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There has been a sustained effort in the research community over the recent years to develop algorithms that automatically analyze
heart sounds. One of the major challenges is identifying primary heart sounds, S1 and S2, as they represent reference events for
the analysis. The study presented in this paper analyzes the possibility of improving the structure characterization based on shape
context and structure assessment using a small number of descriptors. Particularly, for the primary sound characterization, an
adaptive waveform filtering is applied based on blanket fractal dimension for each preprocessed sound candidate belonging to
pediatric subjects. This is followed by applying the shape based methods selected for the structure assessment of primary heart
sounds. Different methods, such as the fractal ones, are used for the comparison. The analysis of heart sound patterns is performed
using support vector machine classifier showing promising results (above 95% accuracy). The obtained results suggest that it is
possible to improve the identification process using the shape related methods which are rarely applied. This can be helpful for

applications involving automatic heart sound analysis.

1. Introduction

Auscultation is widely used for evaluation of cardiac function.
Since the heart sound analysis mostly depends on the individ-
ual skills of the clinician, there is a growing demand for auto-
matic heart sound interpretation methods and systems [1].
Phonocardiography is a cost-effective noninvasive method
which enables both hearing and visualizing the content of
heart sound signals. It is considered to be helpful in avoiding
complex and expensive imaging equipment [2].

One of the major concerns in heart sound analysis is to
identify the first (S1) and the second (S2) heart sound [3].
Their proper identification is of key importance for interpre-
tation of other signal’s components, such as extra sounds and
murmurs found between the fundamental sounds, in systole
(S1-S2) and diastole (S2-S1) intervals. The closure of mitral
and tricuspid valves forms S1, where S2 sound is produced
by the closure of aortic and pulmonary valves. With the
use of electrocardiogram reference, the identification of S1

is easy to perform due to the localization of QRS complex.
More often, there is a need to identify the sounds without
the use of any synchronously recorded reference. This is a
challenging task since these sounds are found as components
of relatively high energy in the same low frequency range
having similar morphology [4]. Thus, characterizing the
typical heart sounds, such as SI and S2, has acquired great
popularity over the years [5-8].

The existing methods for characterization of the sounds
often apply the calculation of envelograms to introduce
the energy aspect, such as the Shannon energy based one,
where higher energy is usually associated with S1 [5, 6, 9].
Similar auxiliary envelopes are applied using different joint
time-frequency representations [8, 10, 11]. The identification
methods for the primary heart sounds usually consider
signal/envelope characteristics (e.g., maximum, variance, fre-
quency, and positive/negative area [6, 9,12]). It is noticed that
the labels S1 and S2 are traditionally assigned without taking
into account varying energy of the sounds [8, 10], where
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the improved characterization is needed regardless of the
assumptions concerning the intervals between the candidates
(e.g., recurring sequence of S1-S2 pairs, no excitement, and
neither missed candidates nor misinterpreted systoles as
intervals of short duration [9, 10]).

On the other hand, shape descriptors for the structure
characterization are considered to be valuable for the iden-
tification, even though they are rarely applied. Skewness of
the envelope waveform as a measure of high order statistics
is used in [4] to characterize the structure, where the
asymmetrical energy distribution of S2 is assumed due to
closure of valves. Another shape related method is based
on the kurtosis calculation to characterize the peakedness
of the sounds [8]. The advantages of fractal framework
are also recognized for the heart sounds, where different
fractal dimension (FD) methods related to variation and
structure of the waveforms are applied. Typical heart sounds
Sland S2, of short duration (20-200 ms) and low frequencies
(20-200 Hz), can be considered fractal in nature [2, 11].

So far, fractal complexity is used for heart rate variability
[13, 14], as well as for the auscultatory recording classification
[15], where FD is shown as a satisfying tool in comparison
to the other time-frequency features. As a measure of fractal
complexity, for S1 and S2 heart sound identification, variance
FD (VED) is applied in [16]. For lung sounds belonging
to pediatric patients, Katz FD (KFD) [17] is applied in
identification of crackles and swallowing in [18, 19]. In [20],
blanket method (BFD) is used for the tidal volume estimation
using tracheal sounds. In the previous work of our group,
initial examination of blanket method is shown as a possible
tool for primary heart sounds as well [21]. Moreover, in
our previous works [11, 12], novel methods are proposed for
efficient classification of the auscultatory recordings without
the primary heart sound detection using a few multifractal
spectrum related features.

This study makes a contribution to research on methods
for heart sound analysis using advantages of fractal theory
and shape context, using relatively small number of descrip-
tors. In Section 2, the description of fractal concepts in iden-
tification of primary heart sounds is briefly presented. For the
waveform pattern analysis, new shape related methods are
proposed, which are based on adaptive filtering and modified
blanket approach bearing in mind the most extreme points
within the heart sound signals. The new method is tested
over real heart sounds belonging to pediatric subjects and
compared with other methods known from literature. The
results of the study are presented in Section 3. In Section 4,
some concluding remarks are presented.

2. Materials and Methods

The fundamental cardiac sounds S1 (heard as a “lub” sound)
and S2 (heard as a “dub” sound) are usually found in
an auscultatory recording as characteristic components of
relatively high energy. Each beat consists of four parts: S1
sound, systole, S2 sound, and diastole [3]. Other extra sounds
found in a heart sound signal (clicks, snaps, murmurs, etc.)
may convey valuable information, but an interpretation of
any extra sound depends on the identification of SI and S2.
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FIGURE 1: An auscultatory recording.

Figure 1 shows a part of a record (duration of two seconds)
belonging to a pediatric subject. The labels S1and S2 are given
by physician as the fundamental heart sounds.

In order to examine the patterns of structures found
in auscultatory recordings, the dataset of over a thousand
sequences belonging to pediatric subjects is gathered. Par-
ticularly, heart sounds are collected in compliance with the
ethical standards from the apex area. The acquisition of heart
sounds is performed at the Health Center “Zvezdara” and
additional echocardiography examination at the University
Children’s Hospital in Belgrade, Serbia. The sounds are
initially recorded with 8 kHz and downsampled to 1kHz for
the analysis since the basic structure of the waveforms is not
degraded after downsampling. Littman 4100WS stethoscope
is used for the acquisition.

2.1. Fractal Concept in the Pattern Characterization. Self-
similarity property of the waveforms is based on the existence
of similar patterns across different scales. Namely, the similar
shape may arise when observing a structure across the scales,
where these structures (fractals) can be described by their
fractal dimension [17]. The fractal approaches were found
as efficient tools for characterization of complex structures,
where different covering techniques and extensions from the
envelopes to measuring area can be used [12, 13,17, 18].

In order to clarify the basic mathematical concept applied
in FD calculation, a brief explanation is given for better
understanding. The principle for calculating box-counting
FD (BCED), as one of the most frequently used methods,
is based on covering a waveform x with boxes of size & by
appropriate grid, defined by evenly spaced squares, where the
number of boxes, N(¢), needed to cover a signal is calculated
[12]. The size of squares, 1/¢, changes with scale. When € tends
to zero, the dimension can be estimated via the power law:

(e n)

log (¢) @

Dyepp = —lim
e—0

The algorithms for FD estimation are mostly defined to
be easy to calculate, where a waveform can be described
by a single fractal measure. When applied to specific sound
structures of relatively short duration, they may be valuable in
their identification. There are many different methods, where
some of them are directly related to the structure analyzed.
It is worth mentioning that the KFD is one of the most
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often applied, related to the pattern characterization [17, 22],
which considers the length of a curve, L(d), calculated as a
sum of Euclidean distances between the successive samples.
The KFD is computed by averaging the distance between the
successive samples a as

Do = log (n)
KED = (log (n) + log (d/L))’

2)

where n = L/a and d is the planar diameter of a waveform
defined as a maximum of distances between the first and any
other point of the waveform.

Envelopes can be applied in measuring area, as used in
BFD method. By defining the blankets for structure covering,
it is possible to define adequate covering areas and perform
the fitting in a log-log domain

log (A (¢))

log (¢) ®)

BFD1/2 =

where A(e) can be described as follows:

(i) The area change between the adjacent € as in [23]
(here denoted as BFDI) or

(ii) The curve length estimation as in [24] (here denoted
as BFD2).

2.2. Multiscale Heart Sound Identification. Even though the
higher number of components is expected in SI, the inter-
pretation of each of the primary heart sound waveforms
for the identification purpose is not an easy task [7]. The
structure of the S1 and S2 heart sounds produced by cardiac
contractions and valve closures can be considered to be
similar across different scales. By assuming the importance
of the most abrupt change of a waveform’s magnitude for the
identification, we propose an adapting technique as follows:

U e = max (u (1)) =t (i) + % (), (4a)

where
u, (i) = max {u; (k)}, (4b)
by new (1) = x () = b, (i), (5a)

where
b, (i) = min {b.; (R)}. (5b)

Initially, u, = b, = x and i,k = 1,...,N. The proposed
technique calculates the upper u, ., (“above”) and lower
b, new (“below”) envelopes starting from the maximum and
minimum points, respectively. The envelopes are formed
according to the most prominent extreme points. The curves
are adapting to the original waveform structure and the
extreme points in each iteration e. The information related to
the extremes is extracted by the adaptive structure filtering
(4a), (4b), (5a), and (5b), so that the local maxima affect
variation of the lower envelopes, while the local minima

affect the upper ones. Moreover, it is assumed that the most
abrupt waveform change is relevant for the classification by
clamping the curves using the maximum and the minimum
of a structure. In Figure 2, the envelopes are presented for
BFDI1 and the new covering method based on (4a), (4b),
(5a), and (5b). Ability of extremes to affect variation of the
envelopes can be noticed in Figure 2(b).

In order to describe the primary heart sounds, the
covering area is divided into two parts: the area when viewing
the structure from “above” (V") and the area when viewing
the structure from “below” (V_), similarly as in [23]. The
upper and lower areas are calculated as

V= D (b () + 2 0),

(6)
V: = Z (X (l) - bs,new (l)) .

i

The applied filtering decreases the difference between the
curves and the original structure. This enables the strip-like
estimation of the waveform until the difference between the
positive upper and lower areas becomes negligible (V" >
Vo, e=1,... ,m). An extension to measuring area is made
from the adaptive filtering in order to assess each structure.

After the adaptive filtering, three different methods for
characterization of the primary sounds are proposed. The
proposed methods are based on the structure assessment
using the difference between the covering areas. As noticed in
FD calculation and texture/pattern estimation [25], the first
few iterations are mainly sensitive to the structure, that is,
to the most noticeable notches. Thus, the adaptive technique
in the first iterations seems to be useful in the identification.
Waveform is bounded around the most abrupt change of a
waveform’s magnitude using a threshold T. The threshold
is determined empirically as T = 0.2 * max(d,), where d,
denotes the maximum of difference between upper and lower
envelopes: d, = |u, — b,|. By testing, it is found that smaller
threshold values can lead to misinterpretation, that is, the
detection of local extremes which are not dominant.

In the first method, the value A, is calculated as

(Ve -v)
Ap=A4y () = =
)

7)

For each scale, it can be interpreted as difference between
slopes of the covering area values. After intensive exper-
iments, we found the third iteration as appropriate for
characterizing SI and S2 sounds.

The second method calculates the total area in the
multiscale structure estimation as

A=) A &)=Y V=DV, (8)
where
A,(e)=2e-A, (e)=V.-V_. (8b)

The value A,(€) decreases in each subsequent iteration.
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FIGURE 2: The upper and lower envelopes: (a) moving from the original structure used in BFDI, with forty iterations presented; (b) moving
towards the structures according to the adapting technique: (4a), (4b), (5a), and (5b).

The third method is based on the slope-difference. It is
applied to assess the structure as

A3=ZA3(8)=ZAZT(£) =Yt -t (%)

where

_ A, (e) _ (V: _V;)
3

=t -t (9b)
&

Aj(e)

The slope vectors are calculated for covering area values
across scales (f7 = V' /e, t, = V_ [¢). After the estimation,
the local directions are summed, forming the result which
yields the information related to the structure of primary
heart sounds. Similar approaches based on summing the
local directions are used in image processing for different
structures in the shape context methods [26, 27]. In our

approach, the sum of local directions, described by (9a) and
(9b), is applied for heart sound identification.

Each of the methods (7), (8a), (8b), (9a), and (9b) can
give insight into the content and shape of the structures.
Computation error in the multiscale structure estimation
does not produce significant consequences on the proposed
methods suitability. The computation error, such as an error
of the roundoff noise nature, affects the upper and lower
areas, V" and V_ in a similar way; thus the overall impact
is negligible.

2.3. Classification and Evaluation. The classification method
is based on support vector machine (SVM) classifier, which is
considered as a suitable tool for discrimination tasks [28-30].
Namely, SVM is applied as a classifier which distinguishes
the data by finding a separating hyperplane with a maximal
margin between the classes. When applied to the waveforms,
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it is described by the kernel function and regularization
parameter, based on the trade-off having large normalized
margin and less constraint violation. The kernel function is
used to train the SVM, where the most common kernel types
are the linear and the Gaussian radial basis function (RBF)
described by its squared bandwidth [21, 30].

SVM based classification is performed using fivefold
cross-validation [28], where nine hundred sound sequences
are used. The separation of the candidates is made dur-
ing the cross-validation to properly estimate the overall
performance, where the classification is performed without
any prior knowledge, meaning that the sequences used in
the training phase are not a part of the dataset used for
testing. The recursive feature elimination technique is used
to improve the classification accuracy by eliminating the least
significant descriptors [29, 30].

The evaluation results are obtained using the Receiver
Operating Characteristic (ROC) curve. The ROC curve
presents true positive rate versus false positive rate for dif-
ferent decision thresholds, where as a performance measure
the Area Under the Curve (AUQC) is calculated. Moreover, the
classification accuracy and F-measure are calculated as

B TP + TN
" TP +FP+TN +FN’
P 2TP

2TP + FN + FP’

Acc

(10)

respectively, where TP are the true positives (SI hits), TN are
the true negatives (S2 hits), FP are the false positives (missed
§2),and FN are the false negatives (missed S1). The F-measure
describes the class imbalance.

3. Results and Discussion

The three proposed methods, described in Section 2.2, are
firstly tested individually for the structure assessment of the
heart sounds, according to their AUC performance. They
are compared to additional methods from the literature.
We considered standard methods based on signal or its
Shannon energy based envelope [5] (such as variance, highest
amplitude/envelope value, signal/envelope area, and posi-
tive/negative signal area [6, 10, 11]) and different fractal meth-
ods: BCFD, KFD, BFDI, and BFD2 (described by expressions
(1)-(3)), VED [16], Sevcik (SED) [31], and Higuchi (HFD)
[22]. Five of FD methods can be considered highly shape
related (KFD, BFDI, BFD2, SFD, and HFD). To the authors’
knowledge, some of them have not been examined so far for
the primary sound identification, like SFD or BFD2. We also
considered statistical and shape related methods, based on
kurtosis and skewness [4, 8].

3.1. Results. The AUC performance of the proposed methods
is compared to other methods, where only the methods
having AUC values higher than 60% are presented in Figure 3.
In Figure 3, the positive area and the negative area are
calculated in accordance with the sound amplitude, while the
total area 1 and the total area 2 are calculated using the sound
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tested methods which are characterized by AUC > 60%.

amplitude and the Shannon energy based envelope, respec-
tively. The results presented in Figure 3 show that all three
methods proposed in Section 2.2 gave better performance in
comparison to the other tested methods.

Note that our proposed methods are related to shape
characterization. By testing other shape related methods, we
found the BFD2 as a best choice for SI versus S2 classification
(AUC > 90%). It is expected that the KFD may show
promising results (here AUC > 85%) since the method is
considered highly consistent for shape characterization in
different applications (e.g., for electroencephalogram analysis
[22]). Examples of some hits and missed candidates for a set
of waveforms using the third proposed method, described by
(9a) and (9b), are presented in Figure 4, where only a few
candidates are misinterpreted due to their structures.

The tests with AUC performance are followed by SVM
based classification and cross-validation, where the selection
of methods is made using the feature elimination and the grid
search technique [28-30]. In order to obtain robust results in
sound characterization, the accuracies are calculated after five
repetitions dividing the recordings in a random manner. For
SVM based classification, we analyzed all previous methods
which had been tested individually. For the classification,
different number N (N = 2,...,19) of descriptors is used
in the feature elimination technique.

For the case N = 2, the best result is obtained for the
two proposed shape context methods A, and A;, where a
decision boundary is presented in Figure 5(a). For different
values of N, the obtained accuracy and AUC values are
presented in Figure 5(b) showing the noticeable changes
in accuracy in comparison to AUC performance. This is
mainly due to the third method which is shown as the most
significant one among the tested methods for the waveform
characterization. The best performance is found for N = 4,
where the selected descriptors are the proposed shape context
values A and A, BFD2, and the total area calculatedas A | =
Y x(i). In this case the best accuracy results are obtained
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FIGURE 4: Calculated values obtained using the third proposed method for a set of waveforms. Examples of hits and missed candidates are

presented in the lower and the upper part of the figure, respectively.

TaBLE 1: The SVM based classification results after the cross-
validation.

Classification Accuracy [%] F-measure AUC [%]
RBF-SVM based 95.1 0.95 98.3
Linear SVM based 91.2 0.91 96.7

and presented in Table 1. In Table 1, the results represent the
obtained average values showing above 95% accuracy for each
of the classes and AUC higher than 98% for the classification.
Approximately, 4% higher accuracy results are obtained using
RBF kernel in comparison to the linear one.

The proposed SVM based classification utilizes the adap-
tive filtering and the measuring areas for the sound classifi-
cation. In this paper, the cross-validation is performed only
according to the healthy pediatric subjects. An additional
validation of the model is performed on the waveforms
belonging to ten patients which were not included in the

cross-validation procedure, where the proposed structure
assessment methodology showed excellent results with AUC
0f 97.6% and accuracy of 90.6% (F-measure of 0.91).

3.2. Discussion and Comparison. The study in this paper is
applied and tested for the primary heart sound identification
process on the basis of shape related characterization for
pediatric subjects. The advantage of the proposed method-
ology relies on the applied adaptive filtering and the selected
structure assessment. The high accuracy results for the clas-
sification are obtained efficiently, without time-consuming
characterization methods, by employing the shape context
characterization and keeping a small number of descriptors.
In comparison to the state-of-the-art methods that employ
FD methods, the structure assessment characterization meth-
ods do not use averaging/fitting estimations, like the least-
squares in log-log domain used in (3). The applied method
also overcomes high iterations for the calculation. Particu-
larly, the high iterations found for BFD1/2 seem not to bring
new relevant information regarding the structure and may
prevent FD to reflect the sound type with high accuracy
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FIGURE 5: (a) Decision boundary for the two proposed shape context methods, N = 2. (b) The calculated validation accuracy and AUC values

for different number of descriptors.

(Figure 2). Thus, applying the filtering towards the structure
enables adapting to the most prominent extreme points. It can
be noticed that the SI adapting to the structure encounters
the higher number of the prominent local extremes than in
S2. The limitations of the proposed methodology are directly
related to the sound characterization. In particular, the
misclassified sounds are found among the missed examples
presented in Figure 4. These are the limitations related to
the found positions of the most prominent maximum and
minimum used for clamping the envelopes, where some side
details may produce the misinterpretation. The proposed
model is adjusted to the healthy individuals. The additional
experiment for nonhealthy group using a set of 180 wave-
forms is performed under the same circumstances providing
high accuracy results.

The study is based on the shape context characterization
and can be considered valuable for automatic heart sound
analysis. High accuracy (above 95%) is obtained for the clas-
sification and labeling of the primary sounds regardless of the
intersound relationships. In comparison to the identification
from [5, 11], where highest envelope value (E) is applied
for Sl-systole and S2-diastole differentiation, the structure
assessment overcomes the errors found due to varying energy
in a signal, as presented in Figure 6(a). Recurring sounds
are not assumed for the classification model, and thus the
methodology may overcome errors found due to nonde-
tected candidates and similar misinterpretations. Finally, the
methodology shows significant improvement of 6% higher
accuracy in comparison to the methodology from [21], as
presented in Table 2. The obtained ROC curves are presented
in Figure 6(b) with 6.5% higher AUC value and 0.08 higher
F-measure.

TABLE 2: The comparison results.

Classification Obtained results, Methodology from
accuracy [%] [21], accuracy [%]

RBF-SVM based 95.1 89.1

Linear SVM based 91.2 90.5

4. Conclusions

The study in this paper analyzes the possibility of using
the shape context and fractal theory in the SI and S2
pattern characterization. The obtained results show that
the proposed method is able to significantly improve the
accuracy (higher than 95%) by avoiding averaging and
fitting procedures across the scales. The fractal theory based
approaches enable developing new methods keeping a small
number of descriptors in the identification of the primary
sounds.

The study shows the significance of the shape context and
ability to differentiate the sounds regardless of the variable
energy values without even considering intersound relation-
ships. Moreover, the obtained results indicate that the shape
related approaches are valuable for further improvements in
the identification of the heart sounds.
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