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In a mobile computing environment, waiting time is an important indicator of customer satisfaction. In order to achieve better
customer satisfaction and shorter waiting times, we need to overcome different constraints and make the best use of limited
resources. In this study, we propose a minimization problem, allocating unequal-size data items to broadcast channels with various
bandwidths. The main idea is to solve the problem in the continuous space R𝑛. First, we map the discrete optimization problem
from Z𝑛 to R𝑛. Second, the mapped problem is solved in R𝑛 optimally. Finally, we map the optimal solution from R𝑛 back to Z𝑛.
With the theoretical analyses, we can ensure the solution quality and execution speed. Computational experiments show that the
proposed algorithm performs well. The worst mean relative error can be reduced to 0.353 for data items with a mean size of 100.
Moreover, almost all the near-optimal solutions can be obtained within 1 millisecond, even for𝑁 = 500, where𝑁 is the number of
data items, that is, the problem size.

1. Introduction

Broadcasting is an efficient mechanism to transmit informa-
tion in a mobile computing environment. Popular messages
(e.g., weather reports) or instant information (e.g., stock
quotes) can be widely disseminated via the broadcast mech-
anism. This success is mainly due to the high bandwidths
of downlinks, which are used for the transmission of data
items from a broadcast server to unlimitedmobile users. Note
that the bandwidths of channels and the sizes of data items
might be unequal. The simplest strategy is to equally allocate
data items to all channels, or load balance, but it is not the
best way to reduce waiting time. Consequently, sophisticated
broadcast scheduling or data partition algorithms are called
for.

Waiting time, or expected delay, is an important indicator
for measuring broadcast performance, for the waiting times
of mobile users directly influence their customer satisfaction
[1–5]. For example, Chien and Lin [3] found that customers’
waiting experiences may negatively affect their attitudes
towards a given service. Moreover, improving the service
implies the improvement of user experiences. Therefore, a
good broadcastmechanism that is able to reducewaiting time
can achieve better customer satisfaction.

Let us observe the simplest form of such problems,
that is,∑

𝑖
[(∑
𝑗
𝑎
𝑗
)(∑
𝑗
1)]. These problems feature single-item

queries, multiple channels, and skewed data preferences.
Several equal-bandwidth broadcast channels and multiple
equal-size data items need to be broadcast over multiple
channels periodically. In a mobile computing environment,
users can download their desired items via their mobile
devices, such as smartphones. Imagine that we allocate a
few popular items to a channel, that is, a short cycle length,
and other ordinary items to another channel, that is, a long
cycle length. Most users can download popular items in a
short time, without a longwait. Clearly, access probability and
cycle length directly influence broadcast scheduling. Note the
unbalanced workloads of these channels (i.e., the different
amounts of data) in an optimal allocation. Once the optimal
schedule is found, we can achieve shorter waiting times and
better customer satisfaction. However, determining optimal
schedules requires much execution time. That is, the time
complexity excludes the related optimization algorithms
from practical use.

Now we consider some complicated forms of such
problems, that is, ∑

𝑖
[(∑
𝑗
𝑎
𝑗
)(∑
𝑗
𝑏
𝑗
)]. These problems may

have unequal-size data items or various bandwidths. There
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are still multiple channels and skewed preferences for data
items. For example, in [6], the authors assumed that the
bandwidths were different. This consideration makes this
problemmore difficult. In [7], the authors considered another
problem, in which the sizes of data items are unequal.
This assumption makes the problem more flexible and
practical.

In recent years, various other forms have also been
studied. In [8], mobile users could download multiple items
at a time by sending a simple query. The authors assumed
that two queries might have some items in common. To
shorten the broadcast cycle length, the duplicate items were
centralized and allocated to the same channel. In [9], video
was broadcast on a single channel, so the data size was
variable. In [10], mobile users could downloadmultiple items
in a multichannel environment. However, the wireless links
were unreliable, so disconnections occurred frequently. In
that study, reducing the waiting timewas not the first priority.
Instead, the authors aimed to minimize the deadline miss
rate. All of the above considerationsmake the problemsmore
complicated. Obviously, these problems cannot be solved
easily or optimally when the problem size is large, so we
need some more efficient algorithms to deal with these
problems.

Such problems are usually time-consuming or even NP-
hard, so several intuitive or metaheuristic algorithms have
been proposed. However, traditional algorithms have some
shortcomings. For example, although dynamic programming
[7, 12] and branch-and-bound algorithms [13, 14] can provide
optimal solutions, they are time-consuming and cannot be
applied to large problem instances; for example, 𝑁 = 500.
On the other hand, some metaheuristic algorithms [8] or
greedy approaches [12, 15, 16] generate solutions very quickly.
Nevertheless, their solution qualities are not stable. The
reason is that their searches are done by random walks in
their solution spaces. For the sameproblem instance,multiple
executions of an identical algorithm can generate different
solutions. Moreover, as in the case of tabu search, a great
amount of memory is needed for keeping track of past
experiences. Such algorithms are also unsuitable for large
problem instances.

In this study, we consider a waiting time minimization
problem (abbreviated as WTM). To make this problem more
flexible and practical, meaning that unequal bandwidths
and various data sizes are allowed, we propose a linearly
convergent algorithm based on a steepest decent technique.
First, WTM is mapped from Z𝑛 (the discretized space) to R𝑛
(the continuous space). Next,WTM inR𝑛 is solved optimally
in linear time. Finally, the optimal solution is mapped from
R𝑛 back to Z𝑛.

The rest of this study is organized as follows. Section 2
gives the formal definition of the proposed problem. Section 3
establishes the theoretical basis for the problem. Section 4
presents the linearly convergent algorithm. This study is
compared with past research in Section 5. In Section 6,
computational experiments are conducted to evaluate the
performance of the proposed algorithm. Finally, conclusions
are drawn in Section 7.

2. Problem Formulation

The waiting time minimization problem (WTM) is formu-
lated as follows.There is a databaseD = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑁
} to be

broadcast in a mobile computing environment, where 𝑑
𝑗
is

the 𝑗th data item for 𝑗 = 1, 2, . . . , 𝑁. Let 𝑝
𝑗
and 𝜆

𝑗
denote

the access probability and the size of 𝑑
𝑗
, respectively. The

total amount of data is Λ(= ∑
𝑁

𝑗=1
𝜆
𝑗
). Assume that the access

pattern 𝑆, that is, the sequence of (𝑝
𝑗
, 𝜆
𝑗
), is given in advance.

Assume that a broadcast server is equipped with 𝐶 channels,
numbered from 1 to 𝐶. We let the bandwidth of channel 𝑖 be
𝑤
𝑖
. Without loss of generality, assume that 𝑤

𝑖
≥ 𝑤
𝑗
for all

𝑖 < 𝑗. Each channel is divided into time slices of equal size,
called buckets. We need to partition D into 𝐶 parts based
on the access pattern 𝑆 and assign each part to one of the
𝐶 channels, one item to several consecutive buckets. Then
𝐶 broadcast programs are formed, and each of them will be
broadcast cyclically. The average waiting time is defined as
the average amount of waiting time spent by each user before
he/she receives the desired data item. Finally, the objective
is to minimize the average waiting time of the 𝐶 programs
under the above assumptions. The objective function can be
written as min∑𝐶

𝑖=1
[(∑
𝑑𝑗∈𝑀𝑖

𝜆
𝑗
)(∑
𝑑𝑗∈𝑀𝑖

𝑝
𝑗
)/𝑤
𝑖
], where 𝑑

𝑗
∈

𝑀
𝑖
means 𝑑

𝑗
is allocated to channel 𝑖 or machine 𝑖.

Three properties regarding WTM are discussed as fol-
lows. First, for each single channel 𝑖, its corresponding
broadcast program cycle length is Λ

𝑖
= ∑
𝑑𝑗∈𝑀𝑖

𝜆
𝑗
. Then

the expected waiting time in receiving 𝑑
𝑗
on the channel

is (0.5Λ
𝑖
+ 𝜆
𝑗
)/𝑤
𝑖
. If Λ

𝑖
is much larger than 𝜆

𝑗
, the

expected waiting time can be simplified to 0.5Λ
𝑖
/𝑤
𝑖
. Namely,

the position order of data items makes no difference on
the final result, that is, the average waiting time. Second,
the average waiting time can be determined only by data
partition. That is, the average waiting time is the weighted
sum of the average waiting time on each channel, that is,
0.5∑
𝐶

𝑖=1
(Λ
𝑖
∑
𝑑𝑗∈𝑀𝑖

𝑝
𝑗
)/𝑤
𝑖
. Third, such minimization prob-

lems are time-consuming or even NP-hard [6, 16, 17].
Consequently, some efficient minimization algorithms are
called for. With the above observation, we can define proper
objective functions in the next section.

3. Theoretical Basis

In this section, a steepest decent technique is employed to
solve the problem. First, we map the WTM problem from Z𝑛
to a new problemWTM inR𝑛. Second, we employ a steepest
decent technique [11, 18] to obtain the optimal solution to
WTM in R𝑛. Finally, we map the optimal solution from R𝑛
back to Z𝑛. The main idea behind the transformation is to
improve the solution quality and execution speed. Although
WTM can be solved optimally by some optimization algo-
rithms (e.g., a branch-and-bound algorithm) in Z𝑛, it is
too time-consuming when 𝑁 is large. On the other hand,
though some metaheuristic algorithms (e.g., GA) are able
to provide instant solutions in Z𝑛, their solution quality is
not guaranteed. For the same problem instance, they may
provide different solutions. Consequently, instead of directly
optimizing WTM in Z𝑛, we map WTM to R𝑛 and take
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advantage of the linear convergence and optimality of the
gradient-based technique in R𝑛.

The parameters used in this study are summarized in
Parameters at the end of the paper. Parameters𝑁,𝐶, and 𝑆 are
defined earlier. Parameters 𝑆0 and 𝑆1 are the access patterns
used in different spaces, that is, Z𝑛 and R𝑛. We also need
two cumulative functions, 𝑃(𝑗), 𝑄(𝑗), and two interpolating
functions, 𝐹(𝑥),𝐻(𝑥), to define the objective functions 𝛼

𝑆
(n)

in R𝑛 and 𝛽
𝑆
(x) in Z𝑛, respectively. Moreover, n ∈ Z𝑛 and

x ∈ R𝑛 are partition vectors or position vectors.

3.1. Mapping WTM from Z𝑛 to R𝑛. First, two objective
functions for both WTM and WTM are defined. Then we
show how to mapWTM from Z𝑛 to WTM in R𝑛. Finally, we
prove that the geometric properties, such as concavity, of both
WTM and WTM are similar. These proofs ensure that both
solution spaces are close to each other.

The relationship between WTM and WTM is similar to
that between the 0-1 knapsack problem and the fractional
knapsack problem [19]. If we can solve the problems in R𝑛
optimally, then the rounded solutions mapped back to Z𝑛
are therefore near-optimal solutions to the original problems.
To show this relationship, two proper objective functions
play an important role. Namely, the objective functions of
WTM and WTM must resemble each other. Once the two
similar objective functions are determined, we can claim
that the optimal solution of WTM is very close to that of
WTM.

Definition 1 helps us to transform the data partition
problem into a sequence partition problem. Since the position
order of an access pattern will lead to different results,
we need the following definition to help us to ensure the
optimality of WTM andWTM.

Definition 1. Given an optimal solution, the 𝐶 programs can
be concatenated into an optimal program. Let 𝑆0 denote the
sequence of (𝑝

𝑖
, 𝜆
𝑖
) that has the same order as the optimal

program for WTM. Similarly, let 𝑆1 denote the sequence of
(𝑝
𝑖
, 𝜆
𝑖
) that has the same order as the optimal program for

WTM.

WTM andWTM have different preferences for the order
of access pattern. Consider the relationship between the 0-
1 knapsack problem and the fractional knapsack problem
again. For the fractional knapsack problem, if we take the
items of greatest unit value one by one in a preemptive
manner, we can easily achieve the maximum objective cost
[19]. Thus we try to solve the continuous-case WTM by
sorting the items𝑑

𝑖
in descending order of (𝑝

𝑖
/𝜆
𝑖
).That is, the

sequence 𝑆1 is obtained by sorting (𝑝
𝑖
/𝜆
𝑖
) in nonincreasing

order. On the other hand, for the 0-1 knapsack problem, we
may achieve the optimal solution but sacrifice some valuable
items because they are too big to fit the knapsack. Clearly, the
optimal item partition of the 0-1 knapsack problem cannot be
solved by using simple sorting rules. That is, when we reduce
an item partition problem to a sequence partition problem,
it is difficult to determine the optimal sequence for partition.
Consequently, we do not aim to find the optimal sequence 𝑆0
for WTM. Instead, we just use 𝑆1 for WTM to simulate 𝑆0.

Definitions 2 and 3 introduce two cumulative functions
regarding the access pattern 𝑆. With the two cumulative
functions, we can define a new objective function in R𝑛 in
a more comprehensive way for later transformation.

Definition 2. Given 𝑆, the function 𝑃(𝑗) of cumulative prob-
ability is defined by

𝑃 (𝑗) =

{{

{{

{

𝑗

∑

𝑘=1

𝑝
𝑘
, 1 ≤ 𝑗 ≤ 𝑁,

0, 𝑗 = 0.

(1)

Similarly, we define another function to express the cycle
length of a broadcast program. The function 𝑄(𝑗) is defined
as follows.

Definition 3. Given 𝑆, the function 𝑄(𝑗) of the cumulative
data size is defined by

𝑄 (𝑗) =

{{

{{

{

𝑗

∑

𝑘=1

𝜆
𝑘
, 1 ≤ 𝑗 ≤ 𝑁,

0, 𝑗 = 0.

(2)

Now we redefine the objective function for the origi-
nal problem WTM in Z𝑛. The original objective function
∑
𝐶

𝑖=1
[(∑
𝑑𝑗∈𝑀𝑖

𝜆
𝑗
)(∑
𝑑𝑗∈𝑀𝑖

𝑝
𝑗
)/𝑤
𝑖
] is defined from the view-

point of data partition, whereas the new objective function
is formulated from the viewpoint of sequence partition. With
the cumulative functions 𝑃(𝑗) and 𝑄(𝑗), we can determine
a proper sequence in advance and then perform partition
on the sequence. For simplicity, the leading coefficient of
expected waiting time of each channel, 0.5, is omitted in the
rest of this study.

Definition 4. Given 𝑆 and two constants 𝑛
0
= 0, 𝑛

𝐶
= 𝑁 for

any column vector n = [𝑛
1
, 𝑛
2
, . . . , 𝑛

𝐶−1
]
𝑡

∈ {1, 2, . . . , 𝑁}
𝐶−1

with 𝑛
𝑖−1

≤ 𝑛
𝑖
, the objective function 𝛼

𝑆
(n) of WTM is

defined by

𝛼
𝑆
(n) =

𝐶

∑

𝑖=1

(𝑄 (𝑛
𝑖
) − 𝑄 (𝑛

𝑖−1
)) (𝑃 (𝑛

𝑖
) − 𝑃 (𝑛

𝑖−1
))

𝑤
𝑖

, (3)

where 𝑤
𝑖
is the bandwidth of channel 𝑖.

Note that data items numbered 𝑛
𝑖−1

+ 1, 𝑛
𝑖−1

+ 2, . . . , 𝑛
𝑖

are allocated to channel 𝑖. Therefore, the access probability of
channel 𝑖 is 𝑃(𝑛

𝑖
) − 𝑃(𝑛

𝑖−1
) and the program cycle length of

the channel is 𝑄(𝑛
𝑖
) − 𝑄(𝑛

𝑖−1
).

An interpolating function 𝐹(𝑥) regarding access proba-
bility is defined formappingWTMfromZ𝑛 toR𝑛. To preserve
the geometric properties, we interpolate the 𝑁 + 1 points
(𝑗, 𝑃(𝑗)), 𝑗 = 0, 1, . . . , 𝑁, by using 𝑁 separate line segments.
The interpolating function 𝐹(𝑥) is defined as follows.

Definition 5. For 𝑗 = 1, 2, . . . , 𝑁, consider the 𝑗th interval [𝑗−
1, 𝑗] and let the straight line𝑓

𝑗
(𝑥) pass through the two points
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(𝑗−1, 𝑃(𝑗−1)) and (𝑗, 𝑃(𝑗)). The interpolating function 𝐹(𝑥)
is given by

𝐹 (𝑥) =

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑓
1
(𝑥) , if 𝑥 ∈ [0, 1) ,

𝑓
2
(𝑥) , if 𝑥 ∈ [1, 2) ,

.

.

.

𝑓
𝑁−1

(𝑥) , if 𝑥 ∈ [𝑁 − 2,𝑁 − 1) ,

𝑓
𝑁
(𝑥) , if 𝑥 ∈ [𝑁 − 1,𝑁] .

(4)

An interpolating function𝐻(𝑥) regarding program cycle
length is also defined as follows. We let it interpolate the𝑁+

1 points (𝑗, 𝑄(𝑗)), 𝑗 = 0, 1, . . . , 𝑁, by using 𝑁 separate line
segments.

Definition 6. For 𝑗 = 1, 2, . . . , 𝑁, consider the 𝑗th interval
[𝑗 − 1, 𝑗] and let the straight line ℎ

𝑗
(𝑥) pass through the two

points (𝑗−1, 𝑄(𝑗−1)) and (𝑗, 𝑄(𝑗)).The interpolating function
𝐻(𝑥) is given by

𝐻(𝑥) =

{{{{{{{{{{{

{{{{{{{{{{{

{

ℎ
1
(𝑥) , if 𝑥 ∈ [0, 1) ,

ℎ
2
(𝑥) , if 𝑥 ∈ [1, 2) ,

.

.

.

ℎ
𝑁−1

(𝑥) , if 𝑥 ∈ [𝑁 − 2,𝑁 − 1) ,

ℎ
𝑁
(𝑥) , if 𝑥 ∈ [𝑁 − 1,𝑁] .

(5)

Just as we define the objective function 𝛼
𝑆
(n) forWTM in

Z𝑛, we define a dummy objective function 𝛽
𝑆
(x) forWTM in

R𝑛 as follows.

Definition 7. Given 𝑆 and two constants 𝑥
0
= 0, 𝑥

𝐶
= 𝑁, for

any position vector x = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐶−1
]
𝑡

∈ (0,𝑁)
𝐶−1 with

𝑥
𝑖−1

< 𝑥
𝑖
, the objective function 𝛽

𝑆
(x) ofWTM is defined by

𝛽
𝑆
(x) =

𝐶

∑

𝑖=1

(𝐻 (𝑥
𝑖
) − 𝐻 (𝑥

𝑖−1
)) (𝐹 (𝑥

𝑖
) − 𝐹 (𝑥

𝑖−1
))

𝑤
𝑖

, (6)

where𝐹(𝑥),𝑄(𝑥) are the interpolating functions and𝑤
𝑖
is the

bandwidth of channel 𝑖.

Since 𝛼
𝑆
(n) and 𝛽

𝑆
(x) have the same objective costs at

all grid points, the solution spaces of WTM and WTM are
of similar geometric properties, for example, slope, extreme,
and concavity. Lemma 8 shows that both functions agree with
each other at all grid points.

Lemma 8. Given 𝑆, for any n ∈ {1, 2, . . . , 𝑁}
𝐶−1, 𝛼

𝑆
(n) =

𝛽
𝑆
(n).

Proof. Note that 𝑓
𝑗+1
(𝑗) = 𝑃(𝑗) and ℎ

𝑗+1
(𝑗) = 𝑄(𝑗) for all

𝑗 = 1, 2, . . . , 𝑁. Then

𝛽
𝑆
(n) =

𝐶

∑

𝑖=1

(𝐻 (𝑛
𝑖
) − 𝐻 (𝑛

𝑖−1
)) (𝐹 (𝑛

𝑖
) − 𝐹 (𝑛

𝑖−1
))

𝑤
𝑖

=

𝐶

∑

𝑖=1

(𝐻 (𝑛
𝑖
) − 𝐻 (𝑛

𝑖−1
)) (𝑓
𝑛𝑖+1

(𝑛
𝑖
) − 𝑓
𝑛𝑖−1+1

(𝑛
𝑖−1
))

𝑤
𝑖

(by Definition 5)

=

𝐶

∑

𝑖=1

(ℎ
𝑛𝑖+1

(𝑛
𝑖
) − ℎ
𝑛𝑖−1+1

(𝑛
𝑖−1
)) (𝑓
𝑛𝑖+1

(𝑛
𝑖
) − 𝑓
𝑛𝑖−1+1

(𝑛
𝑖−1
))

𝑤
𝑖

(by Definition 6)

=

𝐶

∑

𝑖=1

(𝑄 (𝑛
𝑖
) − 𝑄 (𝑛

𝑖−1
)) (𝑃 (𝑛

𝑖
) − 𝑃 (𝑛

𝑖−1
))

𝑤
𝑖

= 𝛼
𝑆
(n) .

(7)

The proof is complete.

By Lemma 8, 𝛼
𝑆
(n) and 𝛽

𝑆
(x) have the same function

values at grid points. That is, they have similar geometric
properties. Therefore, the optimal solution to WTM in Z𝑛 is
close to that of WTM in R𝑛. The optimal solutions to WTM
andWTM are also close to each other.

3.2. Optimal Solution x∗ to WTM. In this subsection, we
solve WTM optimally and obtain the optimal solution x∗
in R𝑛. First, we introduce the concept of gradient. Then the
optimality and convergence speed are discussed.

The steepest decent technique we employed is based on
the concept of the gradient [11]. Unlike other metaheuristic
algorithms, the steepest decent technique always converges
at the global minimum instead of piecing several local
minimums. Moreover, this steepest decent technique con-
verges in 𝑛 dimensions in linear time instead of performing
meaningless random walks. The notation of the gradient is
defined as follows.

Definition 9. Let 𝑔: R𝑛 → R be a continuous differen-
tiable multivariable function. The gradient of 𝑔 at x =

[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑡 is denoted by ∇𝑔(x) and defined by

∇𝑔 (x) = [
𝜕𝑔 (x)
𝜕𝑥
1

,
𝜕𝑔 (x)
𝜕𝑥
2

, . . . ,
𝜕𝑔 (x)
𝜕𝑥
𝑛

]

𝑡

. (8)

Because 𝐹(𝑥) is not differentiable at 𝑥 = 0, 1, 2, . . . , 𝑁 −

1, we remedy this shortcoming by improper limit. The 𝑖th
element of ∇𝑔(x) is modified slightly and redefined as

𝜕𝑔 (x)
𝜕𝑥
𝑖

=

{{{

{{{

{

lim
ℎ→0
+

𝑔 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
+ ℎ, . . . , 𝑥

𝐶−1
) − 𝑔 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝐶−1
)

ℎ
, if 𝑥

𝑖
is an integer,

lim
ℎ→0

𝑔 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
+ ℎ, . . . , 𝑥

𝐶−1
) − 𝑔 (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝐶−1
)

ℎ
, otherwise.

(9)
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Note that 𝐹(𝑥) and 𝐻(𝑥) are therefore right-hand differen-
tiable for 𝑥 ∈ {0, 1, 2, . . . , 𝑁 − 1}. Thus, the gradient of 𝛽

𝑆
(x)

can be obtained for any x ∈ (0,𝑁)𝐶−1, and the 𝑖th element of
∇𝛽
𝑆
(x) becomes

𝜕𝛽
𝑆
(x)

𝜕𝑥
𝑖

=
1

𝑤
𝑖

[𝐻


(𝑥
𝑖
) (𝐹 (𝑥

𝑖
) − 𝐹 (𝑥

𝑖−1
)) + (𝐻 (𝑥

𝑖
)

− 𝐻 (𝑥
𝑖−1
)) 𝐹


(𝑥
𝑖
)] −

1

𝑤
𝑖+1

[𝐻


(𝑥
𝑖
) (𝐹 (𝑥

𝑖+1
)

− 𝐹 (𝑥
𝑖
)) + (𝐻 (𝑥

𝑖+1
) − 𝐻 (𝑥

𝑖
)) 𝐹


(𝑥
𝑖
)]

=
1

𝑤
𝑖

[𝜆
𝑏
(𝐹 (𝑥
𝑖
) − 𝐹 (𝑥

𝑖−1
)) + (𝐻 (𝑥

𝑖
) − 𝐻 (𝑥

𝑖−1
))

⋅ 𝑝
𝑏
] −

1

𝑤
𝑖+1

[𝜆
𝑏
(𝐹 (𝑥
𝑖+1
) − 𝐹 (𝑥

𝑖
)) + (𝐻 (𝑥

𝑖+1
)

− 𝐻 (𝑥
𝑖
)) 𝑝
𝑏
] =

1

𝑤
𝑖

[𝜆
𝑏
((𝑃 (𝑏) + (𝑥

𝑖
− 𝑏) 𝑝

𝑏+1
)

− (𝑃 (𝑎) + (𝑥
𝑖−1

− 𝑎) 𝑝
𝑎+1

))

+ ((𝑄 (𝑏) + (𝑥
𝑖
− 𝑏) 𝜆

𝑏+1
)

− (𝑄 (𝑎) + (𝑥
𝑖−1

− 𝑎) 𝜆
𝑎+1

)) 𝑝
𝑏
]

−
1

𝑤
𝑖+1

[𝜆
𝑏
((𝑃 (𝑐) + (𝑥

𝑖+1
− 𝑐) 𝑝

𝑐+1
)) − (𝑃 (𝑏)

+ (𝑥
𝑖
− 𝑏) 𝑝

𝑏+1
) + ((𝑄 (𝑐) + (𝑥

𝑖+1
− 𝑐) 𝜆

𝑐+1
)

− (𝑄 (𝑏) + (𝑥
𝑖
− 𝑏) 𝜆

𝑏+1
)) 𝑝
𝑏
]

(10)

for three integers 𝑎 ≤ 𝑏 ≤ 𝑐with𝑥
𝑖−1

∈ [𝑎, 𝑎+1),𝑥
𝑖
∈ [𝑏, 𝑏+1),

and 𝑥
𝑖+1

∈ [𝑐, 𝑐 + 1). More specifically, when programming,
we do not need to find the derivative of 𝐻(𝑥

𝑖
) for obtaining

the corresponding slope. Instead, we obtain the slope 𝜆
𝑏
by

letting ⌊𝑥
𝑖
⌋ = 𝑏. Hence, we eliminate annoying differentiation

procedures in the proposed algorithm.

Similar algorithms are found in [2, 11, 20, 21]. We can
modify them slightly in order to obtain the optimal solution
x∗ in R𝑛. The details of the algorithm will be presented in the
next section.Here, we showonly the basic steps of the steepest
decent technique as follows:

(1) Evaluate 𝛽
𝑆
(x) at an initial position x(0).

(2) Determine the steepest decent direction from x(0) that
results in a decrease in the value of 𝛽

𝑆
.

(3) Move an appropriate amount 𝛿 (i.e., step size) in this
direction, and the new position is x(1).

(4) Set x(1) = x(0) − 𝛿∇𝛽
𝑆
(x(0)).

(5) Repeat steps (1) through (4) until the optimal solution
x∗ is obtained.

In order to implement the algorithm easily, we reduce the
equation

x(1) = x(0) − 𝛿∇𝛽
𝑆
(x(0)) (11)

to a single variable function

V (𝛿) = 𝛽
𝑆
(x(0) − 𝛿∇𝛽

𝑆
(x(0))) . (12)

Note that the value 𝛿
0
that minimizes V(𝛿) is also the

value needed for (11). Because the root-finding process in
(12) requires much execution time, Burden and Faires [11]
employed a quadratic polynomial to interpolate V(𝛿) in order
to accelerate the root-finding process. The details regarding
the quadratic polynomial will be shown in the next section.

Theproposed algorithm converges linearly and the proofs
of convergence are omitted. Readers can refer to [11, 18]. Even
if this algorithm converges rapidly, an accurate initial solution
can accelerate the convergence speed more. The following
definition and lemma help us to choose an accurate initial
solution.

Definition 10. Let 𝑥
0
= 0, 𝑥

𝐶
= 𝑁 be two constants. For any

position vector x = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐶−1
]
𝑡

∈ (0,𝑁)
𝐶−1, the length

of the 𝑖th interval [𝑥
𝑖−1
, 𝑥
𝑖
] is denoted by Δ𝑥

𝑖
and defined by

Δ𝑥
𝑖
= 𝑥
𝑖
− 𝑥
𝑖−1

(13)

for 𝑖 = 1, 2, . . . , 𝐶. Likewise, the difference of𝐻 caused byΔ𝑥
𝑖

is defined by

Δ𝐻
𝑖
= 𝐻 (𝑥

𝑖
) − 𝐻 (𝑥

𝑖−1
) (14)

for 𝑖 = 1, 2, . . . , 𝐶.
The following lemma shows how to obtain an accurate

initial solution by determining the elements of a position
vector or partition vector x.

Lemma 11. If the optimal solution x∗ to the dummy objective
function 𝛽

𝑆1
(x) is given, then Δ𝐻∗

𝑖
/𝑤
𝑖
≤ Δ𝐻

∗

𝑖+1
/𝑤
𝑖+1

for 𝑖 =
1, 2, . . . , 𝐶 − 1.

Proof. We show it by contradiction. Suppose Δ𝐻
∗

𝑖
/𝑤
𝑖
>

Δ𝐻
∗

𝑖+1
/𝑤
𝑖+1

for some 𝑖. Since x∗ is the optimal solution to
𝛽
𝑆1
(x), the sum of products

𝑆
∗

=
[(𝐻 (𝑥

∗

𝑖
) − 𝐻 (𝑥

∗

𝑖−1
)) (𝐹 (𝑥

∗

𝑖
) − 𝐹 (𝑥

∗

𝑖−1
))]

𝑤
𝑖

+
[(𝐻 (𝑥

∗

𝑖+1
) − 𝐻 (𝑥

∗

𝑖
)) (𝐹 (𝑥

∗

𝑖+1
) − 𝐹 (𝑥

∗

𝑖
))]

𝑤
𝑖+1

(15)

should be the minimal in the interval [𝑥∗
𝑖−1
, 𝑥
∗

𝑖+1
]. On the

other hand, since Δ𝐻
∗

𝑖
/𝑤
𝑖
> Δ𝐻

∗

𝑖+1
/𝑤
𝑖+1

, there exists a
number 𝑥

𝑖
< 𝑥
∗

𝑖
such that (𝐻(𝑥

𝑖
) −𝐻(𝑥

∗

𝑖−1
))/𝑤
𝑖
= (𝐻(𝑥

∗

𝑖+1
) −

𝐻(𝑥
𝑖
))/𝑤
𝑖+1

. We claim that

𝑆 =
[(𝐻 (𝑥

𝑖
) − 𝐻 (𝑥

∗

𝑖−1
)) (𝐹 (𝑥

𝑖
) − 𝐹 (𝑥

∗

𝑖−1
))]

𝑤
𝑖

+
[(𝐻 (𝑥

∗

𝑖+1
) − 𝐻 (𝑥

𝑖
)) (𝐹 (𝑥

∗

𝑖+1
) − 𝐹 (𝑥

𝑖
))]

𝑤
𝑖+1

< 𝑆
∗

.

(16)
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Let 𝐻(𝑥∗
𝑖
) − 𝐻(𝑥

∗

𝑖−1
) = 𝑎, 𝐹(𝑥∗

𝑖
) − 𝐹(𝑥

∗

𝑖−1
) = 𝐴, 𝐻(𝑥∗

𝑖+1
) −

𝐻(𝑥
∗

𝑖
) = 𝑏, 𝐹(𝑥∗

𝑖+1
) − 𝐹(𝑥

∗

𝑖
) = 𝐵, 𝐻(𝑥∗

𝑖
) − 𝐻(𝑥

𝑖
) = 𝛿,

𝐹(𝑥
∗

𝑖
) − 𝐹(𝑥

𝑖
) = Δ, and (𝐻(𝑥

𝑖
) − 𝐻(𝑥

∗

𝑖−1
))/𝑤
𝑖
= (𝐻(𝑥

∗

𝑖+1
) −

𝐻(𝑥
𝑖−1
))/𝑤
𝑖+1

= 𝜋. Since the sequence 𝑆1 is sorted by (𝑝
𝑖
/𝜆
𝑖
)

in descending order, Δ𝐻∗
𝑖
/𝑤
𝑖
> Δ𝐻

∗

𝑖+1
/𝑤
𝑖+1

implies that
(𝐹(𝑥
∗

𝑖
) − 𝐹(𝑥

∗

𝑖−1
))/𝑤
𝑖
> (𝐹(𝑥

∗

𝑖+1
) − 𝐹(𝑥

∗

𝑖
))/𝑤
𝑖+1

. That is, if
𝑎/𝑤
𝑖
> 𝑏/𝑤

𝑖+1
, then 𝐴/𝑤

𝑖
> 𝐵/𝑤

𝑖+1
. Then

𝑆 =
1

𝑤
𝑖

(𝑎 − 𝛿) (𝐴 − Δ) +
1

𝑤
𝑖+1

(𝑏 + 𝛿) (𝐵 + Δ)

= 𝜋 (𝐴 − Δ) + 𝜋 (𝐵 + Δ) = 𝜋𝐴 + 𝜋𝐵

=
1

𝑤
𝑖

(𝑎 − 𝛿)𝐴 +
1

𝑤
𝑖+1

(𝑏 + 𝛿) 𝐵

=
𝑎𝐴

𝑤
𝑖

+
𝑏𝐵

𝑤
𝑖+1

−
𝛿𝐴

𝑤
𝑖

+
𝛿𝐵

𝑤
𝑖+1

<
𝑎𝐴

𝑤
𝑖

+
𝑏𝐵

𝑤
𝑖+1

= 𝑆
∗

.

(17)

It contradicts that x∗ is the optimal solution. The proof is
complete.

By the above lemma, the proposed algorithm is therefore
able to start from a better initial position x(0). We find
𝑥
(0)

1
, 𝑥
(0)

2
, . . ., and 𝑥

(0)

𝐶−1
such that Δ𝐻∗

𝑖
/𝑤
𝑖
≤ Δ𝐻

∗

𝑖+1
/𝑤
𝑖+1

=

Λ/𝑊, where𝑊 = ∑
𝐶

𝑖=1
𝑤
𝑖
. In the next section, we set x(0) =

[𝑥
(0)

1
, 𝑥
(0)

2
, . . . , 𝑥

(0)

𝐶−1
]
𝑡 instead of randomly choosing x(0). This

initial position will also enhance the convergence speed.
Note that the partition vector x∗ is a global minimizer

of WTM. We prove this property by showing that 𝛽
𝑆1
(x) is

concave upward for all x ∈ (0,𝑁)𝐶−1. Namely, for any initial
vector, the algorithm converges to the global minimum.

Lemma 12. Let the algorithm converge locally at some x∗ ∈
(0,𝑁)

𝐶−1. Then x∗ is the global optimal solution to WTM.

Proof. We prove the property by showing that, for any x ∈

(0,𝑁)
𝐶−1, 𝛽

𝑆1
(x) is concave upward. From (10), we get

𝜕𝛽
𝑆1
(x)

𝜕𝑥
𝑖

=
1

𝑤
𝑖

[𝐻


(𝑥
𝑖
) (𝐹 (𝑥

𝑖
) − 𝐹 (𝑥

𝑖−1
))

+ (𝐻 (𝑥
𝑖
) − 𝐻 (𝑥

𝑖−1
)) 𝐹


(𝑥
𝑖
)]

−
1

𝑤
𝑖+1

[𝐻


(𝑥
𝑖
) (𝐹 (𝑥

𝑖+1
) − 𝐹 (𝑥

𝑖
))

+ (𝐻 (𝑥
𝑖+1
) − 𝐻 (𝑥

𝑖
)) 𝐹


(𝑥
𝑖
)] ,

(18)

for 𝑖 = 1, 2, . . . , 𝐶 − 1. Note that 𝑥
0
= 0 and 𝑥

𝐶
= 𝑁 are two

constants. Then the second partial derivative is

𝜕𝛽
2

𝑆1
(x)

𝜕𝑥
2

𝑖

=
1

𝑤
𝑖

[𝐻


(𝑥
𝑖
) (𝐹 (𝑥

𝑖
) − 𝐹 (𝑥

𝑖−1
))

+ 2𝐻


(𝑥
𝑖
) 𝐹


(𝑥
𝑖
) + (𝐻 (𝑥

𝑖
) − 𝐻 (𝑥

𝑖−1
)) 𝐹


(𝑥
𝑖
)]

−
1

𝑤
𝑖+1

[𝐻


(𝑥
𝑖
) (𝐹 (𝑥

𝑖+1
) − 𝐹 (𝑥

𝑖
))

− 2𝐻


(𝑥
𝑖
)𝐻


(𝑥
𝑖
) + (𝐻 (𝑥

𝑖+1
) − 𝐻 (𝑥

𝑖
)) 𝐹


(𝑥
𝑖
)]

=
2

𝑤
𝑖

𝐻


(𝑥
𝑖
) 𝐹


(𝑥
𝑖
) +

2

𝑤
𝑖+1

𝐻


(𝑥
𝑖
)𝐻


(𝑥
𝑖
) .

(19)

Because 𝐹(𝑥) interpolates the strictly increasing function
𝑃(𝑖), it is clear that 𝐹(𝑥) > 0. We have 𝐹(𝑥) = 0, since 𝐹(𝑥)
is composed of straight lines. Similarly, 𝐻(𝑥) has the same
properties. Therefore, 𝜕𝛽2

𝑆1
(x)/𝜕𝑥2

𝑖
> 0 for all x ∈ (0,𝑁)

𝐶−1.
The proof is complete.

3.3. Near-Optimal Solution n† to WTM. We show how to
obtain a near-optimal solution of WTM in this subsection.
First, we remap the optimal solution x∗ in R𝑛 back to Z𝑛
by rounding off all elements of x∗, and a rounded solution
n† ∈ {1, 2, . . . , 𝑁}𝐶−1 is obtained.The following lemma shows
themagnitude order of𝛽

𝑆1
(x∗),𝛼

𝑆0
(n∗),𝛼

𝑆1
(n#

), and𝛼
𝑆1
(n†),

where n#
∈ {1, 2, . . . , 𝑁}

𝐶−1 minimizes 𝛼
𝑆1
(n) and n∗ ∈

{1, 2, . . . , 𝑁}
𝐶−1 minimizes 𝛼

𝑆0
(n).

Lemma 13. Let n† ∈ {1, 2, . . . , 𝑁}𝐶−1 be the rounded resulting
solution toWTM.Then 𝛽

𝑆1
(x∗) and 𝛼

𝑆1
(n†) are two bounds of

𝛼
𝑆0
(n∗) with

𝛽
𝑆1
(x∗) ≤ 𝛼

𝑆0
(n∗) ≤ 𝛼

𝑆1
(n#

) ≤ 𝛼
𝑆1
(n†) , (20)

and the Euclidean distance between x∗ and n† is

x∗ − n†2 ≤ 0.5√𝐶 − 1. (21)

Proof. Since n# minimizes 𝛼
𝑆1
(n), 𝛼
𝑆1
(n#

) ≤ 𝛼
𝑆1
(n†). On the

other hand, we need to show 𝛼
𝑆0
(n∗) ≤ 𝛼

𝑆1
(n#

). Note that 𝑆0
is the optimal sequence to the discrete-case problem WTM
and that it is difficult to determine. We just assume that n∗
is the optimal solution to 𝛼

𝑆0
(n). Since 𝑆1 is obtained by

some simple sorting rule and dedicated to the continuous-
case problemWTM, the sequence 𝑆0 is more suitable for the
discrete-case objective function,𝛼

𝑆
(n), than 𝑆1.Therefore, we

obtain 𝛼
𝑆0
(n∗) ≤ 𝛼

𝑆1
(n#

).
We show 𝛽

𝑆1
(x∗) ≤ 𝛼

𝑆0
(n∗) by contradiction. Suppose

𝛼
𝑆0
(n∗) < 𝛽

𝑆1
(x∗). On the other hand, by Lemma8,𝛽

𝑆0
(n∗) =

𝛼
𝑆0
(n∗), since n∗ ∈ {1, 2, . . . , 𝑁}

𝐶−1. Therefore, 𝛽
𝑆0
(n∗) =

𝛼
𝑆0
(n∗) < 𝛽

𝑆1
(x∗). However, 𝛽

𝑆1
(x∗) is the optimal solution

to WTM. It is a contradiction.
Since each 𝑛†

𝑖
is rounded from 𝑥

∗

𝑖
, it is obvious that |𝑥∗

𝑖
−

𝑛
†

𝑖
| ≤ 0.5 and thus ‖x∗ − n†‖

2
≤ 0.5√𝐶 − 1. The proof is

complete.

By Lemma 13, we know that 𝛼
𝑆0
(n∗) is bounded by

𝛽
𝑆1
(x∗) and 𝛼

𝑆1
(n†) or 𝛽

𝑆1
(n†), since 𝛼

𝑆1
(n†) = 𝛽

𝑆1
(n†) by

Lemma 8. This guarantees that the proposed algorithm will
output near-optimal broadcast programs.

4. Proposed Algorithm

Algorithm 1 shows the proposed algorithm GRA. In the
first step, we prepare the cumulative functions 𝑃(𝑖) and
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Procedure GRA (𝐶,D, 𝑆1, TOL, 𝐾max)
INPUT: the number of channels 𝐶, the databaseD, the sorted access pattern 𝑆1,

the tolerance TOL, the maximal number of iterations𝐾max.
OUTPUT: the near-optimal solution n† to WTM.
Step 1 Calculate 𝑃(𝑖), 𝑄(𝑖), and construct corresponding 𝐹(𝑥),𝐻(𝑥);

Construct the dummy objective function 𝛽
𝑆1
(x);

Set 𝑘 = 1; x = [𝑥(0)
1
, 𝑥
(0)

2
, . . . , 𝑥

(0)

𝐶−1
]
𝑡

.
Step 2 While (𝑘 ≤ 𝐾max) do Steps 3–15.
Step 3 Set 𝛽

1
= 𝛽
𝑆1
(x); z = ∇𝛽

𝑆1
(x); 𝑧
0
= ‖z‖
2
.

//Note that ‖z‖
2
is the Euclidean distance of z.

Step 4 If (𝑧
0
= 0) then

Output “𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐶−1
, 𝛽
1
”, “Zero gradient!”;

Stop.
Step 5 Set z = z/𝑧

0
; 𝛿
1
= 0; 𝛿

3
= 1; 𝛽

3
= 𝛽
𝑆1
(x − 𝛿

3
z).

Step 6 While (|𝛽
3
| ≥ |𝛽

1
|) do Steps 7 and 8.

Step 7 Set 𝛿
3
= 𝛿
3
/2; 𝛽
3
= 𝛽
𝑆1
(x − 𝛿

3
z).

Step 8 If (𝛿
3
< TOL/2) then

Output “𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐶−1
, 𝛽
1
”, “No more improvement!”;

Stop.
Step 9 Set 𝛿

2
= 𝛿
3
/2; 𝛽
2
= 𝛽
𝑆1
(x − 𝛿

2
z).

Step 10 Set V
1
= (𝛽
2
− 𝛽
1
)/𝛿
2
; V
2
= (𝛽
3
− 𝛽
2
)/(𝛿
3
− 𝛿
2
); V
3
= (V
2
− V
1
)/𝛿
3
.

//Note that we use Newton’s forward divided-difference formula [11] to find a quadratic
//polynomial 𝑉(𝛿) = 𝛽

1
+ V
1
𝛿 + V
3
𝛿(𝛿 − 𝛿

2
) which interpolates V(𝛿) at 𝛿 = 0, 𝛿 = 𝛿

2
, 𝛿 = 𝛿

3
.

Step 11 Set 𝛿
0
= 0.5(𝛿

2
− V
1
/V
3
); 𝛽
0
= 𝛽
𝑆1
(x − 𝛿

0
z).

//Note that the critical point of 𝑉 occurs at 𝛿
0
.

Step 12 Find 𝛿 from {𝛿
0
, 𝛿
3
} so that 𝛽 = 𝛽

𝑆1
(x − 𝛿z) = min{𝛽

0
, 𝛽
3
}.

Step 13 Set x = x − 𝛿z.
Step 14 If (|𝛽 − 𝛽

1
| < TOL) then

Set 𝑛†
1
= Round(𝑥

1
), 𝑛
†

2
= Round(𝑥

2
), . . . , 𝑛

†

𝐶−1
= Round(𝑥

𝐶−1
);

Output “𝑛†
1
, 𝑛
†

2
, . . . , 𝑛

†

𝐶−1
, 𝛽
𝑆1
(n†), 𝑘”, and “Success!”;

Stop.
Step 15 Set 𝑘 = 𝑘 + 1.
Step 16 Output “𝑥

1
, 𝑥
2
, . . . , 𝑥

𝐶−1
, 𝛽”, “Maximum iterations exceeded!”.

Stop.

Algorithm 1: The algorithm of GRA.

𝑄(𝑖) according to 𝑝
𝑖
and 𝜆

𝑖
, respectively. Then we also

construct the dummy objective function 𝛽
𝑆1
(x), and we set

the initial value of x = [𝑥
(0)

1
, 𝑥
(0)

2
, . . . , 𝑥

(0)

𝐶−1
]
𝑡. All these 𝐶 − 1

elements of x need to satisfy that Δ𝐻∗
𝑖
/𝑤
𝑖
= Δ𝐻

∗

𝑖+1
/𝑤
𝑖+1

(see Lemma 11). In Steps 3 and 4, we evaluate the magnitude
of 𝛽
𝑆1

at x and determine the steepest decent direction. If
a zero gradient occurs, the algorithm will stop. In Steps 5–
8, we need to find a new position whose magnitude of 𝛽

𝑆1

is smaller than the current one. Then we move a distance
of 𝛿 towards the steepest decent direction, and x is replaced
with the new position (Steps 9–13). We check if any stopping
criterion is met in Step 14. In Step 15, we employ 𝐾max
to limit the total iterations; thus, the algorithm will stop
anyway.

5. Comparison with Other Research

In the real world, suchminimization problems usually call for
instant and near-optimal solutions, especially for large prob-
lem instances. As a result, many metaheuristic algorithms
have been proposed for providing instant and near-optimal
solutions, for example, [22–24]. Although these algorithms

achieved better execution time, their solution quality cannot
be ensured or bounded.

Therefore, we need deterministic algorithms that are
able to converge linearly and achieve near-optimality. Jea
et al. [20] solved a basic similar problem, DAP, that
is, min∑𝑚

𝑖=1
[(∑
𝑑𝑗∈𝑀𝑖

1)(∑
𝑑𝑗∈𝑀𝑖

𝑝
𝑗
)]. Here, the number of

machines or channels is denoted by 𝑚, literally meaning
𝐶 in this study. The terms in the square bracket are in a
very simple form. Even so, the partition problem is also
time-consuming for obtaining an optimal solution when the
problem size is larger than 50. This problem was solved
near-optimally by their proposed algorithm [20]. Wang and
Jea [21] proposed another partition problem, SPP, that is,
min∑𝑚

𝑖=1
[(∑
𝑑𝑗∈𝑀𝑖

𝑐
𝑗
)(∑
𝑑𝑗∈𝑀𝑖

𝑝
𝑗
)]. The terms in the square

bracket become slightly complicated. This problem was
also solved near-optimally in linear time. Jea and Wang
[2] introduced another partition problem, DBAP; that is,
min∑𝑚

𝑖=1
[𝑎
𝑖
(∑
𝑑𝑗∈𝑀𝑖

𝑏
𝑗
)(∑
𝑑𝑗∈𝑀𝑖

1/𝑛)]. The terms in the square
bracket look similar to those of SPP. However, the transfor-
mation between Z𝑛 and R𝑛 becomes more difficult. After
establishing a complete theoretical basis, this problem was
also solved near-optimally.
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Table 1: System settings in the experiments.

Parameter Default Range Meaning
𝑁 1, 2, . . . , 1000 Number of data items
𝐶 1, 2, . . . , 50 Number of channels
𝑝
𝑗

Zipf(𝜃) Access probability of data item 𝑗

𝜆
𝑗

𝑁(200𝜇, 50𝜎) Size of data item 𝑗

𝑤
𝑖

(1 − 0.25𝑅, 1 + 0.25𝑅) Bandwidth of channel 𝑖
𝑅 0.0, 0.25, 0.5, 0.75 Parameter for bandwidth
𝜃 0.0, 0.25, 0.5, 0.75 Parameter for access probability
𝜇 0.0, 0.25, 0.5, 0.75 Parameter for item size
𝜎 0.0, 0.25, 0.5, 0.75 Parameter for item size
𝑟
𝑐

0.8 Crossover rate for GA
𝑟
𝑚

0.05 Mutation rate for GA
𝐿 100 Population size for GA
𝐾max 10000 Maximum iteration number for GRA
TOL 0.01 Tolerance for GRA

On the other hand, Wang and Chen [25] proposed
another minimization problem, min∑𝑚

𝑖=1
|(∑
𝑑𝑗∈𝑀𝑖

𝑞
𝑗
) − 𝑟|

subject to∑𝑚
𝑖=1
[(∑
𝑑𝑗∈𝑀𝑖

𝑞
𝑗
)(∑
𝑑𝑗∈𝑀𝑖

𝑝
𝑗
)] ≤ 𝑇 and∑

𝑑𝑗∈𝑀𝑖
1 ≤ V

for all nonempty 𝑀
𝑖
. The constraints and absolute values

make the problem harder. It is interesting that the discretized
problem could also be solved by the same technique in R𝑛.

In this study, we propose the WTM problem, that is,
min∑𝑚

𝑖=1
[(∑
𝑑𝑗∈𝑀𝑖

𝜆
𝑗
)(∑
𝑑𝑗∈𝑀𝑖

𝑝
𝑗
)/𝑤
𝑖
]. As shown in Figure 1,

WTM is themost complicated form.WTMrelates to not only
partition but also permutation. In the three problems, DAP,
SPP, and DBAP, the position orders of items in n∗ and x∗ are
the same. However, for WTM, the position orders of items
in n∗ and x∗ might be different. This makes transformation
between Z𝑛 and R𝑛 more difficult, so we sacrifice some
accuracy of position order and force the transformation to
be done. Even so, WTM describes a general form of such
problems and still achieves near optimality.

6. Computational Experiments

The experiments are divided into three parts. First, since the
real-world situations are complicated, we need to determine
some significant system settings. We develop a basic genetic
algorithm (GA) to conduct a pilot experiment for determin-
ing these settings. Second, when the problem size is small,
both algorithms (i.e., GRA and GA) are compared with an
exhaustive search algorithm. Third, when the problem size
is large, we compare GA and GRA to evaluate their solution
quality and execution speed.

Table 1 summarizes the parameters used in the experi-
ments. Parameters 𝑁, 𝐶, 𝑝

𝑗
, 𝜆
𝑗
, and 𝑤

𝑖
have already been

defined in Section 2. Access probability 𝑝
𝑗
follows a Zipf

distribution with parameter 𝜃 [20]. Item size 𝜆
𝑗
follows

a discrete normal distribution with parameters 200𝜇 and
50𝜎. Bandwidth 𝑤

𝑖
follows a discrete uniform distribution

DU(1 − 0.25𝑅, 1 + 0.25𝑅). For GA, the population size,
crossover rate, and mutation rate are 100, 0.8, and 0.05.
For GRA, the maximum iteration number and tolerance are
10,000 and 0.01, respectively. All the proposed algorithms

SPP

DAP

DBAP

WTM

Figure 1: The relationship diagram.

were implemented in PASCAL and executed in a Windows 7
environment on an Intel Xeon E3 1230 @ 3.20GHz with 8GB
RAM. For each setting, 30 random trials were conducted and
recorded.

In the first part, we develop a basic genetic algorithm
(GA) to test the performance. Each chromosome is randomly
generated. For example, let 𝑁 = 4, 𝐶 = 2 and generate
5(= 𝑁 + 𝐶 − 1) random values, 0.42, 0.95, 0.13, 0.21, and
0.36. According to their magnitudes, the largest number 0.95
means a channel separator. That is, item 4 (having the fourth
smallest value, 0.42) is allocated to channel 1, and items 1, 2,
and 3 are allocated to channel 2. For each population, there
are 100 random chromosomes. The fitness is defined as 𝑓

𝑖
=

𝑐
−0.5

𝑖
/∑
𝐿

𝑘=1
𝑐
−0.5

𝑘
, for 𝑖 = 1, 2, . . . , 𝐿, where 𝑐

𝑖
is the objective

cost achieved by the 𝑖th chromosome. A standard roulette
wheel selection is employed, and two parent chromosomes
are selected for generating two child chromosomes by a two-
point crossover. Moreover, a simple single-point mutation
is adopted. GA will terminate if the run time is over 100𝑛
milliseconds or no improvement is made during the recent
100 generations.

In the second part, Figure 2 shows the effect of 𝐶 on
the performance for 𝑁 = 10. The relative error is defined
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Figure 2: The effect of 𝐶 on performance (𝑁 = 10).
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Figure 3: The effect of 𝑅 on performance (𝑁 = 10).
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Figure 4: The effect of 𝜃 on performance (𝑁 = 10).

by (𝑐GA − 𝑐OPT)/𝑁 or (𝑐GRA − 𝑐OPT)/𝑁, where 𝑐GA, 𝑐GRA,
and 𝑐OPT are objective costs obtained by GA, GRA, and an
exhaustive search algorithm. It is seen that GA takes more
run time when 𝐶 increases. Moreover, 𝐶 does not influence
GRA and most instances can be solved within 1 millisecond.
On the other hand, GA can easily become trapped in local
minimums, since there are many local minimums for such
an optimization problem. Consequently, the relative error of
GA is relatively higher. Since the setting of𝐶 = 2 has the least
significance, we omit it in later experiments.

Similarly, Figures 3–6 show various effects on the perfor-
mance for 𝑁 = 10. As shown in Figures 3 and 4, identical
access probability (𝜃 = 0) and equal bandwidth (𝑅 = 0)make
the problem easier, so we only observe larger 𝜃 and 𝑅 in later
experiments. In Figures 5 and 6, when 𝜇 and 𝜎 increase, the
relative errors increase slightly.The worst mean relative error
is 0.353 when 𝜇 = 0.75; that is, the data items are large.There-
fore, we only test the instances with larger item sizes in later
experiments.



10 Mobile Information Systems

GA GRA
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

Ru
n 

tim
e (

se
c)

𝜇 = 0.0

𝜇 = 0.25

𝜇 = 0.5

𝜇 = 0.75

(a) Run time

GA GRA0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400

Re
la

tiv
e e

rr
or

𝜇 = 0.0

𝜇 = 0.25

𝜇 = 0.5

𝜇 = 0.75

(b) Solution quality

Figure 5: The effect of 𝜇 on performance (𝑁 = 10).
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Figure 6: The effect of 𝜎 on performance (𝑁 = 10).
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Figure 7: Comparison of two algorithms (𝑁 = 12, 𝜃 = 0.5).

Figure 7 compares two algorithms for 𝑁 = 12 in terms
of execution speed and solution quality. Again, GRA almost
takes no time to obtain near-optimal solutions, whereas GA
needs 3 seconds on average. For the setting of 𝑁 = 12, there
are more local minimums than 𝑁 = 10. It becomes more
difficult to locate the optimal solution. Therefore, GA takes
more run time but still has larger relative errors.

In the third part, Figures 8 and 9 show the performance
of two algorithms when the problem size is large. Since we

cannot obtain optimal solutions when 𝑛 is large, we compute
their relative deviations. The relative deviations are defined
by (𝑐GA − 𝑐min)/𝑁 and (𝑐GRA − 𝑐min)/𝑁, where 𝑐min =

min{𝑐GA, 𝑐GRA}. GRA outperforms GA greatly in terms of
solution quality and execution speed. For most instances,
they can be solved within 1 millisecond for 𝐶 = 5 and 𝑁 =

500. Even for the worst case, GRA takes only 16 milliseconds.
On the other hand, GA cannot jump out of local minimums,
nomatter howmany trials it tries. Its solution quality depends
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Figure 8: Comparison of two algorithms (𝑁 = 250, 𝜃 = 0.5).
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Figure 9: Comparison of two algorithms (𝑁 = 500, 𝜃 = 0.5).
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Figure 10: The effect of 𝐶 on the execution time of GRA.

highly on the initial population. If there are no high-quality
solutions at the beginning, it is difficult for GA to locate the
optimal solution in the 𝑛-dimensional solution space.

Figure 10 shows the effect of 𝐶 on execution time. To
observe the average execution time of GRA, we set𝑁 = 1,000,
𝜃 = 0.0, 0.1, 0.5, 1.0, 2.0, 𝑅 = 0.5, 𝜇 = 0.5, 𝜎 = 0.5, and

𝐶 = 1 to 50. Since GA cannot compete with GRA for solution
quality when 𝑁 = 500, we do not examine the behavior of
GA for such a large problem size. As shown in the figure,
when 𝐶 increases, the run time of GRA slightly increases. It
means the number of channels is directly proportional to the
run time of GRA. In fact, the number of channels of a mobile
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Figure 11: The effect of 𝜃 on the execution time of GRA.
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Figure 12: Comparison of three algorithms (𝑚= 3, 𝜃 = 0.5, 𝜇 = 0.5, and 𝜎 = 0.5).

environment is far lower than 50. It implies that GRA is able
to deal with scheduling 1000 data items for any real-world
broadcast server.

Figure 11 shows the effect of 𝜃 on convergence speed.
In this experiment, we set 𝑁 = 1000, 𝐶 = 2, 5, 10, 20, 50,
𝑅 = 0.5,𝜇 = 0.5,𝜎 = 0.5, and 𝜃 = 0.0 to 1.0.When 𝜃 = 0.0 and
𝐶 = 50, all the data items are of the same popularity. However,
the sizes of the data items are different and the bandwidths
of the channels are also distinct. These variations make it
difficult for GRA to converge. On the other hand, as 𝜃 = 1.0,
there are only a few popular data items which should be
allocated to channel 1 (i.e., that with the highest bandwidth).
The other items with very low access probabilities can be
roughly allocated to the remaining channels.Therefore, GRA
converges very rapidly when 𝜃 > 0.8.

In Figure 12, we implement an optimization algorithm,
that is, a branch-and-bound algorithm (B&B), and compare
it with GA and GRA. Since B&B is very time-consuming, we
only observe the results for 𝑁 ≤ 15. Both B&B and GRA
can provide optimal solutions when 𝑁 ≤ 15. On the other

hand, the average run time of B&B for𝑁 = 15 is 30 seconds,
whereas the run time of GRA is always less than 4 seconds,
even for 𝑁 = 200. It is clear that the time complexity will
exclude such optimization algorithms from practical use.

In sum, GRA is a practical algorithm, even for𝑁 = 500.
As compared with the other two algorithms, GRA is more
suitable for application in the real world. Moreover, we also
guarantee that each solution is generated within a linear time
and give an error bound.

7. Conclusion

Minimization problems are usually time-consuming, espe-
cially for large problem instances. Consequently, most tra-
ditional studies have employed metaheuristic algorithms to
solve such problems. However, such algorithms have several
shortcomings. First, their solutions are obtained by trial and
error, so solution quality is not guaranteed. Second, their
approximation algorithms cannot converge linearly. Third,
some traditionalmethods need to keep track of partial results,
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so they are memory-consuming. Fourth, some traditional
methods, such as dynamic programming and branch-and-
bound algorithms, are not scalable. Once the problem size
increases, it may take several days to generate an optimal
solution, and such a delay is impractical.

Mapping a discretized problem from Z𝑛 to R𝑛 is an
interesting idea. In this study, a gradient-based algorithm is
proposed to deal with WTM. We first map it from Z𝑛 to R𝑛.
Then the mapped problem is solved optimally in R𝑛. Finally,
the optimal solution ismapped fromR𝑛 back toZ𝑛.Moreover,
the theoretical basis ensures that the proposed algorithm can
converge linearly, provide high-quality solutions, and require
less memory.

In the near future, we will extend the concept to other
optimization problems. By mapping a problem from its
original domain to another domain, we are likely to find a
more time-efficient and cost-effective way to achieve similar
results.

Parameters

𝑁: Number of data items
Λ: Summation of all 𝜆

𝑖

𝐶: Number of channels
𝑆: Access pattern (sequence of (𝑝

𝑖
, 𝜆
𝑖
))

𝑆0: Access pattern for WTM
𝑆1: Access pattern for WTM
𝑃(𝑗): Cumulative function defined by 𝑝

𝑗

(𝑃(𝑁) = 1)
𝑄(𝑗): Cumulative function defined by 𝜆

𝑗

(𝑄(𝑁) = Λ)
n: Position vector

[𝑛
1
, 𝑛
2
, . . . , 𝑛

𝐶−1
]
𝑡

∈ {1, 2, . . . , 𝑁}
𝐶−1

x: Position vector
[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐶−1
]
𝑡

∈ (1,𝑁)
𝐶−1

𝛼
𝑆
(n): Objective function of WTM

𝛽
𝑆
(x): Objective function of WTM

𝐹(𝑥): Interpolating function passing through all
points (𝑗, 𝑃(𝑗))

𝐻(𝑥): Interpolating function passing through all
points (𝑗, 𝑄(𝑗))

n∗: Optimal solution to 𝛼
𝑆0
(n)

n#: Optimal solution to 𝛼
𝑆1
(n)

x∗: Optimal solution to 𝛽
𝑆1
(x)

n†: Near-optimal solution to 𝛼
𝑆0
(n).
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