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An effective hybrid algorithm is proposed for solvingmultiobjective optimization engineering problemswith inequality constraints.
The weighted sum technique and BFGS quasi-Newton’s method are combined to determine a descent search direction for solving
multiobjective optimization problems. To improve the computational efficiency and maintain rapid convergence, a cautious BFGS
iterative format is utilized to approximate the Hessian matrices of the objective functions instead of evaluating them exactly. The
effectiveness of the proposed algorithm is demonstrated through a comparison study, which is based on numerical examples.
Meanwhile, we propose an effective multiobjective optimization strategy based on the algorithm in conjunction with the surrogate
model method. This proposed strategy has been applied to the crashworthiness design of the primary energy absorption device’s
crash box structure and front rail under low-speed frontal collision.Theoptimal results demonstrate that the proposedmethodology
is promising in solving multiobjective optimization problems in engineering practice.

1. Introduction

Multiobjective optimization problems (MOPs) are encoun-
tered in many fields, such as energy systems [1, 2], manage-
ment [3], structural optimum design [4, 5], and scheduling
[6, 7]. Generally, many problems can be modeled as multiob-
jective optimization problems, in which multiple conflicting
objectives are to be optimized simultaneously. For example,
in optimizing the design of a cycloid speed reducer, mini-
mization of the volume and maximization of the efficiency
should be considered simultaneously [8]. Vo-Duy et al. [9]
attempted to minimize the weight of a laminated composite
beam while maximizing its natural frequency. Optimization
problems, which frequently appear in scientific research and
engineering, are often MOPs, particularly in the design of
structures [10, 11]. Yin et al. [12] studied the crashworthiness
and reliability of a foam-filled bionic thin-walled structure
based on bioinspired design. The optimization of a vehicle
door structure with a hybrid material was investigated to
achieve lightweight design [13].

To obtain better performance, various multiobjective op-
timization strategies have been proposed and widely applied

to engineering problems [14, 15]. Tire structure design was
implemented based on multiobjective optimization [16]. A
new multiswarm method was introduced, and its validity
has been demonstrated on four benchmark functions and
two structural problems [17]. A novel multiobjective par-
ticle swarm optimization algorithm was proposed based
on decomposition to maintain diversified solutions [18].
However,most of thesemethods are evolutionary algorithms,
which have the fatal drawback that their convergence cannot
be theoretically guaranteed. In addition, the stopping crite-
rion is difficult to determine according to a study by Coello
[19]. Generally, a large number of iterations are preferred,
which leads to considerable computation time and low
efficiency, which cannot satisfy the engineering requirements
[20].

To solve the abovementioned problems, hybrid algo-
rithms [21, 22] and a numerical algorithm based on Newton’s
method [23] for MOPs were broadly proposed. For instance,
for obtaining robust optimal solutions, a multiobjective op-
timization algorithm that combines particle swarm optimiza-
tion and the gradient search technique was introduced [24],
and Sun et al. [25] proposed a novel effective algorithm that
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aims to solve engineering design problems that involve uncer-
tainties. To obtain a faster convergence rate and improve the
stability of convergence and efficiency for solving engineering
design problems, numerical algorithms gradually attracted
increased attention from researchers [26, 27]. To handle
vector problems, various techniques of multiobjective opti-
mization have been studied, such as the 𝜀-constraint method
[28] and weightedmax-min technique [29].The scalarization
technique, which was first introduced by Geoffrion [30],
has been widely used to transform a multiobjective problem
into a scalar one, and new insights into the weighted sum
method have been reported in [31]. Yang et al. [32] have
combined the weighted sum method and Newton’s method
to develop a hybrid algorithm, which has been applied to
practical engineering optimization.

Generally, optimization design in a practical engineering
problem is complicated and time-consuming. The surro-
gate model method has been properly utilized to simplify
practical models in design problems [33, 34]. A surrogate-
assisted evolution strategy was proposed and applied to
multiobjective optimization [35]. Peng and Wang [36] estab-
lished an effective adaptive surrogate for solving transfer
trajectory optimization, the computing speed of which was
almost 8 times faster than that of directly solving the actual
model.

In the past few years, thin-walled structures dramatically
attracted the attention of researchers due to their excellent
crashworthiness and extraordinarily light weight [37]. Thus,
MOPs that were based on surrogate models that concerned
thin-walled structures were investigated to improve the
performance in terms of crashworthiness and light weight
[38, 39]. Response surface methodology (RSM) was applied
to the crashworthiness optimization of tapered thin-walled
square tubes [40]. Sun et al. [41] have improved the energy
absorption ability and realized the lightweight design of thin-
wall structures based on multiobjective optimization and
surrogate models.

In this paper, a novel hybrid cautious BFGS quasi-
Newton algorithm (denoted as CBQNA) is proposed based
on the weighted sum technique and a cautious BFGSmethod
for solving MOPs. To solve MOPs in practical engineering
projects, an effective optimization strategy is proposed based
on surrogatedmodeling and applied to crashworthiness opti-
mization of the main absorption devices of the automobile.
This paper has demonstrated that the proposed method
is superior to evolutionary algorithm MOGA in obtaining
uniformly distributed solutions and has faster calculation
speed than MOGA and NSWFA.

The rest of the paper is organized as follows. The hybrid
algorithm CBQNA for MOP is proposed in Section 2. The
accuracy and efficiency of the novel algorithm are clearly
demonstrated by comparison study on two benchmark func-
tions in Section 3. Next, a rapid effective multiobjective
optimization strategy and its engineering application are
presented in Section 4. The study’s conclusions and future
research are discussed in Section 5.

2. Fast Hybrid Algorithm for
Multiobjective Optimization

In general, a multiobjective optimization problem with
inequality constraints can be expressed as

min 𝐹 (x) = (𝐹1 (x) , 𝐹2 (x) , . . . , 𝐹𝑚 (x))𝑇
s.t. 𝑔𝑖 (x) ≥ 0 𝑖 = 1, 2, . . . , 𝑙,

x ∈ D,
(1)

where 𝐹(x) = (𝐹1(x), 𝐹2(x), . . . , 𝐹𝑚(x))𝑇 is a vector function,𝑚 is the number of single-objective functions, and x =(𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 is the decision variable vector, which consists
of several variables that are generated in the feasible region
D and satisfy the inequality constraint 𝑔𝑖(x) ≥ 0 for any𝑖 = 1, 2, . . . , 𝑙. To describe the optimal solutions of the MOP
accurately and clearly, some definitions are clearly stated in
the following section.

Definition 1 (Pareto dominance). Suppose xV and x𝑢 are
decision variables. xV is said to be dominated by x𝑢 (denoted
as xV ≺ x𝑢) if and only if, ∀𝑗 = 1, 2, . . . , 𝑚, 𝐹𝑗(x𝑢) and 𝐹𝑗(xV)
meet the condition

𝐹𝑗 (x𝑢) < 𝐹𝑗 (xV) ∧ 𝐹𝑗 (x𝑢) ≤ 𝐹𝑗 (xV) . (2)

Definition 2 (Pareto-optimal solution). Vector xV is the opti-
mal solution if and only if there is no solution x ∈ D that
satisfies the dominance condition xV ≺ x.

Definition 3 (Pareto-optimal set). All Pareto-optimal solu-
tions form the Pareto-optimal solution set (denoted as S) and
it can be expressed as S = {xV ∈ D | x ∈ D |, x ≺ xV}.
Definition 4 (Pareto front). The Pareto front (denoted as FS)
consists of all corresponding values of function 𝐹(x) against
all Pareto-optimal solutions xV ∈ S and
FS

= {𝐹 (xV) = (𝐹1 (xV) , 𝐹2 (xV) , . . . , 𝐹𝑚 (xV))T | xV ∈ S} . (3)

2.1. Treatment of Constraint Conditions by Penalty Function.
To properly adapt the numerous effective unconstrained
algorithms, the original problem (1) is converted into an
unconstrained problem based on the Frisch interior penalty
function. First, a penalty item is established as follows:

𝑃 (x) = −𝜎−1𝑘 𝑙∑
1

log𝑔𝑖 (x) , (4)

where 0 < 𝜎𝑘 is a penalty coefficient, which is updated
adaptively by (5) and 𝑔𝑖(x) denotes the inequality constraint
with 𝑖 = 1, 2, . . . , 𝑙.

𝜎𝑘+1 = 𝜌𝑘𝜎𝑘, (5)
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where 𝜌 > 1 is a constant parameter. Then, the penalty
function of the 𝑗th objective function 𝐹𝑗(x𝑘) is constructed
by

𝑄𝑗 (x) = 𝐹𝑗 (x) + 𝑃 (x) , (6)

where 𝐹𝑗(x) and 𝑃(x) are, respectively, defined in (1) and (4).
Based on the above processes, problem (1) has been converted
into an unconstrained problem, which can be described as

min 𝐹 (x) = (𝑄1 (x) , 𝑄2 (x) , . . . , 𝑄𝑚 (x))
s.t. x ∈ D. (7)

To effectively solve the unconstrained problem, the preferred
method is the BFGS quasi-Newton algorithm, which is
superior to other similar methods, such as Newton’s method
and the DFP method. The BFGS method is deduced from
Newton’s method, which is based on Taylor expansion. The
Taylor expansion of an unconstrained scalar function 𝑄𝑗(x)
near x𝑘 can be expressed as

𝑄𝑗 (x𝑘 + d𝑘) ≈ 𝑄𝑗 (x𝑘) + d𝑇𝑘∇𝑄𝑗 (x𝑘)
+ 12d𝑇𝑘∇2𝑄𝑗 (x𝑘) d𝑘,

(8)

where ∇𝑄𝑗(x𝑘) and ∇2𝑄𝑗(x𝑘) are the gradient function and
Hessian matrix, respectively, of target function 𝑄𝑗(x𝑘) at
x𝑘. In quasi-Newton’s method, a symmetric matrix B𝑗𝑘 is
utilized to approximate the Hessian matrix ∇2𝑄𝑗(x𝑘) instead
of computing it directly. Next, inequality (8) can be converted
to

𝑄𝑗 (x𝑘 + d𝑘) ≈ 𝑄𝑗 (x𝑘) + d𝑇𝑘∇𝑄𝑗 (x𝑘) + 12d𝑇𝑘B𝑗𝑘d𝑘. (9)

Consider 𝜌𝑘(d) is the function with respect to the variable d
and the function 𝜌𝑘(d) is denoted as

𝜌𝑘 (d) = 𝑄𝑗 (x𝑘 + d) − 𝑄𝑗 (x𝑘)
= d𝑇∇𝑄𝑗 (x𝑘) + 12d𝑇B𝑗𝑘d.

(10)

Assume that d𝑘 is the solution the minimum problem (11).

min
d∈R𝑛

𝜌𝑘 (d) = 𝑄𝑗 (x𝑘 + d) − 𝑄𝑗 (x𝑘)
= d𝑇∇𝑄𝑗 (x𝑘) + 12d𝑇B𝑗𝑘d.

(11)

If B𝑗𝑘 is a nonsingular matrix, the solution d𝑘 is obtained as
(12) by solving problem (11).

d𝑘 = −B−1𝑗𝑘∇𝑄𝑗 (x𝑘) . (12)

The BFGS quasi-Newton’smethod is an optimizationmethod
that uses (12) as its search direction. Generally, the positive-
definite symmetric matrix B𝑗𝑘 is preferred to be similar in
value to the Hessian matrix ∇2𝑄𝑗(x𝑘), which satisfies the
equation in approximation (13).

∇𝑄2𝑗 (x𝑘) S𝑘 ≈ Y𝑗𝑘, (13)

in which the vectors Y𝑗𝑘 = ∇𝑄𝑗(x𝑘+1) − ∇𝑄𝑗(x𝑘) and S𝑘 =
x𝑘+1 − x𝑘 satisfy the condition

B𝑗𝑘S𝑘 = Y𝑗𝑘. (14)

Equation (14) is known as both the quasi-Newton equation
and the quasi-Newton condition.

2.2. Weighted SumMethod. In this section, the weighted sum
method is utilized to transform the vector function 𝐹(x) into
a scalar function, which is presented as

𝐺 (x) = 𝑚∑
1

𝜆𝑗𝑄𝑗 (x) , (15)

where 𝜆𝑗 ∈ (0, 1) are weighting factors that meet the condi-
tion∑𝑚𝑗=1 𝜆𝑗 = 1 for 𝑗 = 1, 2, . . . , 𝑚 and 𝜆𝑗 can be divided into
various sets according to the practical design demands. Based
on the abovementioned processes, the originalmultiobjective
problemwith inequality constraints has been converted to an
unconstrained scalar problem, which is stated as

min𝐺 (x) x ∈ D. (16)

2.3. Hybrid Algorithm for MOP. In this section, a cautious
BFGS quasi-Newton algorithm (CBQNA) for theMOP based
weighted sum method is proposed. Consider the vector
function that is shown in problem (1), which has been
translated into a single-objective optimization problem (16).
First, based on the interior penalty function method and the
weighted sum technique, a quasi-Newton direction d𝑘 for the
MOP is obtained by solving

d𝑘 = −( 𝑚∑
𝑗=1

𝜆𝑗B−1𝑗𝑘)( 𝑚∑
𝑗

𝜆𝑗∇𝑄𝑗 (x𝑘)) . (17)

In this paper, the approximation matrix B𝑗𝑘 is updated by a
cautious BGFS equation (18), which was introduced in [42]
and can guarantee the positive definiteness of B𝑗𝑘 after each
iteration.

B𝑗𝑘+1

= {{{{{
B𝑗𝑘 − B𝑗𝑘S𝑘S𝑇𝑘

S𝑇
𝑘
B𝑗𝑘S𝑘

+ Y𝑗𝑘Y𝑇𝑗𝑘
S𝑇
𝑘
Y𝑗𝑘

if
Y𝑇𝑗𝑘S𝑘󵄩󵄩󵄩󵄩S𝑘󵄩󵄩󵄩󵄩2 ≤ 𝜀

󵄩󵄩󵄩󵄩󵄩∇𝑄𝑗 (𝑥𝑘)󵄩󵄩󵄩󵄩󵄩𝛾
B𝑗𝑘 else

, (18)

where 𝜀 and 𝛾 are positive constant parameters; the settings
in [43] are followed to maintain high accuracy. The search
directiond𝑘 that is obtained by solving (17) is always a descent
direction when the condition S𝑇𝑘Y𝑗𝑘 ≥ 0 is satisfied. If
this condition is not satisfied, the gradient direction will be
replaced by another search direction, which is expressed as

d𝑘 = − 𝑚∑
𝑗

𝜆𝑗∇𝑄𝑗 (x𝑘) . (19)

Then, the classical Armijo rule is used to determine a proper
step length 𝛼𝑘 along quasi-Newton’s search direction d𝑘. In
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general, the Armijo rule for search direction d𝑘 of function𝑓(x) is
𝑓 (x + 𝛼𝑘d𝑘) ≤ 𝑓 (x) + 𝛽𝛼𝑘∇𝑓 (x)𝑇 d𝑘, (20)

where 𝛽 ∈ (0, 1) is a parameter. Under the condition of
maintaining the descent search direction, a full step length
is preferred. However, the value 𝛼𝑘 = 1 often does not satisfy
inequality (20), so the largest 𝛼𝑘 that satisfies this inequality
is always selected for general cases. Furthermore, the positive
definiteness of 𝐵𝑘 can be preserved by utilizing updating
equation (18) and setting 𝛽 ∈ (0, 1/2), and the full step
length along the descent search direction is usually obtained
according to the study [44].Thus, in this paper, we rewrite the
Armijo condition as

𝐺 (x + 𝛼𝑘d𝑘) ≤ 𝐺 (x) + 𝜇𝛼𝑘 ( 𝑚∑
1

𝜆𝑗∇𝑄𝑗 (x)𝑇) d𝑘, (21)

where 𝐺(x) is expressed in (15) and 𝜇 ∈ (0, 1) is a constant
parameter.

Therefore, based on the previous sections, the hybrid
algorithm CBQNA can be implemented by following Step 0
to Step 7.

Step 0 (initialization). Choose an initial value x0 ∈ D ⊂
R𝑛, a symmetric positive-definite matrix B0 ∈ R𝑛×𝑛, and a
sufficiently small constant 𝜀1 > 0. Moreover 𝜌 > 1, 0 < 𝜎0 <1, 𝜇 ∈ (0, 1), and 𝛾, 𝜀 > 0.
Step 1 (stopping criterion 1). If ‖x𝑘+1 − x𝑘‖ ∨ ‖𝑑𝑘‖ ≤ 𝜀1, then
stop; else, go to Step 2.

Step 2 (descent search direction). The search direction d𝑘 is
obtained by solving (17) or (19), according to whether the
descent condition is satisfied or not.

Step 3 (step length). Compute a step length 𝛼𝑘 along the
search direction d𝑘 such that the Armijo-rule inexact line
search rules (21) are satisfied.

Step 4 (iterative procedure). Set x𝑘+1 = x𝑘+𝛼𝑘d𝑘. If x𝑘+𝛼𝑘d𝑘 ∈
D, 𝑘 := 𝑘 + 1; otherwise, compute x𝑘+1 by

x𝑘+1 = {{{
x𝐿 if x𝑘 + 𝛼𝑘d𝑘 < x𝐿
x𝑈 else x𝑘 + 𝛼𝑘d𝑘 > x𝑈

. (22)

Step 5 (stopping criterion 2). If |𝑃(x𝑘)| ≤ 𝜀1 stopwith x∗ = x𝑘;
else, set 𝜎𝑘 = 𝜌𝑘𝜎𝑘 and return to Step 1.

2.4. Analysis of the Proposed Algorithm. The novel algorithm
that is proposed in this study is sensitive to the initial value,
similar to numerical methods that are based on gradient
information. However, this disadvantage can be overcome
by repeatedly adjusting the starting point or selecting some
preferred value that is obtained by other methods. To achieve
globally optimal solutions by CBQNA, the Hessian matrices
of the optimization functions are approximated by a cautious

BFGS algorithm in this study. The proposed algorithm is
primarily utilized to solve MOPs in engineering projects,
the mathematical models of which are usually replaced by
approximate convex functions that can ensure that the global
optimal solution of the problembe achieved.Thismethod has
a fast convergence rate and can obtain optimal solutions in
few iterations, which is always difficult for evolutionary algo-
rithms. Particularly, the proposed algorithm is more effective
in solving engineering problems than algorithms such as
Newton’s method, because it avoids computing second-order
information of the objective functions, which does not exist
in the general engineering case.

3. Numerical Examples

In this part, the performance of the proposed hybrid algo-
rithm is compared with those of the Multiobjective Genetic
Algorithm (MOGA) and a hybrid algorithm (denoted as
NSWFA), which was proposed in [32], on two benchmark
tests. To evaluate this novel algorithm, the CPU time and the
number of iterations for obtaining a Pareto-optimal solution
are recorded. AllMATLAB procedures are run in an identical
computing environment. Each test problem was solved 100
times with initial points that were generated from a uniform
random distribution over the feasible zone. All attempts to
solve the two examples were terminated when the stopping
criterion was satisfied or 2000 iterations were performed.

Example 1. A simple biobjective problem with one variable,
which was derived from a MATLAB tool box [45]:

min 𝐹1 (x) = 𝑥2
𝐹2 (x) = (𝑥 − 2)2

s.t. −1000 ≤ 𝑥 ≤ 1000.
(23)

Example 2. A biobjective problem with two variables, which
was obtained from [46]:

min 𝐹1 (x) = 𝑥41 + 𝑥42 + 𝑥1𝑥2 − 10𝑥41 − 𝑥21𝑥22
𝐹2 (x) = 𝑥41 + 𝑥42 + 𝑥1𝑥2 − 𝑥21𝑥22

s.t. −5 ≤ 𝑥1 ≤ 5; −5 ≤ 𝑥2 ≤ 5.
(24)

According to the research in [32], the Pareto-optimal solu-
tions that are obtained by algorithm NSWFA are more uni-
form than those by MOGA. For simplicity, only the Pareto-
optimal fronts for the two tests that are obtained by NSWFA
and CBQNA are shown in Figures 1 and 2, respectively. In
addition, the characteristics of the three algorithms in terms
of the number of iterations, CPU time, and convergence
condition are intuitively presented in Table 1.

Figures 1 and 2 illustrate that the proposed algorithm
performs similarly to NSWFA in terms of distribution uni-
formity of the solutions on Test 1, while the performance of
CBQNA is slightly worse than that of NSWFA on Test 2. The
Pareto-optimal fronts that are obtained by NSWFA and the
proposed algorithm CBQNA are closely related to the initial
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Figure 1: Pareto-optimal fronts of Test 1, obtained by CBQNA and NSWFA.
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Figure 2: Pareto-optimal fronts of Test 1, obtained by CBQNA and NSWFA.

value. This finding is observed because the two algorithms
behave similarly when searching for the optimal solutions.
In addition, according to Table 1, CBQNA is superior to
the other two algorithms on the two examples, in either the
number of iterations or CPU time. In addition, when the
solution accuracy is the same among all three algorithms,
the proposed algorithm uses the minimal number of iter-
ations and has the fastest convergence rate. In summary,
the proposed CBQNA performs nearly as well as NSWFA
and outperforms MOGA in terms of obtaining evenly dis-
tributed Pareto-optimal solutions, which may be worse than
the results obtained through other methods. Furthermore,
the computational efficiency of the novel algorithm in this
study highlights the advantages of CBQNA over MOGA and
NSWFA, which are clearly shown in Table 1. Particularly,
when determining the descent search direction, the proposed
algorithmavoids computing theHessianmatrices of objective
functions, which is of great significance for solving practical
engineering problems.

4. Effective Optimization Strategy and Its
Practical Engineering Application

4.1. Optimization Strategy for MOPs. To reduce the com-
plexity of engineering multiobjective optimization problems,
a valid optimization strategy that is based on surrogate
modeling and the proposed algorithm CBQNA is properly
introduced. The effective strategy was established according
to the following four processes.

4.1.1. Establishment of the Mathematical Model. To effectively
solve optimization design problems, the optimization objec-
tives and design variables need to be determined correctly.
The preferred targets are often related to properties of the
optimized structures. Analysis of sensitivity is usually applied
when choosing decision variables, which greatly affects the
targets. The design domains and constraint conditions are
always determined according to the limiting dimension and
strength requirements of the structure, scheme, or system.
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Table 1: Detailed comparison of the three algorithms in terms of computational efficiency.

Algorithm Stopping criterion CPU time Iterations Convergence

Test 1
MOGA 10−6 391.9 s 2000 No
NSWFA 10−6 5.250 s 615 Yes
CBQNA 10−6 0.423 s 200 Yes

Test 2
MOGA 10−5 391.9 s 2000 No
NSWFA 10−5 13.23 s 730 Yes
CBQNA 10−5 2.600 s 715 Yes

Hence, an accurate mathematical expression for the multiob-
jective optimization problem should be constructed based on
the aforementioned analysis to solve the MOPs.

4.1.2. Design of Experiments. The establishment of an agent
model with high precision is based on a good design scheme.
The setting of reasonable factor levels and variable span play
a significant role in the experimental design, especially in
multifactor and multiobjective problems. Common methods
for experimental design are orthogonal design and central
composite design (CCD). In addition, Taguchi robust design
has been applied in experimental design for its better per-
formance [25]. To describe how to construct sample points
and determine the optimal number of samples by orthogonal
design and CCD, the procedural details of the two design
methods can be separately summarized as follows.

(1) Orthogonal Design. In general, the format of the orthog-
onal design is comparatively fixed if the number and the
levels of the design variables have been given. That is, the
optimal number of samples and its corresponding exper-
imental factors can be determined if the ranges of the
design and optimal levels are provided in advance. The
distinctive features of schemes that are planned by orthogonal
design are orthogonality and even distribution. Furthermore,
orthogonal design requires fewer experiments in establishing
a surrogate model, which improves the efficiency.

(2) Central Composite Design (CCD).A complete scheme that
is obtained by central composite design has three different
experimental patterns. For example, if there are three design
variables, the distribution of the sample points that are
selected by CCD is illustrated in Figure 3. The eight points
that are located at the summit of the cube are of the same
experimental format, the six sample points that are located at
the end of the center axis are of the same type, and the center
point in red is a sample that needs to be repeated six times.
Thus, for three variables, the optimal number of samples is
twenty.

4.1.3. Establishment of Surrogate Model. Surrogate modeling
has been broadly applied to many fields for its simple theory
and excellent behavior. In the general case, the response
surfacemethodology (RSM) is preferred by researchers for its
simplicity and validity. Particularly, the RSM ismore effective
when dealing with multiobjective problems with multiple
variables. Therefore, considering the characteristics of the
proposed algorithm, the establishment of a linear, quadratic,

X1
X2

X3

Figure 3: Distribution of samples planned by CCD.

or cubic polynomial surface is favored for describing the rela-
tionships between objective responses and design variables.

Generally, a linear polynomial model is defined as fol-
lows:

𝑦 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋅ ⋅ ⋅ + 𝑏𝑚𝑥𝑚, (25)

where 𝑦 is an approximate expression of objective or con-
straint functions, which is known as the response surface;𝑥𝑖 is design variable 𝑖, with 𝑖 = 1, 2, . . . , 𝑚; and 𝑚 is the
number of variables.The constant coefficients 𝑎, 𝑏1, 𝑏2, . . . , 𝑏𝑚
in (25) can be calculated in terms of the principle of least
squares. Similarly, a quadratic polynomial model is usually
constructed as in expression (26) and the cubic polynomial
surface can be obtained in the same manner.

𝑦 = 𝑎 + 𝑚∑
1

𝑏𝑖𝑥𝑖 + 𝑚∑
1

𝑏𝑖𝑖𝑥2𝑖 +∑
𝑖<𝑘

𝑏𝑖𝑘𝑥𝑖𝑥𝑘. (26)

For simplicity, expression (26) can be converted to a linear
form as follows:

𝑦 = 𝑎 + 𝑊∑
𝑖=1

𝑐𝑖𝑋𝑖, (27)

where 𝑊 = 𝑚(𝑚 + 3)/2 and 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑚) denote
items with 𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑥21, 𝑥22, . . . , 𝑥2𝑚 and 𝑥1𝑥2, 𝑥1𝑥3,. . . , 𝑥𝑚−1𝑥𝑚, respectively.

To accurately estimate the precision of the approximated
models, the correlation coefficient 𝑅2 and adjusted index 𝑅2adj
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need to be calculated according to formulas (28) and (29),
respectively.

𝑅2 = ∑𝑀𝑖=1 (𝑦𝑖 − y𝑖)2∑𝑀𝑖=1 (𝑦𝑖 − 𝑦𝑖)2 (28)

𝑅2adj = 1 − ∑𝑀𝑖=1 (𝑦𝑖 − 𝑦𝑖)2 (𝑀 − 1)∑𝑀𝑖=1 (𝑦𝑖 − 𝑦𝑖)2 (𝑀 − 𝑘 − 1) , (29)

where 𝑀 denotes the number of factors and 𝑦𝑖, 𝑦𝑖 are the
predictive value and the actual value, respectively, of the
average measurement of 𝑦. The closer 𝑅2 and 𝑅2adj are to
1, the better the surrogate model approximates the original
problem. If they do not meet the accuracy requirement, the
experimental points need to be reset to establish another
model until the precision is satisfied.

4.1.4. Pareto Solutions Obtained by CBQNA. In this process,
the approximate mathematical expressions of the primal
multiobjective problems are first translated into a standard
normalizedmultiobjective problem.Next, the Pareto-optimal
solution set of the normalized problem is directly obtained by
the CBQNA algorithm following the steps that are described
in Section 2. In practical projects, each Pareto solution corre-
sponds to a design scheme, which can provide references for
designers to optimize the original design.

Based on these main steps, an effective optimization
strategy for solving multiobjective optimization problems in
engineering projects is in Figure 4.

4.2. Crashworthiness Optimization of Crash Box. With the
boom of the automobile industry, the importance of passive
safety has attracted increasing attention from researchers.
To improve the energy absorption abilities of the main
absorbers, such as the crash box, the longitudinal beam and
door structure are vital to the protection of occupants. Thus,
the analysis of the crashworthiness of the automobile energy
absorbing box is essential and crucial.

In this section, the proposed optimization strategy is
applied to crashworthiness optimization of an automobile
crash box. Consider a crash box that is composed of four
thin-walled plates, as shown in Figure 5. This thin-walled
structure has been optimized by Yang et al. in study [32], but
the impact condition that was used cannot correctly simulate
the actual operation. Thus, a better simulation model under
frontal collision is built in this paper.

To effectively simulate the performance of the crash box
under a low-speed impact, one end of each crash box has
been fully constrained, while the other end is subject to front
collision by a rigid wall of infinitemass at a low speed of 4m/s
along the x-axis, as shown in Figure 5. The original design of
the crash is shown in Figure 6.The total impact time is 0.05 s.

4.2.1. Mathematical Model for the MOP of the Crash Box
Structure. The energy absorption and the maximal collision
force, as the two major indices of the crashworthiness ability
of the crash box, have been considered simultaneously. The
crash box is a thin-walled structure, whose properties are

Start

Determine design variables, objectives, and constraints

The construction of mathematical model for the
multiobjective problem in engineering projects

Optimum iterative procedure carried out by
algorithm CBQNA

The obtained Pareto-optimal
solutions meet the precision 
requirement?

Output Pareto-optimal set S as reference for designer

Finish

Yes

No

The experimental design

The establishment of agent model by
response surface method

Figure 4: Effective optimization strategy based on CBQNA.

Fully constrained

Y X

Z

Rigid wall move

Figure 5: Bumper-crash box structure of the automobile.

affected dramatically by its wall thickness. In addition, when
designing thin-walled structures, especially for automobile
absorbers, the maximal crushing force and the mass should
each be constrained below a maximum value. Thus, improv-
ing energy absorption𝐸in and reducingmaximal impact force𝐹max have been selected as simultaneous objectives, while the
thicknesses of the four plates are chosen as design variables.
Moreover, the mass of the entire structure and the maximal
impact force are constrained by upper limits. Consequently,
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t4 = 1.8 ＧＧ
t3 = 2.3 ＧＧ

t2 = 1.8 ＧＧ

t1 = 1.4 ＧＧ

Figure 6: Original design of the crash box.

an MOP of the crash box that is based on crashworthiness is
mathematically expressed as

min {𝐹1 = 1𝐸in (x) , 𝐹2 = 𝐹max (x)}
s.t. 𝐹𝑖𝑚 ≤ 𝐹0; 𝑀𝑡 ≤ 𝑀0

x ∈ (x𝐿, x𝑈) ,
(30)

where 𝐹1(x) and 𝐹2(x) are two objective functions of the
vector x = (𝑡1, 𝑡2, 𝑡3, 𝑡4), which consists of four decision
variables, which are subject to boundary condition 𝑡𝑖 ∈[1, 3] mm, 𝑖 = 1, 2, 3, 4. The conditions 𝐹max ≤ 𝐹0 and𝑀𝑡 ≤ 𝑀0 constrain the impact force and the total mass
should be maintained below an upper value. In this paper, we
set 𝐹0 = 174 kN and𝑀0 = 4.2 kg.

4.2.2. Experiment Design. The thicknesses of the four thin-
walled plates are concurrently considered by DOE. The
combined orthogonal experimental method is utilized to
construct a 17-group experimental dataset in the design
domain.

4.2.3. Construction of Response Surface Models. The response
surface methodology is utilized to construct surrogate mod-
els instead of the original complicated problem. The math-
ematical expressions for the two objectives in terms of the
four variables are stated as (31) and (32). In addition, the
approximate mode of the constraint function is presented in
expression (33).

𝐸in (x) = −3397.09 + 2967.8𝑡1 + 3368.16𝑡2
+ 1300.84𝑡3 + 254.58𝑡4 − 157.9𝑡21
− 211.4𝑡22 − 31.41𝑡23 − 38.69𝑡24
− 684.18𝑡1𝑡2 − 93.37𝑡1𝑡3 − 307.1𝑡2𝑡3
+ 85.12𝑡2𝑡4 − 65.4𝑡3𝑡4 − 38.7𝑡1𝑡4;

(31)

𝐹max (x) = −76.71 − 13.62𝑡1 − 10.5𝑡2 + 107.4𝑡3
+ 142.8𝑡4 + 28.14𝑡21 + 24.44𝑡22
− 18.43𝑡23 − 18.38𝑡24 − 11.13𝑡1𝑡2
− 25.40𝑡1𝑡3 − 6.38𝑡2𝑡3 − 39.58𝑡2𝑡4
+ 13.99𝑡3𝑡4 − 10.96𝑡1𝑡4;

(32)

𝑀𝑡 (x) = −0.0128 + 0.389𝑡1 + 1.19𝑡2 + 0.346𝑡3
+ 0.183𝑡4. (33)

After calculation, the coefficients of determination of energy
absorption, maximal impact force, and mass constraint are
98.60%, 99.11%, and 1, respectively, while the adjusted coeffi-
cients of determination are 95.6%, 97.11%, and 1, respectively.
The calculated indicators demonstrate that the approximate
models of the two objective and constraint functions have
excellent precision.

4.2.4. MOP by CBQNA. The hybrid algorithm CBQNA,
which is introduced in Section 2, is applied to solve the
optimization design problem. For adapting the surrogate
model to the novel algorithm, a normalization process is
implemented first. Thus, problem (30) can be converted into
a standard mathematical problem, which is expressed as
follows:

min 𝐹1 (x) = 𝐸max𝐸in (x)
𝐹2 (x) = 𝐹max (x)𝐹𝑎

s.t. 1mm ≤ 𝑡𝑖 ≤ 3mm, 𝑖 = 1, 2, 3, 4.
𝐹max (x) ≤ 174 kN; 𝑀𝑡 (x) ≤ 4.2 kg,

(34)

where 𝐸max and 𝐹𝑎 are the maximal value of the energy
absorption and average value of the maximal collision force,
respectively.

After optimization, 100 groups of solutions of the opti-
mization problem are obtained, which takes only 5.6 seconds
on average. The Pareto-optimal front, which is composed
of 100 Pareto points, is presented in Figure 7, and the
relationship between energy absorption and maximal impact
force is depicted in Figure 8.

In terms of the properties of energy absorption ability and
maximal collision force, the optimal design is specified by𝑡1 = 2.0, 𝑡2 = 1.98, 𝑡3 = 1.98, and 𝑡4 = 1.98. Regarding
the lightweight design, the mass of the thin-walled plates
is also a significant factor in selecting the best design. The
relationship between the energy absorption, maximal impact
force, and total mass of the bumper absorbing box is depicted
in Figure 9. The comparison between the original design and
the optimal result in terms of energy absorption, maximal
collision force, and mass is presented in Table 2.

Table 2 shows that, comparedwith the original design, the
performance improves greatly after optimization.The energy



Mathematical Problems in Engineering 9

1.131.126 1.1281.124 1.132 1.134 1.136 1.1381.122
F1

0.922

0.924

0.926

0.928

0.93

0.932

0.934

0.936

0.938

0.94

F
2

Figure 7: Pareto-optimal front obtained by CBQNA.
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Figure 8: Relationship between the energy absorption and the
maximal impact force.

Table 2: Comparison of design variables and the performances
before and after optimization.

𝑡𝑖/mm 𝐸in/J 𝐹max/kN 𝑀𝑎/kg𝑡1 𝑡2 𝑡3 𝑡4
Before 1.4 1.8 2.3 1.8 5605.2 173.25 3.83
After 1.86 1.78 2.0 1.96 5777.8 146.64 3.89

absorption improves by 3.08% and the maximal impact force
reduces by 14.87%, while the total mass increases slightly
by 1.57%. The collision conditions of the crash box at 0.01 s,
0.02 s, 0.03 s, and 0.04 s are presented in Figure 10. From
the collision deformation, the optimized crash box structure
achieves an ideal deformation and satisfies the practical
engineering requirements.

4.3. Optimization Design of an S-Shaped Thin-Walled Beam.
The frontal rail that is connected with the crash box is also
a main deformation and energy absorption structure in a
frontal crash, which is shown in Figure 11.
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Figure 9: Objective responses and total mass of the crash box
structure.
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Figure 10: Deformation of the crash box at different times.

Generally, the vehicle front rail is a thin-walled structure
whose deformation and energy absorption characteristics
are similar to those of a general rectangular thin-walled
beam. Thus, the crashworthiness of the thin-walled beam
has dramatic significance to the frontal crash safety of the
automobile. In this paper, an attempt has been made to
study an S-shaped simplified model under frontal impact
conditions.

4.3.1. Establishment of the Finite-Element Model. Firstly, the
geometry model of S-shaped structure is established with
Catia, then its finite-element model is simulated by Hyper-
mesh, and the simulation process is carried by LS-DYNA.The
FEmodel of the S-shaped thin-walled beam with rectangular
cross-section is displayed in Figure 12. The S-shaped beam
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S-shaped beam

Figure 11: Simplified model of an S-shaped front rail structure.
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Z

Figure 12: FE model of the S-shaped beam.

V

Figure 13: Boundary condition for S-shaped front rail.

is impacted by a rigid wall that weights 450 kg at the speed
of 10m/s. As shown in Figure 13, the rear end of the beam
is fully constrained and the other end is allowed to move
only along the 𝑋-direction. The material that is utilized for
the S-shaped beam is mild steel with the following material
properties: Young’s modulus = 206Gpa, Poisson’s ratio = 0.3,
and density = 7800 kg/m3. The relationship between stress
and strain rate (shown in Figure 14) is also considered.

4.3.2. Mathematical Model for MOP of the Front Rail. The
cross-sectional dimensions of the thin-walled structure are
the main factor that affects the properties of energy absorp-
tion and maximal impact resistance. The width 𝑤, heightℎ, and thickness 𝑡 of the cross-section have been chosen as
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Figure 14: Typical engineering stress-strain curve of the material
[47].
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Figure 15: Cross-section of an S-shaped beam.

design variables in this study, and the cross-section of an S-
shaped thin-walled structure is shown in Figure 15.

In addition, energy absorption andmaximal impact force
are major evaluation indices of the crashworthiness ability of
the S-shaped front rail beam.

Hence, the mathematical model for multiobjective opti-
mization of the front rail, which consists of two objective
functions in terms of three design variables, is constructed
as

min 𝐹 (x) = {{{
𝐹1 (x) = 1𝐸 (x)𝐹2 (x) = 𝐹 (x)

s.t. ℎmin ≤ ℎ ≤ ℎmax

𝑤min ≤ 𝑤 ≤ 𝑤max

𝑡min ≤ 𝑡 ≤ 𝑡max,

(35)

where x = (𝑤, ℎ, 𝑡)𝑇 is the vector of design variables;𝐹(x) is a vector function that consists of two objectives,
namely, 𝐹1(x) and 𝐹2(x); ℎmin and ℎmax denote the lower
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Table 3: Data for 25 groups, obtained by orthogonal experimental design.

Number Factors 𝐸 (J) 𝐹 (kN)𝑤 ℎ 𝑡
(1) 58 136 1.4 11444.7 182.067
(2) 58 139 1.6 12943.7 214.618
(3) 58 142 1.8 14335.4 235.309
(4) 58 145 2.0 15644 251.437
(5) 58 148 2.2 16845.9 287.804
(6) 60 136 1.6 12910.2 212.551
(7) 60 139 1.8 14301 233.593
(8) 60 142 2.0 15603.6 248.585
(9) 60 145 2.2 16805.2 272.659
(10) 60 148 1.4 12257.2 196.856
(11) 62 136 1.8 14242.8 221.679
(12) 62 139 2.0 15547.9 246.477
(13) 62 142 2.2 16643.2 299.146
(14) 62 145 1.4 12236.6 197.617
(15) 62 148 1.6 13765.4 231.555
(16) 64 136 2.0 15383.9 259.826
(17) 64 139 2.2 16578.2 299.329
(18) 64 142 1.4 12200.4 194.745
(19) 64 145 1.6 13730.5 229.025
(20) 64 148 1.8 15148.8 241.987
(21) 66 136 2.2 16513.7 299.543
(22) 66 139 1.4 12157.1 195.991
(23) 66 142 1.6 13679.3 224.678
(24) 66 145 1.8 15094.3 234.490
(25) 66 148 2.0 16400.2 272.619

and upper limits of the height of the cross-section; 𝑤min
and 𝑤max denote the lower and upper limits of the width;
and 𝑡min and 𝑡max are the lower and upper limits of the
thickness of the wall, respectively. In this study, to satisfy the
limits of the structure dimensions and the strength demands,ℎmin = 136mm, ℎmax = 146mm, 𝑤min = 56mm, 𝑤max =68mm, 𝑡min = 1.4mm, and 𝑡max = 2.2mm.

4.3.3. Design of Experiments. Following the novel optimiza-
tion strategy’s procedures, orthogonal design is utilized to
generate 25 design sampling points (i.e., four levels for each
of the three design variables), which are clearly presented in
Table 3 with their corresponding responses.

4.3.4. AgentModel and Precision Analysis. A surrogatemodel
of two objectives for crashworthiness optimization for the
frontal rail is also established to lower the complexity of the
original problem. According to the 25 plans of the DOE,
which are shown in Table 3, the quadratic response surface
models of the energy absorption and maximal impact force
responses were constructed in expressions (36) and (37),
respectively.

𝐸󸀠 (x) = −70973.4 + 958.656𝑤 + 614.173ℎ
− 3.827𝑤ℎ + 57.023𝑤𝑡 + 63.274ℎ𝑡
− 3.582𝑤2 − 1.4842ℎ2 − 1890.174𝑡2

(36)

𝐹󸀠 (x) = 111.854 − 20.210𝑤 + 7.560ℎ − 0.025𝑤ℎ
+ 2.731𝑤𝑡 − 1.479ℎ𝑡 + 0.165𝑤2
− 0.009ℎ2 + 43.110𝑡2.

(37)

The surrogate model’s fitness was evaluated based on
coefficient 𝑅2 and its adjusted form 𝑅2adj. The values of coef-
ficient 𝑅2 for the energy absorption and collision force reach
99% and 98%, respectively, and the correction coefficient 𝑅2adj
values are 99% and 95%, respectively. The result indicates
that the approximation ability of this surrogate model is very
good.

4.3.5. Optimization Design. To improve the efficiency of
optimization, the hybrid algorithm CBQNA is utilized to
minimize the two response functions simultaneously. First,
based on the new algorithm, a normalization procedure
is applied to unify the magnitudes of the two responses
functions. Thus, problem (35) is converted into a standard
biobjective optimization problemwith inequality constraints,
which is expressed as follows:

min 𝐹 (x) = {{{{{{{
𝐹1 (x) = 𝐸𝑎𝐸󸀠 (x)
𝐹2 (x) = 𝐹󸀠 (x)𝐹𝑎

(38)
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Figure 16: Pareto-optimal front obtained by CBQNA.
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Figure 17: Relationship between the energy absorption and the
maximal impact force.

s.t. (ℎ − 136) (146 − ℎ) ≥ 0;
(𝑤 − 58) (66 − 𝑤) ≥ 0,
(𝑡 − 1.4) (2.2 − 𝑡) ≥ 0;

(39)

where𝐸𝑎 = 14496.5 J and𝐹𝑎 = 234.9 kN are the average value
of energy absorption and the maximal collision force for the
25 groups, respectively.

4.3.6. Optimization Results Solved by CBQNA. Problem (38)
is solved by the new proposed algorithm with random initial
value in accordance with constraints. To maintain the diver-
sity of design selection, 200 groups of optimal solutions are
acquired regularly by adjustingweighting factors.ThePareto-
optimal front, which is constructed with 200 solutions, is
depicted in Figure 16. In addition, the Pareto-optimal front
of the front rail collision problem is shown in Figure 17.
Whendetermining the dimensions of the front rail, we should
focus on not only the crashworthiness ability but also the

weight requirement of the automobile. Thus, the mass of
the thin-walled beam is also considered in evaluating the
crashworthiness performance in Table 4.

According to the properties of the best plans, the cross-
sectional dimensions are selected, and the thickness of the
wall is set to x = [63.2, 146, 1.8]mm, as shown in line 78
in Table 4. After the simulation by software LS-DYNA, the
energy absorption and collision force responses, the specific
energy absorption (SEA), and the mass of the structure,
compared with the original design, are presented in Table 5.
Figure 18 illustrates the deformation of the S-shaped frontal
rail thin-walled structure changes over time.

Although, comparedwith the original design, the internal
energy absorption of the optimal design is decreased slightly,
the maximal impact and the mass are decreased by 3.0%
and 6.5%, respectively. Moreover, the SEA, which is the
main indicator of the energy absorption ability, drops by
3%, which signifies that the crashworthiness of the frontal
rail is improved. Therefore, all performance indicators of the
optimal result meet the requirements.

4.4. Analysis of Optimal Results. The optimization strategy
that is based onCBQNAhas been applied to the optimization
design of the crash box and the S-shaped front rail. The
optimized results demonstrate that the optimization strategy
that is based on the CBQNA algorithm is valuable in solving
MOPs in engineering projects. To evaluate the efficiency of
the proposed method, the two engineering examples in this
paper are each executed 30 times. The calculation results
show that it takes approximately 5.6 s to optimize the crash
box by this novel algorithm, compared to approximately
198 s by NSWFA [32]. Furthermore, the constraint condition
of the crash box that is simulated in this paper is more
consistent with the actual frontal collision than that in [32].
The calculation time of the optimization of the S-shaped front
rail is approximately 32.8 s for 200 groups’ optimal solutions,
which demonstrates that the optimization strategy that is
based on the proposed algorithm is effective and promising
in solving complicated engineering problems in which the
objective function’s second derivative is difficult to calculate
or does not exist.

5. Conclusions

This article proposed a new hybrid algorithm, known
as CBQNA, for solving multiobjective problems and a
surrogate-modeling-based optimization strategy to address
MOPs in engineering projects. The hybrid algorithm com-
bines a weighted sum method and a cautious BFGS method
to determine a descent search direction. Avoiding the cal-
culation of the Hessian matrix of each objective function in
every iteration dramatically reduces the time consumption.
The algorithm CBQNA has excellent performance in terms
of obtaining uniformly distributed solutions and high com-
putational efficiency, which has been proven by numerical
experiments. The optimization strategy has been applied
to crashworthiness optimal design of an automobile crash
box and an S-shaped front rail structure. The outstanding
performance of the surrogate-modeling-based strategy that
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Figure 18: Deformation of the S-shaped beam changes over time.

Table 4: Optimal solutions and their corresponding objective responses.

Design variables 𝐸(J) 𝐹(kN) 𝑀(kg)𝑤 ℎ 𝑡
(1) 63.18507 145.4626 2.1208 17081.0 272.889 7.19
(2) 63.23390 145.5450 1.8717 15538.6 245.962 6.36
(3) 63.23933 145.5548 2.0046 16087.7 263.545 6.80
(4) 63.23917 145.5540 1.9672 16087.7 263.545 6.67
(5) 63.17605 145.4450 2.1677 17048.5 267.451 7.36
(6) 63.05213 145.2380 1.8668 15485.6 245.663 6.32
(7) 63.10070 145.3174 1.7284 14311.9 233.394 5.89
(8) 63.16113 145.4234 1.8880 15506.7 245.863 6.43
(9) 63.22119 145.5222 1.9085 15511.4 245.155 6.46
(10) 63.21939 145.5207 1.8563 15509.1 243.437 6.33. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .
(71) 63.20308 145.4854 1.8738 15506.2 245.319 6.38
(72) 63.14951 145.3912 1.7064 14323.5 233.614 5.81
(73) 63.18035 145.4439 2.1700 17036.8 276.266 7.38
(74) 63.07671 145.2661 1.9681 16030.8 257.892 6.68
(75) 63.18094 145.4458 1.9650 16049.1 258.247 6.69
(76) 63.14457 145.3848 2.0132 16037.5 260.135 7.02
(77) 63.19502 145.4693 2.1381 16586.5 266.359 7.26
(78) 63.20000 145.4776 1.8571 15677.5 240.558 6.23
(79) 63.11433 145.3301 2.1676 17037.7 265.008 7.35
(80) 63.20090 145.4790 1.9712 16056.5 257.411 6.70
(81) 63.19128 145.4618 2.0219 16054.8 264.999 6.86
(82) 63.15801 145.4045 1.9299 15504.9 246.552 6.56
(83) 63.12779 145.3543 1.9100 15507.3 245.189 6.49
(84) 63.20623 145.4870 1.9823 16052.2 258.096 6.73
(85) 63.18679 145.4535 1.9746 16055.6 257.415 6.70. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .

Table 5: Design variables and response values before and after optimization.

Design variables (mm) 𝐸 (J) 𝐹 (kN) 𝑀 (kg)𝑤 ℎ 𝑡
Original Design 62.0 142 2.00 15616.8 247.9 6.45
Optimized Result 63.2 146 1.80 15077.5 240.5 6.03
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was proposed in this paper can be summarized as follows.
First, because of the high calculation speed of the hybrid
algorithm, the engineering problem can be solved within the
allowed time, which is very significant in the actual design
process. Second, the optimal result is superior to the original
design in terms of crashworthiness ability, which is crucial
to vehicle passive safety. In our future work, evolutionary
algorithms will be combined with the proposed algorithm
to generate better initial value for definitely avoiding sinking
into pseudo-optimal solution and the convergence of the
proposed hybrid algorithm will be theoretically proven.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Khoroshiltseva, D. Slanzi, and I. Poli, “A Pareto-basedmulti-
objective optimization algorithm to design energy-efficient
shading devices,” Applied Energy, vol. 184, pp. 1400–1410, 2016.

[2] E. Yao, H. Wang, L. Wang, G. Xi, and F. Maréchal, “Multi-
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