. In the past few years, numerous algorithms have
been systematically proposed for the £' + TV problems. On
the other hand, in spite of growing interests in the ¢ fidelity,
we can indicate limited work has been done for numerical
methods of £' + ¢' problems. For sparsity regularization, the
popular algorithms, for example, homotopy (LARS) method
[29], iteratively reweighted least squares (IRLS) method [30],
and iterative thresholding algorithm [31, 32], cannot be
directly applied to €' + €' problem due to the fact that both
fidelity and regularization term lack differentiability. There
are only a few papers, in which numerical algorithms for £' +
¢' problems have been discussed systematically. References
[20, 22] proposed the new model by statistics method.
Reference [21] discussed the prior sparse representation and
the data-fidelity term and proposed the two-phase approach.
In [23], authors propose a robust bisparsity model (RBSM) to
effectively exploit the prior knowledge about the similarities
and the distinctions of signals. However, the researchers
often devoted them to compressive sensing problem, where
random matrices are well-conditioned. For ill-conditioned
problems, these methods are often unstable [33] [Chap. 5].
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Moreover, the researchers assume that the solution is sparse
itself, which is different from the general assumption that the
solution is sparse with respect to an orthonormal basis. In
[19], Yang and Zhang proposed a Primal Dual-Interior Point
Methods (PD-IPM) for EIT problem, which is efficient at
dealing with the nondifferentiability. However, they did not
give the convergence proof. Yang and Zhang reformulated the
2" + ¢' problem into the basis pursuit model which can be
solved effectively by ADM method [18]. It is a competitive
method compared with other algorithms for compressive
sensing. In [34], Xiao et al. applied ADM method to €' +
2" problem directly. Numerical results illustrated that the
proposed algorithm performs better than Yalll [18].

In this paper, we investigate regularizing properties of
oty ot problems. The convergence rates of IIx“i - lelgz
can be shown to be O(8'™) and O(9) by a priori and a
posteriori choice with the additional source condition and
FBI condition. As mentioned above, dual is a conventional
technique to solve the Tikhonov regularization with ¢'
fidelity. However, there are some limitations to this approach
to £' + £' problems due to the fact that it is difficult to obtain
the dual formulation of £' + €' problems. Inspired by [14]
and multiregularization theory [35-37], a smooth £* term
is added to original functional of regularization. The dual
problem of this new cost function is reduced to a constraint
smooth functional. Moreover, the smooth £* regularization
term can improve the stability. The conventional method to
solve the constraint smooth functional is projected gradient
algorithm. We use spectral projected gradient (SPG) method
to seek for the minimizers of the constraint functional and
prove the convergence.

An outline of this paper is as follows. We devote Section 2
to a discussion of regularizing properties, including well-
posedness and convergence rate. The convergence rate for
a priori and a posteriori choice is established. In Section 3,
inspired by the theory of multiregularization, we construct
a new functional which is equal to a constraint smooth
functional according to Frechel duality. In Section 4, the
spectral projected gradient method is applied to compute
the minimizers. Section 5 provides a detailed exposition of
multiparameter choice rule based on the balancing principle.
Numerical experiments involving compressed sensing and
image inpainting are presented in Section 6, showing that our
proposed approaches are robust and efficient.

2. Regularization Properties

2.1. Notation and Assumptions. For the approximate solu-

tions of Ax = y, we consider the minimization of the
regularization functional
j{x,(s (x)

- {"Ax - y‘s"gl +aR(x), xe€dom(A)ndom(R), (5

+00, x ¢ dom (A) ndom (R),

where R(x) = Zy wy| (goy, x)| and the subdifferential of R(x)
at x is denoted by dR(x) ¢ X. All along this paper, X denotes
a Hilbert space which is a subspace of ¢* space and (-, -)
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denotes the inner product; Y denotes a Banach space which
is a subspace of £' space. A : dom(A) € X — Y is a bounded
linear operator and dom(A) N dom(R) # 0. (goy)ye A C X is
an orthonormal basis where A is some countable index set.
From now, we denote

x, = (69,)

Il = (; |<(py,x>|2>l/2 = (; |xy|2>1/2.

In order to prove convergence rate results we denote
by xi the minimizer of the regularization functional J, 5(x)
for every a« > 0 and use the following definition of R(x)-
minimum norm solution.

(6)

Definition 1. An element x" is called a R(x)-minimum norm
solution of linear problem Ax = y if

Ax' = Vs
@)
R(xT) =min{R (x) | Kx = y}.

We define the sparsity as follows.

Definition 2. x € X is sparse with respect to {g,} ¢, in the
sense that supp(x) = {y € A : (p,x) # 0} is finite. If
lsupp(x)|l, = s for some s € N, the x € X is called s-sparse.

For a subset of indices ] ¢ A, we denote by

J={ren: (e8] = wma >0}, o
W:span{(py:ye]},

where & € 0R(x"). We denote by J¢ the complement of J. In
addition, let Pyx = 3, (@), x)¢, and Pex = ) .1 (9, X),,.
Source condition or variational inequality are necessary
for analysis of convergence rate. With these conditions one
can obtain convergence rate o(§ l 2), even saturation conver-
gence rate o(8*%). But for sparsity regularization, in order
to obtain convergence rate 0(8Y°) (0 < € < 1), even linear
convergence o(0), one needs the following assumptions.

Assumption 3. Assume that the following hold:

(i) Source condition: there exists # € Y* and some & €
OR(x") satisfying & = A*#.

(ii) Finite basis injectivity (FBI) condition: for every finite
set A C N, the restriction of A to {p, : y € A}is
injective.

The FBI condition was originally introduced in [8]. In
[26], Grasmair et al. used a slightly weaker condition based
on FBI condition and showed that Assumption 3 is in some
sense the weakest possible condition that guarantees the
linear convergence rate. Actually, if x' is the unique R(x)-
minimizing solution, Assumption 3 is satisfied [26]. For 0 <
p < 1, xf being the unique R(x)-minimizing solution

can not guarantee that Assumption 3 is satisfied. Even if
Assumption 3 is satisfied for 0 < p < 1, we do not know if
linear convergence can be obtained due to fact that traditional
proof for linear convergence needs the convexity of R(X).

2.2. Well-Posedness and Convergence Rate. In this subsection,
well-posedness and convergence rate of the regularization
method are given.

Proposition 4 (well-posedness). Foreverya > 0 and y° € Y,
minimizing ], s(x) is well-defined, stable, and convergent.

Proof. In ], s(x), Ais alinear bounded operator, X is Hilbert
space, and R(x) is sequentially lower semicontinuous. It is
easy to verify Assumption 3.13 [38]; then proof is along the
lines of the proofs of Theorem 3.22 (existence), 3.23 (stablity),
and 3.26 (convergence) in [38]. O

We now turn to convergence rate. For 2% + ¢' problem,
Lorenz proved convergence rate O(8'/?) with source con-
dition and FBI condition [7]. Linear convergence rate O(6)
was improved by Grasmair et al. for nonlinear equation with
additional two nonlinear conditions [8]. In [26], Grasmair et
al. proved that source condition together with FBI condition
is weaker than the restricted isometry property and obtained
linear convergence O(J). Flemming discussed convergence
rates in £'-regularization when the basis is not smooth
enough [27].

Remark 5. We note that Bregman distance cannot be used as
an error measure in this section due to the fact that R(x) :=
Zy wy|(<py,x)| fails to be strictly convex. We refer reader to

[8, 39] for details. In this section we use #* norm as error
measure.

The next results show a convergence rate for a priori
parameter choice rule.

Lemma 6. Assume that Assumption 3 holds. Then there exists
a constant C > 0 such that

+

. ©)

|x - x"|,. < C|Ax - Ax"|, + A+ CllAD |Pex

forall x € X.

Proof. Since §, = (¢,,§) € X, we see that
pims, =0. (10)

Together with the definition of J, (10) implies that J is a finite
set. From Assumption 3, the restriction A to every x € W is
injective. Then for some constant C > 0

Il = A7 Ax|, < [ | 1Al < CllAxl D)

for all x € W. By the definition of J and x" € X we have that
(@, x') = 0foreveryy ¢ J and x" € W. From (11), it is easy
to show that

“P]x —x'

2 <C|APx - AXT,,. (12)



4

Then we conclude that
|- x"|,. = |Px = %" + Prex]
< C||APx - Ax"|,, + |Pex].
=ClA(x-x") - APex],, +[Prx],.
<C ||A (x- xT)"el +ClAI|Pe )], (13)
+[[Prex]
< ClAx-Ax'|,,

+ (CIAI+ D) [|Pe (0] 2 »

and the proof is completed. O

Lemma 7. Assume there exist 3, 3, > 0 such that

R(x) —R(xT) > "x—xJr

e B "Ax - Ax" “el (14)
for all x € dom(A). Ifaf3, < 1, then

< (1+ap,)

o< 5. (15)

o

“6 T

Proof. Since xg minimize J, 5(x), then
“Axi - y‘S"e1 +aR (xi) < "AxJr - )/6"81 +aR (xT) . (16)
Together with condition (14) this implies the inequality

8 zfax" -],
2 [ax =57+ o (R () - R(x"))

s 6 st
> “Axoc -y "el +afy; "xa -x

€2

—ap, "Axi - Ax' "el 17)

s 0 st
> “Axa -y "el +af; “xa -x

52
—ap, |Ax - 5°|, - aB,8

8 T
> af}; "x[x =X af3,0,

which proves Lemma 7. O

Theorem 8. Assume that Assumption 3 holds. Then for the
choice « = O(8°) (0 < € < 1), we deduce that

+

|2 - x"|,. =0(5"). (18)
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Proof. Letm = max{l(q)y, &) |y ¢ J}; we can estimate

e =( ol ) Tlo)
o () o) <

PE—— o
%ZH (@, Koy x)| = (9-€) (@) < wmml_ -

3 e o] - o) .
) opx=2')) = o (R

R () = o (R

~R(x") + (1, Ax" - Ax)) = ——— (R (%)

min
- R (xT) + ”’7"500 “Ax - AxT"el) .
From Lemma 6, we obtain

ERES

p<C ||Ax - Ax' ||€ +(CJAl+1)

1
. (Cl)min -m (R ()= R (xT) (20)

il - 41, )

that is,
R(x)-R (xT)
Win — M _ LT
= ClAl+1 ==, 1)
C (wmin - m) t
- (”’7"@00 + W) 4% - ax'],..
Let
Whin — M
Pr= ClAl+1
C (wmin - m) 22
Bo= Il + =T 22
af, < 1.

According to Lemma 7, it follows that

(1+ap,)
” < (X—ﬁla (23)

The assertion follows from o = O(5°). O

+

6_
X, — X
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Next we turn our attention to a posteriori parame-
ter choice which is so-called discrepancy principle due to
Morozov [40]. The regularization parameter defined via the
discrepancy principle is

« = sup {oc >0 | "Axi -y ”el = T(S} (24)

for some 7 > 1. Morozov discrepancy principle is a widely
used and easy numerical implementation rule. Furthermore,
for 7 = 1, (4) is equivalent to a constrained minimization
problem [26]

R (xT) — min
(25)

subject to “sz - }16"81 < 716,

which is widely used in compressive sensing. The next
results show a convergence rate by the Morozov discrepancy
principle.

Theorem 9. Assume that Assumption 3 holds and that the
regularization parameter is determined by (24). Then

B =0(). (26)

Proof. Since x‘S is a minimizer of J, 5(x), the inequality

[ a5 = ], + aR (x2) < 45" = 5], + ar (+7)

(27)
<8 +aR (xT)

holds. This together with | Ax® - y°, = 76 (z > 1) implies
that

R(x0) < R(x"). (28)

Proceeding as in the proof of Theorem 8, we obtain that

1
|2 ()] < 0 —m (R(xe) - R(x")
(29)
1]l xS - Ax") .
e 457 ax'], ) ¢ =
From Lemma 6, it follows that
|0 - x|, < C||Ax - Ax"|, + €llAl + 1)
| (=2 ) < C|Ax) - Ax"|,, + (€Al +1)
e 458 - 247,
Wiin =M
« (ClIA[ +1)
(or M CE DNt acly o
B (C . lll (ClIAN+ 1)>
Wi — M

([axa =5 + |ax" = 57,)

B SCTTR P

Wmin — M

The proof is completed. O

Remark 10. Linear convergence rate O(§) can also be
obtained when the a priori choice and the Morozov discrep-
ancy principle are applied to IIKxi— yallf;, (1 < p <2)fidelity.
However, one must let « = O(6) in the a priori parameter
choice rule.

3. Dual Problem

In this section, let w,, in (4) take the same value; that is, w, =
p > 0 forall y € I'. It is reasonable because convergence can
be obtained when 6/a — 0 [6]. Let & == aps = aw,; then (4)
is equivalent to

min  [Ax - y(S"el + "‘; (92 x)] - (31)

Let u = (x;,x,,.. Xy ) € 2, where x, = ((py,x). In
addition, we denote by D : £* — ¢ a dictionary satisfied with
u = Dx and u' = Dx'. For example, in the field of wavelet
transform, D is a wavelet decomposition operator and D is
a wavelet reconstruction operator [41, 42]. Let K = A o DY,
then (4) is equivalent to

P min {7, () = |Ku- y‘*“(l + ol } - (32)

Dual is a conventional method for solving Tikhonov regular-
ization with ¢' fidelity. However, there are some limitations
to this approach to solve (32). The main difficulty is that
both the ' fidelity and the £' regularization term are nondif-
ferentiable. Moreover, for ill-conditioned problems, sparsity
regularization is often unstable. We add the smooth penalty
B/ 2)||u||§z to (32) to construct the following functional:

Py: min {;&ﬁ W) = |Ku=»°|, +alulq + § ||u||§z} - (33)

The advantage of problem (33) in place of (32) is that
the dual problem of (33) is a constraint smooth functional
and projected gradient algorithm can be used to compute
minimizers. Moreover, the regularization effect of €' penalty
is weak and £* penalty can improve the stability of (32).

Next we will investigate the convergence of the minimiz-
ers to the functional 94 as f8 tending to zero.

Theorem 11. Let « be fixed and {f,} be a sequence tending
to zero. Then the minimizers ug” to the functional ], g (1)

have a subsequence converging to u” being a minimizer of the
functional ], (u1).

Proof. By the definition of uﬁ" we have

) = [[xuf -

Bt

3 Bu
o+ el +

T s, (1"
squ_ywﬂ+apw@+%q R

ﬁn

<S+a ”uT“el

ez’



and hence

R Tl Y O €

Since « is a fixed value and 8, — 0, there exists a constant
C > 0 such that

ﬁn

|

o= g+l B2 <c 09

IB'I
o e

It follows that {uﬁ"} is uniformly bounded. Therefore, a
subsequence {ufY”} of {uﬁ"} and u” exist such that

ubr — ", (37)
By the weak lower semicontinuity of norm, we obtain that

“Ku* - ya“él <liminf ”Kugm - )/5||€1 ,

(38)
"”*“el < lim inf ”ufm ”el >
and hence that
O R e (e
calule], B )
<tmsap (i <, ], )

+%pmggmm4mkf v aully

o

4P

2 g ) = = 5], + bl

for all u € D(K). Therefore, u* is a minimizer of the func-
tional ], (1) and the proof is completed. O

Next we consider the dual problem of &g. We will show
that the constraint smooth minimization problems g’;

P min

1 #
jrmin LIl (p.0"),
s.t. ||p||£,oo < min {a, 1},

are the dual problem of Z.

Theorem 12. 9’; is the dual problem of & . The solutions ug
of Pg and pf ofg’; have the following relation:

(), = sa/ﬁ<(K*;£)i>’

(Kuf, = y°,p-pk) =0
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forall p e 22 with Ipll, < minfa, 1}, where

X — & if x> &
B’ N ﬁ;x
Serp () = 10> if |x| < B (42)
o . &
x+—, if x<—-——
B

is the soft threshold function.
Proof. Let

P = - ]

B, (43)
Ru) = = lully: + acfjuller,
then problem &4 can be rewritten as
inf F(Ku) + R (u). (44)

uel?

Let us denote by F* and R" the conjugate function of F and
R. By the Fenchel duality [43] [Chap 3, Chap 10], it follows
that

1 2
« — 2 if o SO,
2 (5) - {m Iellz- it el

00, else,
(45)

0, else.

P .
. <p,y>z, if ||pflye <1,
F (p):{ ‘ ‘

In J, 5(x), the functionals F and R are proper, convex lower
semicontinuous. By the Fenchel duality theorem [43](Chap
3, Prop. 2.4, Prop. 4.1, Rem. 4.2), it is easy to show that

inf F (Ku) + R(u) = sup - F" (-p) - R* (K" p);

uef? pee? (46)

that is,

inf F(Ku) + R(u) = —inf F* (-p) + R* (K™ p).
Inf F (Ku) + R(w) = ~inf (=p)+R*(K'p). (4
Since uﬁ and pﬁ are minimizers of 9’;; and 9’;‘3, we have that

F(Kub) + R(uf) + F* (=pb) + R* (K" pf) = 0.  (48)

Moreover, the extremality condition (48) is equivalent to the
Kuhn-Tucker conditions

—pf € oF (Kuf),
(49)
K*pleor(uf).

By the definition of the subgradient and — pg € OF (Kug ) in
(49), it follows that

Kuf ¢ oF" (—pf),
(50)

5
Kuly~y" € Ol pht sty



Mathematical Problems in Engineering

(2) dy. = P.(p — 4V (pi)) — P

(5)

(1) Set y, €, Gy, 0y Apins Ky > 0> M = 0, k = 1; choose p, € €2, «,

(3) Select A using line research Algorithm 2
(4) compute py,; = py + Adi Sk = Pt = Pro Gk = VS (Prrt) = V(P Br = (s i)

if B, <0 then

Set Xpey1 = Emax

Else

Set [ min {amax’ max {(Xmin’ <Sk’ Sk) /ﬁk}}
end if
6)k=k+1

Until [|P,(x; + VF(x) = xll, <eork =k,

ALGORITHM I: Spectral projected gradient method for 952

Then we obtain
(Kulf = y°,p-pk) >0. (51)

By the definition of the subgradient and K* pf € dR(uf) in
(49), we conclude that

(K*pf)i = ﬁ(uf)l + ocsign((uf)i) , i=12,.... (52)

For (uﬁ)i > 0, this leads to (ug)i = (K*(pg))i/ﬁ — o/ B we
must impose in this case that (K*(pf))i/ﬁ > o/ 3. For (uﬁ)i <
0, this leads to (uf); = (K*(pF));/p + &/, valid only when
(K*(p5));/B < —a/B. When [(K*(pP)),/Bl < a/B, we put

(ug ); = 0. Summarizing

(), = Susp <@> (53)

where S5 is soft threshold function which is defined by

x - E’ it x > ﬁ’
. o
Sayp (¥) = 10 if [x] < I (54)
X+ ifx<-2
B
the proof is completed. O

Remark 13. In [39] (chap 1), numerical experiments showed
that the choice of p slightly larger than 1 gives even better
results than p = 1. It is necessary to discuss the functional

min {ja () = |Ku—-»°|, + % ||u||§p}, (55)

where 1 < p < 2; we call (55) o+ ef problem. We do not have
to add additional £* penalty to (55); its dual problem can be
obtained by Fenchel dual theory directly.

4. Computation of Minimizers

As mentioned above, the functional equation (33) can be
transformed using Fenchel duality into a smooth functional
with a box constraint, which can be solved effectively using
projected gradient-type methods. The spectral projected
gradient (SPG) method [44] has been proved to be effective
for the minimization of differentiable functional with box
constraints. The function f(p) is defined by

£(9)= 351K bl = (p.5°): (56)
then
Vf (p) = %KK -y (57)
By setting

B(c)={p eU" [|pp =},
(58)
where ¢ = min {«, 1},

we denote by Py (2z) the orthogonal projection on the ball
B(c)

x (0> j)
max (e, (5 )]

Given initial value x, and a constraint on step length «;, that
is,0 < oy < A < Oy let parameter p € (0,1), and 0 <
0, < 0, <1, M > 1. We use the convergence criteria given by

1P (P + Vf (Pr)) = prll e < € (60)

(see Algorithm 1). We have the following convergence results.

Py (x) (i, j) = ¢ (59)

Proposition14. Fory € (0,1) and0 < g, < 0, < 1, algorithm
SPG is well-defined; the sequence p, generated by algorithm
SPG converges to a stationary point of the functional Pf .

Proof. Since f(p) is convex and has continuous derivatives,
the convergence follows from standard results (refer to
Theorem 2.1 in [44]). ]
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end if

(1) SetA =1
(2) Compute p = p; + Ad,,
®3)
if
fp = Osjgﬂl?fM—l}

then

LetA, =1

Else

Let A € [0,A,0,A], and go to (2)

F(prj) + yMdi VI (po)

ALGORITHM 2: Line research.

(3) “k+1 =

(1) Choose « and ﬁo, andletk =0
(2) ty,y = arg min (“Ku - 76"2 +olullp + g ||u||§z>

1 ||K”k+1 - J’6|Ie1 +p ”"‘kﬂ”?2

1+y

i

1 ”Kuk+1 - y6||gl + /3 ””kﬂ"é’l

ﬁk+1:1+y

[

Until a stopping criterion satisfied.

AvrcoriTHM 3: Fixed point algorithm for o and f3.

5. Choice of Parameter o and f3

The solution ug of Py converges theoretically to the solution

u® of P as B — 0. Obviously smaller § is better. However,
(1/2B)IK* plliz tends to infinite as § — 0. Moreover, the
smaller 3 weakens the regularization effect of the £ penalty,
which leads to instability. If the solution is sparse, we can say
that the nonzero coefficients are impulsive parts and the zero
coeflicients are smooth parts. Multiparameter regularization

Pf : min
uef?

[Fas@ = ku=y, +atiats + i} (o

is a conventional method for ill-posed problems if the
solutions have a number of different structures. In [35, 37],
numerical experiments show that multiparameter regulariza-
tion can effectively recover the different part of solutions. If
the solutions contain only a single structure, multiparameter
regularization also has better performance. Hence it does not
necessarily require the parameter 8 tending to zero when
we choose the parameters « and f3. A conventional method
for the choice of parameters a and f3 is multiparameter
regularization choice principle, for example, discrepancy
principle [35] and balance principle [37]. In this paper,
we use multiparameter balance principle for the choice of
regularization parameters o and f.

Balance principle is to compute minimizers of the func-
tion

ch (OC, ﬁ)

(inf |Ku - y°| . + e llully + (B/2) )" (6
=c, o ,
where ¢, is a fixed constant, and (62) is equivalent to [37]
ye "ug)ﬁ”t’l =B "ui,ﬂniz = ||K“§)ﬁ - y‘s"el . (63)

A fixed point algorithm for & and f according to (63) is as in
Algorithm 3.

6. Numerical Simulations

In this section, we present some numerical experiments
to illustrate the efficiency of the proposed method. In
Section 6.1, numerical experiments involve compressive sens-
ing. We aim to demonstrate that £' fidelity is more stable
than the ¢* fidelity and is capable of handing both impulsive
and Gaussian noises. In Section 6.2, we first compare the
performance of the DSPG method with the alternating direc-
tion method (ADM) and TNIP method by well-conditioned
compressive sensing problems. In the second example, we
discuss an ill-posed problem where the condition number
of linear operator A is 255; we aim to demonstrate that
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FIGURE 1: Restorations of ¢! and #* fidelities with different Gaussian noise levels.

the proposed method is stable even with large condition
numbers. In Section 6.3, we discuss the image inpainting
where images are sparse with respect to the Daubechies
wavelets. For image inpainting, the linear operator A is
moderate ill-condition and the condition number is around
4000. In order to compare the restoration results, the quality
of the computed solution x is measured by relative error Rerr
and PSNR which are, respectively, defined by

Rerr (x) = M x 100%,
<

_ T
PSNR () = —201logy, <“x—nx“> .

All experiments were performed under Windows 7 and
Matlab R2010a on HP ProBook 4431s with Intel Core i5
2410M CPU 2.30 GHz 2.30 GHz and 4 GB of memory.

(64)

6.1. Comparison with €' and €* Fidelity. This example involves
compressive sensing problem Ax = y°, where matrix A g, 500
is random Gaussian and y° = Ax" + 8 is the observed data
containing white noise or impulsive noise. The true solution

x" is 16-sparse with respect to natural basis of £* space which
is defined by

q)y:ey:<0,0,...,0,1,0,...>. (65)
Y

White noise is generated such that data y° attains a desired
SNR, which is defined by

5 )
SNR () = 2010gy, (W) (66)

The impulsive noise is measured by relative error, which is
defined by

-7
b

Figure 1 presents the restoration results by £' and £* fidelities.
The left column describes the data with different white noise
levels. The SNR of data are 30 dB, 20dB, 10dB, and 5dB.
The right column is restoration results; the regularization
parameters (a, ) are (2.37e—3, 1.26e—3), (6.32e—2,2.63e-2),
(4.35¢e—1,1.68¢—1),and (9.05¢—1,7.45¢—1). As can be seen
from Figure 1, the quality of restoration by £' and £* fidelities
is similar if the data are contaminated with low noise levels. If
data contain high noise levels, the performance of £* fidelity
is better. However, we can not recover high-quality solutions
with high noise levels. In Figure 2, the left column describes
the data which are contaminated by different impulsive noise
levels. Rerr(d) of noise level are 3%, 7%, 15%, and 22%. The
value of impulsive noise is +1 at random positions and 0
at other positions. The right column contains restoration
results according to different noise levels. The regularization
parameters (o, ) are (2.43e—2, 1.58e—2), (8.29¢—2,4.63e-2),
(2.12e—1,1.06e—1),and (4.25¢—1,2.46e—1). As can be seen
from Figure 2, the £' fidelity is more stable for impulsive noise
and always offers high-quality restoration even with poor
data. In contrast to the £* fidelity, the quality of restoration
results by the £* fidelity is always poor.

Rerr (8) = x 100%. (67)

6.2. Comparison of DSPG with ADM-€', ADM-¢?, and TNIP.
In this subsection, we present the comparison results of
DSPG with ADM-¢', ADM-¢%, and TNIP. ADM-¢' [18] is an
efficient alternating direction method for €' + €' problem.
ADM-#* [18] and TNIP [45] (truncated Newton interior
point) are for £* + €' problem. In the first experiment, we
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TaBLE 1: Comparisons of different algorithms.
Impulsive noise TNIP AMD-¢* AMD-¢! DSPG
q Rerror PSNR Rerror PSNR Rerror PSNR Rerror PSNR
0.1% 0.610% 54.49 0.399% 57.97 0.907% 50.84 0.387% 57.28
0.3% 1.412% 47.01 0.559% 55.04 1.813% 44.83 0.548% 55.36
0.5% 2.295% 42.78 1.078% 49.34 2.719% 41.31 0.956% 50.14
1.0% 3.187% 39.92 3.178% 39.93 3.619% 38.82 2.305% 42.65
3.0% 4.993% 36.03 4.956% 36.12 5.542% 35.31 3.063% 40.15
5.0% 8.608% 31.30 8.602% 31.30 9.101% 30.87 5.217% 36.25
10% 17.66% 25.06 17.66% 25.08 18.11% 24.84 12.64% 29.21

use random Gaussian matrix A,,,,, where sampling length
is m and signal length n = 200. The condition number of
random Gaussian matrix A, is around 5. The signal is p-
sparsity. We add 1% impulsive noise to true signal. For each
fixed pair (m, p), we take 100 iterations, where m/n = 0.5,
0.4, 0.3, 0.2 and 0.1, p/m = 0.1 and 0.2. Figure 3 presents
comparison results for four different iterative algorithms. The
left column describes convergence rates of Rerr(x) for p/m =
0.1. The right column describes convergence rates of Rerr(x)
for p/m = 0.2. m/n increase from top to bottom row. As can
be seen from Figure 3, ADM-¢' converges faster than DSPG
and the accuracy is better than DSPG when m/n = 0.4. With
m/n decreasing, DSPG method performs more competitively.
The accuracy of DSPG method is even better than ADM-¢'
when m/n = 0.1. Though the optimal relative error of ADM-
¢' is better than DSPG method, the corresponding optimal
iteration number or stopping tolerance of ADM-£" is difficult
to estimate in practice. The other ¢* fidelity algorithms,
especially TNIP method, converge obviously faster than
ADM-¢' and DSPG method. However, the accuracy of the

two algorithms is worse than ADM-£' and DSPG method no
matter what value the m/n is.

Next, in order to test the stability of the DSPG method
for ill-conditioned problems, we use matrix A,,,, (n = 200)
whose condition number is 255. This problem was discussed
by Lorenz in [8] where the ill-conditioned matrix is generated
by Matlab code: A = tril(ones(200)). The signal is p-sparsity
where p/n = 0.1 and 0.2. We add 1% impulsive noise to
data. As can be seen from Figure 4, DSPG method converges
obviously faster than the ADM-£' method. The relative error
of DSPG method is also better than ADM-¢£' method. Tt is
shown that DSPG method is stable even for large condition
number matrices. In Table 1, data contain impulsive noise
with corruption Rerr(§) = 0.1%, 0.3%, 0.5%, 1%, 3%, 5%,
10%. As can be seen from Table 1, the quality of restoration
improves as noise level 8 decreases. Theoretically, ADM-¢"
and DSPG methods are adept to process impulsive noise.
However, ADM-¢' method is sensitive to noise when the
operators are ill-conditioned. In this case, ADM-¢£' cannot
obtain reasonable restoration. ADM-£* and DSPG methods
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FIGURE 3: Comparisons of DSPG with ADM-¢£*, ADM-¢2, and TNIP.
TABLE 2: Restoration of four images with different salt-and-pepper noise levels.
Noise level Lena Boat Barbara Goldhill Cameraman Peppers Mandrill Pirate
0.05 26.21 25.16 22.16 25.58 25.12 26.25 26.68 25.09
0.08 24.87 23.88 21.52 25.17 25.03 26.11 26.16 25.01
0.10 22.82 21.56 20.35 24.07 24.23 25.01 25.32 24.58
0.15 20.42 19.55 19.23 22.74 22.42 23.16 23.85 22.75

are more stable to noise level & even if matrix A has large
condition numbers. For low noise levels, ADM-¢* and DSPG
methods have advantage over the other two methods. For
high noise levels, the restoration results of ADM-£' method
are very close to ADM-£* and TNIP methods. Restoration
results of the DSPG method are obviously better than the
other three methods.

6.3. Image Inpainting. We consider 2D image inpainting
problems. The image is Barbara (n = 512; cf. Figure5).
We randomly remove 40% pixels of Barbara to create an
incomplete image. In this case, the image inpainting is a
moderate ill-posed problem. The condition number of the
matrix is around 4000. For our purpose, we make use of
Daubechies 4 wavelet basis as a dictionary. We use four scales,
for a total of 8192 x 512 wavelet and scaling coefficients (cf.
Figure 6). As seen from Figure 6, the representation of the
image with respect to Daubechies 4 basis is sparse. We add
salt-and-pepper noise by Matlab code: imnoise(image, ‘salt &
pepper, d). In this example, d = 0.05. The restoration results
are shown in Figure 5(d). Restoration results of four images
with different noise levels are given in Table 2. Restoration
results show that if images have a sparse representation with
respect to an orthogonal basis, DSPG method can obtain

satisfactory results even if the image inpainting are moderate
ill-posed problems.

7. Conclusion

With source and FBI conditions, we have proved that &' +
¢' regularization method yields convergence rates of order
8'7¢ and &. For numerical solutions, we have proposed a
novel DSPG approach for sparsity regularization with €'
fidelity. Numerical results indicate that the proposed DSPG
algorithm performs competitively with several state-of-art
algorithms such as ADM method. On various classes of test
problems with different condition numbers, the proposed
DSPG method has exhibited the following advantages: (i)
compared with other algorithms, the dual problem of our
methods is more simple which is a box-constraint smooth
functional and can be solved effectively by projected meth-
ods; (ii) for ill-conditioned problems, DSPG method is
more stable with respect to noise level. We remark that
for well-conditioned problems, for example, compressive
sensing, optimal accuracy of ADM-£" is better than DSPG
method. However, the optimal accuracy of ADM-£' method
is strongly dependant on stopping tolerance values which can
be difficult to estimate in practice. To the best of the author’s
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FIGURE 6: Wavelet and scale coefficients.

knowledge, multiparameter regularization is first used to
obtain the dual formulation of £'+£' problems. One can also
try to use multiparameter regularization strategy to solve dual
problem of the other nonsmooth functionals, for example,
2" + TV problems.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was funded by the National Natural Science
Foundation of China (Grants nos. 41304093 and 11301119) and
the Fundamental Research Funds for the Central Universities
(Grant no. 2572015CB19) and Heilongjiang Postdoctoral
Research Develop-Mental Fund (no. LBH-Q16008). The
authors are grateful to Professor Wen Song of Harbin Normal
University for many useful discussions and suggestions.

References

(1] E.J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery
from incomplete and inaccurate measurements,” Communica-
tions on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207-

1223, 2006.

[2] D. L. Donoho, “Compressed sensing,” IEEE Transactions on In-
formation Theory, vol. 52, no. 4, pp. 1289-1306, 2006.

[3] H. Gao and H. Zhao, “Multilevel bioluminescence tomography
based on radiative transfer equation part 1: €1 regularization,”
Optics Express, vol. 18, no. 3, pp. 1854-1871, 2010.

[4] L. Loris, G. Nolet, I. Daubechies, and E. A. Dahlen, “Tomo-
graphic inversion using ¢l-norm regularization of wavelet
coeflicients;,” Geophysical Journal International, vol. 170, no. 1,
pp. 359-370, 2007,

B. Jin and P. Maass, “Sparsity regularization for parameter iden-
tification problems,” Inverse Problems, vol. 28, no. 12, Article ID
123001, 2012.

[5

Mathematical Problems in Engineering

[6] I Daubechies, M. Defrise, and C. De Mol, “An iterative thresh-
olding algorithm for linear inverse problems with a sparsity
constraint,” Communications on Pure and Applied Mathematics,
vol. 57, no. 11, pp. 1413-1457, 2004.

[7] M. Fornasier, Theoretical Foundations and Numerical Methods
for Sparse Recovery, De Gruyter, 2010.

[8] M. Grasmair, “Non-convex sparse regularisation,” Journal of
Mathematical Analysis and Applications, vol. 365, no. 1, pp. 19—
28, 2010.

[9] M. Nikolova, “Description of the minimizers of least squares
regularized with 1(0)-norm. Uniqueness of the global mini-
mizer;” SIAM Journal on Imaging Sciences, vol. 6, no. 2, pp. 904-
937, 2013.

[10] C. A. Zarzer, “On Tikhonov regularization with non-convex
sparsity constraints,” Inverse Problems, vol. 25, no. 2, Article ID
025006, 2009.

[11] W. Wang, S. Lu, H. Mao, and J. Cheng, “Multi-parameter
Tikhonov regularization with the 1(0) sparsity constraint,”
Inverse Problems, vol. 29, no. 6, Article ID 065018, 2013.

[12] P.J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier
Detection, John Wiley & Sons, New York, NY, USA, 1987.

(13] S. Alliney, “Digital filters as absolute norm regularizers,” IEEE
Transactions on Signal Processing, vol. 40, no. 6, pp- 1548-1562,
1992.

[14] C. Clason, B. Jin, and K. Kunisch, “A duality-based splitting
method for 11-TV image restoration with automatic regulariza-
tion parameter choice,” SIAM Journal on Scientific Computing,
vol. 32, no. 3, pp- 1484-1505, 2010.

[15] M. Nikolova, “Minimizers of cost-functions involving nons-
mooth data-fidelity terms. Application to the processing of
outliers,” STAM Journal on Numerical Analysis, vol. 40, no. 3, pp.
965-994, 2002.

[16] Y. Dong, M. Hintermiiller, and M. Neri, “An efficient primal-
dual method for 1I-TV image restoration,” SIAM Journal on
Imaging Sciences, vol. 2, no. 4, pp. 1168-1189, 2009.

[17] W. Yin, D. Goldfarb, and S. Osher, “The total variation reg-
ularized L1 model for multiscale decomposition,” Multiscale
Modeling and Simulation, vol. 6, no. 1, pp. 190-211, 2007.

[18] J. Yang and Y. Zhang, “Alternating direction algorithms for 11-

problems in compressive sensing,” SIAM Journal on Scientific

Computing, vol. 33, no. 1, pp- 250-278, 2011.

J. Yang and Y. Zhang, “A primal-dual interior-point framework

for using the L1 or L2 norm on the data and regularization terms

of inverse problems,” SIAM Journal on Scientific Computing, vol.

33, no. 1, pp. 250278, 2011.

[20] S. Stankovi¢, I. Orovi¢, and M. Amin, “L-statistics based mod-
ification of reconstruction algorithms for compressive sensing
in the presence of impulse noise,” Signal Processing, vol. 93, no.
11, pp. 2927-2931, 2013.

[21] L. Ma,J. Yu, and T. Zeng, “Sparse representation prior and total
variation-based image deblurring under impulse noise,” SIAM
Journal on Imaging Sciences, vol. 6, no. 4, pp. 2258-2284, 2013.

[22] ]. Shang, Z. Wang, and Q. Huang, “A robust algorithm for joint
sparse recovery in presence of impulsive noise,” IEEE Signal
Processing Letters, vol. 22, no. 8, pp. 1166-1170, 2015.

[23] L. Chen, L. Liu, and C. L. Philip Chen, “A robust bi-sparsity
model with non-local regularization for mixed noise reduction,”
Information Sciences, vol. 354, pp. 101-111, 2016.

[24] M. Burger and S. Osher, “Convergence rates of convex varia-
tional regularization,” Inverse Problems, vol. 20, no. 5, pp. 1411-
1421, 2004.

(19



Mathematical Problems in Engineering

[25] A. Neubauer, T. Hein, B. Hofmann, S. Kindermann, and U.
Tautenhahn, “Improved and extended results for enhanced
convergence rates of Tikhonov regularization in Banach spaces,”
Applicable Analysis, vol. 89, no. 11, pp. 1729-1743, 2010.

[26] M. Grasmair, M. Haltmeier, and O. Scherzer, “Necessary and
sufficient conditions for linear convergence ofl1-regularization,”
Communications on Pure and Applied Mathematics, vol. 64, no.
2, pp. 161-182, 2011

[27] J. Flemming and M. Hegland, “Convergence rates in lI-
regularization when the basis is not smooth enough,” Applicable
Analysis, vol. 94, no. 3, pp. 464-476, 2015.

[28] C. Konig, E Werner, and T. Hohage, “Convergence rates for
exponentially ill-posed inverse problems with impulsive noise;”
SIAM Journal on Numerical Analysis, vol. 54, no. 1, pp. 341-360,
2016.

[29] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” The Annals of Statistics, vol. 32, no. 2, pp. 407-499,
2004.

[30] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Giintirk,
“Iteratively reweighted least squares minimization for sparse
recovery, Communications on Pure and Applied Mathematics,
vol. 63, no. 1, pp. 1-38, 2010.

[31] T. Blumensath and M. E. Davies, “Iterative thresholding for
sparse approximations,” The Journal of Fourier Analysis and
Applications, vol. 14, no. 5-6, pp. 629-654, 2008.

[32] T. Blumensath and M. E. Davies, “Iterative hard thresholding
for compressed sensing,” Applied and Computational Harmonic
Analysis, vol. 27, no. 3, pp. 265-274, 2009.

[33] M. Cullen, M. A. Freitag, and S. Kindermann, Large Scale
Inverse Problems: Computational Methods and Applications in
the Earth Sciences, De Gruyter, Austria, 2013.

[34] Y. Xiao, H. Zhu, and S.-Y. Wu, “Primal and dual alternating
direction algorithms for 11-11 norm minimization problems in
compressive sensing,” Computational Optimization and Appli-
cations, vol. 54, no. 2, pp. 441-459, 2013.

[35] S.LuandS. V. Pereverzev, “Multi-parameter regularization and
its numerical realization,” Numerische Mathematik, vol. 118, no.
1, pp. 1-31, 2011.

[36] S. Lu, S. V. Pereverzev, Y. Shao, and U. Tautenhahn, “Dis-
crepancy curves for multi-parameter regularization,” Journal of
Inverse and Ill-Posed Problems, vol. 18, no. 6, pp. 655-676, 2010.

[37] K. Tto, B. Jin, and T. Takeuchi, “Multi-parameter Tikhonov
regularization,” Methods & Applications of Analysis, vol. 18, no.
1, pp. 31-46, 2011.

[38] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F.
Lenzen, Variational Methods in Imaging, Springer, 2011.

[39] T.Schuster, B. Kaltenbacher, B. Hofmann, and K. S. Kazimierski,
Regularization Methods in Banach Spaces, De Gruyter, 2012.

[40] V. A. Morozov, “On the solution of functional equations by the
method of regularization,” Soviet Mathematics. Doklady, vol. 7,
pp. 510-512, 1966.

[41] S. G. Mallet, A Wavelet Tour of Signal Processing, Elsevier,
Oxford, UK, 2010.

[42] 1. Loris, G. Nolet, I. Daubechies, and E A. Dahlen, “Tomo-
graphic inversion using 11-norm regularization of wavelet coef-
ficients,” Geophysical Journal International, vol. 170, no. 1, pp.
359-370, 2007.

[43] 1. Ekeland and R. Man, Convex Analysis and Variational
Problems, STAM, Philadelphia, Pa, USA, 1999.

[44] E. G. Birgin, J. M. Martinez, and M. Raydan, “Nonmonotone
spectral projected gradient methods on convex sets,” SIAM
Journal on Optimization, vol. 10, no. 4, pp. 1196-1211, 2000.

17

[45] S.J. Kim, K. Koh, and M. Lustig, “A method for large-scale 11-
regularized least squares,” IEEE Journal on Selected Topics in
Signal Processing, vol. 1, no. 4, pp. 606-617, 2007.



Advances in
Op ranons Research

Advances in

DeC|5|on SC|ences

Journal of

Ap ||ed Mathemancs

Algebra

Journal of
bability and Statistics

The Scientific
Wo‘rld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of

Mathematics

Journal of

clﬂhMbhemahcs

in Engmeermg

Mathematical Problems

Journal of

tion Spaces

Abstract and
Applied Analysis

International Journal of

Stochastic Analysis

International Journal of
D|fferent|a| Equations

Discrete Dynamics in
ure and Society

Optimization




