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Accelerated degradation test (ADT) has been widely used to assess highly reliable products’ lifetime. To conduct an ADT, an
appropriate degradation model and test plan should be determined in advance. Although many historical studies have proposed
quite a fewmodels, there is still room for improvement.Hencewe propose aNonlinearGeneralizedWiener Process (NGWP)model
with consideration of the effects of stress level, product-to-product variability, and measurement errors for a higher estimation
accuracy and a wider range of use. Then under the constraints of sample size, test duration, and test cost, the plans of constant-
stress ADT (CSADT) with multiple stress levels based on the NGWP are designed by minimizing the asymptotic variance of the
reliability estimation of the products under normal operation conditions. An optimization algorithm is developed to determine the
optimal stress levels, the number of units allocated to each level, inspection frequency, and measurement times simultaneously. In
addition, a comparison based on degradation data of LEDs is made to show better goodness-of-fit of the NGWP than that of other
models. Finally, optimal two-level and three-level CSADT plans under various constraints and a detailed sensitivity analysis are
demonstrated through examples in this paper.

1. Introduction

Reliability assessment is a critical task for improving the
products’ quality and reliability. Traditional life tests only
record time-to-failure data to assess the lifetime distribution
of the products. In presence of the quick development of tech-
nology and more and more demands from customers, some
products need to be designed for highly reliable performance.
Therefore, no failures are likely to occur over a reasonable test
time and we would not obtain enough time-to-failure data.
In such a case, if there exists a quality characteristic whose
degradation is associated with the reliability of a product,
we could obtain more information by collecting degradation
data [1]. However, some highly reliable products degrade
very slowly and it is impossible to access their lifetime
within a reasonable test time. To overcome this problem,
the accelerated degradation test (ADT) is usually adopted
to collect the quality characteristic data under higher stress

levels. The failure is defined as the event that the degradation
path exceeds a fixed threshold.

In a common constant-stress ADT (CSADT), a number
of units are allocated to several stress levels, and the degra-
dation process is measured, analyzed, and extrapolated to
the failure threshold in order to estimate the lifetime of the
products under normal operating conditions. Consequently,
before conducting an ADT, the degradation model and test
plan should be developed first. The Wiener Process is often
used for modelling ADT data because of its physical inter-
pretations, nonmonotonic property, and infinite divisibility
property, which could fit the products’ dynamic characteristic
well. Reference [2] gave an example ofmodelling the degrada-
tion process by theWiener Process. Reference [3] studied the
Wiener Process for handling the degradation data of LEDs.

Setting stress levels is an important part of designing
an ADT. Several types of stress levels ADT have been
proposed including CSADT, step-stress ADT (SSADT), and
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progressive-stress ADT (PSADT). Reference [4] designed a
CSADTwith a reciprocalWeibull degradation rate. Reference
[5] proposed optimal SSADT plans for Gamma degrada-
tion processes, while [6] proposed optimal SSADT plans
for Wiener degradation processes. Reference [7] discussed
PSADT for highly reliable products under nonlinear Wiener
Process. As the failure mechanisms of some products may
drift along with stress increasing in SSADTs and PSADTs, we
cannot use a stable model to describe the degradation paths.
Thus CSADTs tend to be used more in practical applications.
Moreover, if the CSADT had set only one stress level as in
[4], no enough effective degradation data can be collected
and the lifetime distribution of products cannot be estimated
precisely [8].

In this article, a Nonlinear Generalized Wiener Process
(NGWP) model is proposed to describe the degradation
paths of LEDs. Next, a CSADT with the constraints of
prefixed budget, test duration, and sample size is developed
by minimizing the asymptotic variance of the estimated
mean time to failure (MTTF) of the products under normal
operation conditions.Then an optimization algorithm is used
to determine the stress levels, the number of units allocated
to each level, inspection frequency, and measurement times
simultaneously. Finally, a comparison is conducted for mea-
suring the goodness-of-fit of variousWiener Process models,
and optimal two-level and three-level CSADT plans under
various constraints are obtained.

The rest of this paper proceeds as follows. A motivating
example and literature review for this study are provided in
Section 2. Section 3 develops a NGWP model, derives the
lifetime distribution, and proposes a maximum likelihood
estimation (MLE) method to estimate the unknown parame-
ters of the model. Section 4 presents the optimization model
for CSADT plan. An example is presented to illustrate the
proposed method in Section 5. Finally, Section 6 concludes
the paper.

2. Motivating Example and Literature Review

2.1. Motivating Example. Nowadays, light-emitting diodes
(LEDs) have been applied to many fields (e.g., traffic signals
and full color displays) and are desirable, because of their
high brightness, low power consumption, and high reliability.
A LED fails when the LED relative luminosity drops to 0.5,
that is, 50% of initial luminosity. Hamada et al. [9] give a
degradation data of relative luminosity (proportion of initial
luminosity for LEDs). The data consist of three accelerating
levels of thermal stress, 25∘C, 65∘C, and 105∘C. At each level,
the light intensity of 25 LEDs was measured at 29 inspection
times. Figure 1 shows the degradation of light intensity of the
LEDs.

Obviously, the degradation paths are nonlinear and the
light intensity degrades more slowly at a lower thermal stress
level. Reference [10] used the LED degradation data to opti-
mize sample allocation for ADT based on Wiener Process.
The Wiener Process, which modelled the degradation paths
in [10], only took nonlinearity and the effects of stress level
into account.However, Figure 1 indicates that the degradation

paths of different products are also different. It means that
the product-to-product variability among different prod-
ucts exists, owing to variation of materials, manufacturing,
and environment [11]. Models with random effects can be
used to represent the product-to-product variability [12, 13].
Moreover, it is inevitable that some measurement errors may
be introduced during the imperfect observation process in
practical applications, and the external environment will also
result inmeasurement errors [14].The degradationmodels in
[12, 13] did not take measurement errors into consideration,
while the degradationmodel in [14] did not consider product-
to-product variability and the effects of stress level.Therefore,
for modelling the degradation paths of LEDsmore accurately
and generally, a generalized Wiener Process model with
a consideration of all these influence factors is urgently
required for their potential importance.

In this paper, theNGWP is developed.The first advantage
is that the NGWPwhich considers nonlinearity, the effects of
stress level, product-to-product variability, andmeasurement
errors simultaneously has higher estimation accuracy and
better goodness-of-fit. The second advantage is that the
NGWP covers the constant models as its special case. In
practical applications, the specific form of the model can
be selected according to the actual situation. Clearly, the
NGWP can describe more complex and diverse degradation
processes of many products and can be widely applied to
highly reliable products.

Furthermore, if the NGWP is used to model the degrada-
tion paths of aCSADT, then how to conduct the test should be
investigated. For this problem, there exist some issues worthy
of further consideration:

(i) Typically, the asymptotic variance of the estimated
MTTF (Avar) of the lifetime distribution of the prod-
uct is used to judge whether a CSADTplan is optimal.
So how can we derive the Avar of the NGWP?

(ii) Can we possibly determine the stress levels, the
number of units allocated to each level, inspection
frequency, and measurement times simultaneously,
by optimizing the CSADT plan with the constraints
on sample size, test duration, and test cost?

2.2. Literature Review. For the ADTmodelling, [15] used the
nonlinear Wiener Process to model PSADT, and [8] used the
nonlinear Wiener Process to optimize sample size allocation
for ADT. In addition, [12, 16, 17] discussed the residual life
estimation based on nonlinear Wiener Process. Reference
[13] investigated nonlinear Wiener Process with random
effects for ADT data. So the nonlinear Wiener Process has
an excellent applicability. Reference [14] showed that the
nonlinear Wiener Process with measurement errors can be
widely used to describe the degradation processes of various
products. Similarly, [18] also indicated that the nonlinear
Wiener Process with measurement errors performed better
than othermodels in degradation data analysis. Furthermore,
[11, 15, 19] predicted the real time remaining useful life based
on the nonlinear Wiener Process with measurement errors.
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Figure 1: Plot of LED luminosity data over time 𝑡 in hours at (a) 25∘C, (b) 65∘C, and (c) 105∘C.

Reference [20] presented an accelerated-stress acceptance test
based nonlinear Wiener Process.

Reference [21] developed an algorithm for determination
of inspection frequency and unit allocation of ADT plans
with multiple stress levels. Reference [22] set several stress
levels to fix the stress levels and the number of samples
for each stress level of ADT plans. Reference [23] devel-
oped an ADT method of luminous flux degradation for
LEDs. Reference [24] suggested an analytical optimal CSADT
design method for reliability demonstration by minimizing
the asymptotic variance of decision variable in reliability
demonstration under the constraints of sample size, test dura-
tion, test cost, and predetermined decision risks. To conduct
a CSADT or SSADT, [25] determined the optimal decision
variables based on C/D/A-optimality criteria. Reference [26]
planed constant-stress accelerated life tests for acceleration
model selection. Reference [27] established an optimal ADT
procedure to minimize the asymptotic variance of the MLE
of the MTTF of a product, given a budget for the total cost.

3. Degradation Process Description

3.1. Acceleration Degradation Process Modelling. To solve the
problem about degradation model raised above, we propose
the NGWP model considering the effects of stress level,
product-to-product variability, and measurement errors, as
follows:

𝑌 (𝑡 | 𝑆
𝑘
) = 𝜂
𝑘
Λ (𝑡) + 𝜎

𝐵
𝐵 (Λ (𝑡)) + 𝜎

𝜀
𝜀, (1)

where 𝜂
𝑘
is the drift parameter related to the stress level

𝑆
𝑘
, 𝜎
𝐵
is the diffusion parameter, Λ(𝑡) is the drift function,

𝐵(𝑡) is the standard Brownian motion representing a time-
correlated structure, 𝜀 is the measurement error with𝑁(0, 1),
and 𝜎

𝜀
is the error coefficient.

Referring to (1), the drift parameter 𝜂
𝑘
reflects the effect

of stress level 𝑆
𝑘
on the performance, and it determines the
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degradation rate of the NGWP. Acceleration model [28] in
CSADT for products is commonly assumed as

𝜂
𝑘
= 𝛼 exp (−𝛽𝜑 (𝑆

𝑘
)) , (2)

where 𝛼 and 𝛽 are unknown coefficients and 𝜑(𝑆
𝑘
) is a

function of 𝑆
𝑘
. If 𝜑(𝑆

𝑘
) = ln 𝑆

𝑘
, acceleration model is inverse

power law. If 𝜑(𝑆
𝑘
) = 1/𝑆

𝑘
, it is the Arrhenius equation.

Besides, to account for the random variation of the perfor-
mance caused by variation of materials, manufacturing, and
environment, the drift parameter 𝜂

𝑘
is assumed as a random

parameter and it is s-independent from stress levels.Then, we
have

𝜂
𝑘
= 𝛼 exp (−𝛽𝜑 (𝑆

𝑘
)) , 𝛼 ∼ 𝑁(𝜇

𝛼
, 𝜎
2

𝛼

) . (3)

Note that if Λ(𝑡) = 𝑡 in (1), then the NGWP model turns
to the Linear Wiener Process. If 𝜎2

𝛼

in (3) is set to 0, then
the random model turns to the conventional acceleration
model. This is as expected since any properly developed
model should cover the constant model as its special case.
Obviously, theNGWPmodel can describemore complex and
diverse degradation processes of many products and have a
wider range of applicability.

3.2. Derivation of the Lifetime Distribution. Let 𝑋(𝑡 | 𝑆
𝑘
) =

𝜂
𝑘
Λ(𝑡) + 𝜎

𝐵
𝐵(Λ(𝑡)) denote the true degradation path of the

product under stress (𝑆
𝑘
); then the product’s lifetime 𝑇 can

be defined as the first passage time when𝑋(𝑡 | 𝑆
𝑘
) crosses the

critical value 𝜔 under a normal operation stress (𝑆
0
). Hence,

we have

𝑇 = inf {𝑡 | 𝑋 (𝑡 | 𝑆
0
) ≥ 𝜔} . (4)

The lifetime 𝑇 conditioning on 𝜂
0
follows a transfor-

mation-inverse Gaussian distribution, whose cumulative dis-
tribution function (CDF) is

𝐹
𝑇
(𝑡) = Φ(

𝜂
0
Λ (𝑡) − 𝜔

√𝜎
2

𝐵

Λ (𝑡)

)

+ exp{
2𝜔𝜂
0

𝜎
2

𝐵

}Φ(−
𝜂
0
Λ (𝑡) + 𝜔

√𝜎
2

𝐵

Λ (𝑡)

) , 𝑡 > 0,

(5)

where Φ(⋅) is the CDF of the standard normal distribution.
Considering the accelerated model in (3), that is, 𝜂

𝑘
=

𝛼 exp(−𝛽𝜑(𝑆
𝑘
)), 𝛼 ∼ 𝑁(𝜇

𝛼
, 𝜎
2

𝛼

), the CDF of 𝑇 by integrating
𝜂
0
out of (5) becomes

𝐹
𝑇
(𝑡) = Φ(

𝜇
𝛼
𝑒
−𝛽𝜑(𝑆𝑘)Λ (𝑡) − 𝜔

√𝜎
2

𝐵

Λ (𝑡) + 𝜎
2

𝛼

𝑒
−2𝛽𝜑(𝑆𝑘)Λ (𝑡)

2

)

+ exp(
2𝜇
𝛼
𝑒
−𝛽𝜑(𝑆𝑘)𝜔

𝜎
2

𝐵

+
2𝜎
2

𝛼

𝑒
−2𝛽𝜑(𝑆𝑘)𝜔

2

𝜎
4

𝐵

)

⋅ Φ(−

(2𝜎
2

𝛼

𝑒
−2𝛽𝜑(𝑆𝑘)𝜔Λ (𝑡) + 𝜎

2

𝐵

(𝜇
𝛼
𝑒
−𝛽𝜑(𝑆𝑘)Λ (𝑡) + 𝜔))

𝜎
2

𝐵

√𝜎
2

𝐵

Λ (𝑡) + 𝜎
2

𝛼

𝑒
−2𝛽𝜑(𝑆𝑘)Λ (𝑡)

2

).

(6)

From (6), the product’s MTTF under the normal operation
stress (𝑆

0
) can be approximated by using

𝑇MTTF = 𝐸 (𝑇) = 𝐸 (𝐸 (𝑇 | 𝜂0)) =
𝜔

𝜇
𝛼
𝑒
−𝛽/𝑆0

. (7)

3.3. Parameters Estimation. In this subsection, the issue of
estimating the model parameter 𝜃 = (𝜇

𝛼
, 𝜎
𝛼
, 𝛽, 𝜎
𝐵
, 𝜎
𝜀
)

is addressed by using the MLE method. Suppose that 𝑁
test units are available for conducting a CSADT under the
following conditions:

(i) The CSADT uses 𝑑-stress levels, (𝑆
0
) ≤ 𝑆
1
≤ ⋅ ⋅ ⋅ ≤ 𝑆

𝑑
.

(ii) We assign 𝑛
𝑘
items for a degradation test at a stress

level 𝑆
𝑘
, where ∑𝑑

𝑘=1

𝑛
𝑘
= 𝑁, 1 ≤ 𝑘 ≤ 𝑑.

(iii) For each stress level, the inspections aremade𝑚 times
and the measurements of each unit are available at
time 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑚
.

(iv) The inspection frequency is 𝑓 and satisfies 𝑓 = 𝑡
𝑗
−

𝑡
𝑗−1

, 1 ≤ 𝑗 ≤ 𝑚, 𝑡
0
= 0. Thus 𝑡

𝑚
= 𝑚𝑓.

(v) For 1 ≤ 𝑖 ≤ 𝑛
𝑘
, 1 ≤ 𝑘 ≤ 𝑑, 1 ≤ 𝑗 ≤ 𝑚, let 𝑌

𝑖
(𝑡
𝑗
| 𝑆
𝑘
)

denote the sample degradation path of 𝑖th test unit at
time 𝑡

𝑗
under the stress level 𝑆

𝑘
.

𝑌
𝑖𝑗𝑘
= 𝑌
𝑖
(𝑡
𝑗
| 𝑆
𝑘
) = 𝜂
𝑘
Λ(𝑡
𝑗
) + 𝜎
𝐵
𝐵 (Λ (𝑡

𝑗
)) + 𝜎

𝜀
𝜀
𝑖𝑗𝑘
, (8)

where the measurement errors 𝜀
𝑖𝑗𝑘

are assumed to be
i.i.d. realizations of 𝜀.

(vi) The Arrhenius equation is adopted to describe the
relationship between 𝑆

𝑘
and 𝜂
𝑘
:

𝜂
𝑘
= 𝛼 exp(

−𝛽

𝑆
𝑘

) , 𝛼 ∼ 𝑁(𝜇
𝛼
, 𝜎
2

𝛼

) . (9)

For simplicity, let Λ = (Λ(𝑡
1
), . . . , Λ(𝑡

𝑚
))
, Y
𝑖𝑘

=

(𝑌
𝑖
(𝑡
1
| 𝑆
𝑘
), . . . , 𝑌

𝑖
(𝑡
𝑚
| 𝑆
𝑘
))
, and Y = (Y

11

, . . . ,Y
𝑛11
,Y
12

, . . . ,

Y
𝑛22
, . . . ,Y

1𝑑

, . . . ,Y
𝑛𝑑𝑑
)
. Clearly, Y

𝑖𝑘
follows a multivariate

normal distribution with mean 𝜇
𝛼
𝑒
−𝛽/𝑆𝑘Λ and variance Σ

𝑘
=

𝜎
2

𝛼

𝑒
−2𝛽/𝑆𝑘ΛΛ



+ Ω, where Ω = 𝜎2
𝐵

Q + 𝜎
2

𝜀

I
𝑚
, I
𝑚
is an identity

matrix of order𝑚, and

Q =

[
[
[
[
[
[

[

Λ (𝑡
1
) Λ (𝑡

1
) ⋅ ⋅ ⋅ Λ (𝑡

1
)

Λ (𝑡
1
) Λ (𝑡

2
) ⋅ ⋅ ⋅ Λ (𝑡

2
)

.

.

.

.

.

. d
.
.
.

Λ (𝑡
1
) Λ (𝑡

2
) ⋅ ⋅ ⋅ Λ (𝑡

𝑚
)

]
]
]
]
]
]

]

. (10)

The log-likelihood function of 𝜃 is

ℓ (𝜃 | Y) = −𝑁𝑚 ln (2𝜋)
2

−

𝑑

∑

𝑘=1

𝑛
𝑘

2
ln Σ𝑘


−
1

2

⋅

𝑑

∑

𝑘=1

𝑛𝑘

∑

𝑖=1

(Y
𝑖𝑘
− 𝜇
𝛼
𝑒
−𝛽/𝑆𝑘Λ)



Σ
𝑘

−1

(Y
𝑖𝑘
− 𝜇
𝛼
𝑒
−𝛽/𝑆𝑘Λ) ,

(11)
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where |Σ
𝑘
| = |Ω|(1 + 𝜎

2

𝛼

𝑒
−2𝛽/𝑆𝑘Λ



Ω
−1

Λ), and Σ
𝑘

−1

= Ω
−1

−

(𝜎
2

𝛼

𝑒
−2𝛽/𝑆𝑘/(1 + 𝜎

2

𝛼

𝑒
−2𝛽/𝑆𝑘Λ



Ω
−1

Λ))Ω
−1

ΛΛ


Ω
−1.

By differentiating the log-likelihood function in (11) with
respect to 𝜇

𝛼
, we have

𝜕ℓ (𝜃 | Y)
𝜕𝜇
𝛼

=

𝑑

∑

𝑘=1

𝑛𝑘

∑

𝑖=1

𝑒
−𝛽/𝑆𝑘Λ



Σ
𝑘

−1Y
𝑖𝑘

− 𝜇
𝛼

𝑑

∑

𝑘=1

𝑛𝑘

∑

𝑖=1

𝑒
−2𝛽/𝑆𝑘Λ



Σ
𝑘

−1

Λ.

(12)

For specified values of 𝜎
𝛼
, 𝛽, 𝜎
𝐵
, and 𝜎

𝜀
, the MLE of 𝜇

𝛼

can be obtained by equaling (12) to 0; that is,

�̂�
𝛼

=
∑
𝑑

𝑘=1

∑
𝑛𝑘

𝑖=1

𝑒
−𝛽/𝑆𝑘Λ



Σ
𝑘

−1Y
𝑖𝑘

∑
𝑑

𝑘=1

∑
𝑛𝑘

𝑖=1

𝑒
−2𝛽/𝑆𝑘Λ



Σ
𝑘

−1

Λ

. (13)

Then, the profile log-likelihood function of 𝜎
𝛼
, 𝛽, 𝜎
𝐵
, and 𝜎

𝜀

can be given by substituting �̂�
𝛼

for 𝜇
𝛼
in (12). Subsequently,

the MLEs of 𝜎
𝛼
, 𝛽, 𝜎
𝐵
, and 𝜎

𝜀
can be obtained by maximiz-

ing the profile log-likelihood function through a multiple-
dimensional search. Here, we made use of the MATLAB
function “fmincon” for this purpose. By substituting theMLE
of 𝜎
𝛼
, 𝛽, 𝜎
𝐵
, and 𝜎

𝜀
into (13), the MLE of 𝜇

𝛼
can be obtained.

Finally, we obtain all MLEs of the model’s unknown
parameters, �̂� = (�̂�

𝛼

, �̂�
𝛼
, �̂�, �̂�
𝐵
, �̂�
𝜀
). The MLE of MTTF under

a normal operation stress (𝑆
0
) is

�̂�MTTF =
𝜔

�̂�
𝛼

𝑒
−
̂
𝛽/𝑆0

. (14)

4. The Optimal CSADT Plans

In this section, to design an efficient CSADT for a typical
highly reliable product, we consider the optimization prob-
lem of determining the allocation of the units (𝑛

1
, . . . , 𝑛

𝑑
),

inspection frequency (𝑓), and measurement times (𝑚) by
minimizing the asymptotic variance of �̂�MTTF under normal
operating conditions subject to a prefixed budget.

4.1. Objective Function. From (14), we find that the value of
�̂�MTTF determines the accuracy of extrapolation.The smaller
asymptotic variance of �̂�MTTF is, the more efficient CSADT
plan will be.Thus, we set the asymptotic variance of �̂�MTTF as
an objective function by using the delta method

Avar (�̂�MTTF | 𝜉) = HI−1 (𝜃)H, (15)

where 𝜉 = (𝑛
1
, . . . , 𝑛

𝑑
, 𝑓,𝑚), H = (𝜕𝑇MTTF/𝜕𝜇𝛼, 0, 𝜕𝑇MTTF/

𝜕𝛽, 0, 0), and I(𝜃) is the Fisher information matrix. The
detailed expressions for calculating Avar(�̂�MTTF) are listed in
the Appendix.

4.2. Constraints. The constraints in the design of CSADT
plan usually include the following:

(i) The test time 𝑡
𝑚
should not exceed the specified test

duration 𝑡
𝐴
.

(ii) The sample size should not exceed the number of test
units available𝑁

𝐴
.

(iii) The total test cost TC should not exceed the prefixed
budget 𝐶

𝑏
.

The total cost of conducting a CSADT can be expressed
as

TC (𝑛
1
, . . . , 𝑛

𝑑
, 𝑓,𝑚) = 𝐶op𝑓𝑚 + 𝐶mea

𝑑

∑

𝑘=1

𝑛
𝑘
𝑚

+ 𝐶
𝑑

𝑑

∑

𝑘=1

𝑛
𝑘
,

(16)

where 𝐶op denotes the unit cost for operation per time, 𝐶mea
denotes the unit cost for each measurement, 𝐶

𝑑
denotes the

unit cost for each test device.

4.3. Optimization Model. From the expressions given above,
the optimization problem can be formulated as follows:

Min Avar (�̂�MTTF | 𝜉)

Subject to TC (𝑛
1
, . . . , 𝑛

𝑑
, 𝑓,𝑚) ≤ 𝐶

𝑏
,

𝑡
𝑚
≤ 𝑡
𝐴
, 𝑁 ≤ 𝑁

𝐴
,

(17)

where 𝜉 = (𝑛
1
, . . . , 𝑛

𝑑
, 𝑓,𝑚) ∈ 𝑁

𝑑+2.
Due to the complex form of the objective function,

an analytic expression for solution of this problem seems
impossible. However, with the simplicity in the structure of
the constraint and the integer restriction on these decision
variables, the optimal solution 𝜉∗ = (𝑛∗

1

, . . . , 𝑛
∗

𝑑

, 𝑓
∗

, 𝑚
∗

) can
be easily determined by a complete enumeration method in
a finite number of steps. The detailed algorithm is described
below in nine steps.

Step 1. Set 𝑚max = min(⌊(𝐶
𝑏
− 𝐶
𝑑𝑒
× 𝑑)/(𝐶mea × 𝑑 +

𝐶op)⌋, ⌊𝑡𝐴/𝑓⌋), where ⌊⋅⌋ is a truncated integer; 𝑚max is the
largest possible number for 𝑚, when 𝑓 = 1, and 𝑛

𝑘
= 1 for

1 ≤ 𝑘 ≤ 𝑑.

Step 2. Set𝑚 = 2.

Step 3. Set 𝑓max = min(⌊(𝐶
𝑏
−𝑑×𝐶mea ×𝑚−𝑑×𝐶𝑑𝑒)/(𝐶op ×

𝑚)⌋, ⌊𝑡
𝐴
/𝑚⌋); 𝑓max is the largest possible number for 𝑓 when

𝑛
𝑘
= 1 for 1 ≤ 𝑘 ≤ 𝑑 and fixed𝑚.

Step 4. Set 𝑓 = 1.

Step 5. Find 𝑛
1
, . . . , 𝑛

𝑑
∈ 𝑁 such that TC(𝑛

1
, . . . , 𝑛

𝑑
, 𝑓,𝑚) ≤

𝐶
𝑏
, ∑𝑑
𝑘=1

𝑛
𝑘
≤ 𝑁
𝐴
.

Step 6. Calculate Avar(�̂�MTTF | 𝜉) by 𝜉.

Step 7. Set 𝑓 = 𝑓+1, and repeat Steps 5 and 6 until 𝑓 = 𝑓max.

Step 8. Set 𝑚 = 𝑚 + 1, and repeat Steps 3 and 7 until 𝑚 =

𝑚max.
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Table 1: Estimated parameters of the degradation model.

�̂�
𝛼

�̂�
𝛼

�̂� �̂�
𝐵

�̂�
𝜀

ℓ/10
3

1.2889 0.3120 1831.7 0.0071 0.0270 4.2416

Step 9. Theoptimal solution 𝜉∗ = (𝑛∗
1

, . . . , 𝑛
∗

𝑑

, 𝑓
∗

, 𝑚
∗

) is then
obtained as min𝜉Avar(�̂�MTTF | 𝜉).

5. Illustrative Example

In this section, we illustrate the proposed procedure with a
numerical example based on the degradation data of LEDs.
In order to capture the curvature by the NGWP model,
the data of LEDs is a logarithm transformation and the
general function Λ(𝑡) = 𝑡0.5. The transformation degradation
paths which have clearly linear characteristic are presented
in Figure 2. Then the parameters of the degradation model,
that is,𝜇

𝛼
, 𝜎
𝛼
, 𝛽, 𝜎
𝐵
, 𝜎
𝜀
, are estimated by the proposedmethod

from the 75 LEDs, respectively, and shown in Table 1. By using
the estimates, the optimal CSADT plans can be obtained.

5.1. Comparison with Other Degradation Models. For further
illustrating the rationality and applicability of the proposed
model, this subsection compares some degradation models
with the degradation data of LEDs. For simplicity, the NGWP
model in (1) is referred to as𝑀

0
.

𝑀
0
: 𝑌 (𝑡 | 𝑆

𝑘
) = 𝜂
𝑘
Λ (𝑡) + 𝜎

𝐵
𝐵 (Λ (𝑡)) + 𝜎

𝜀
𝜀, (18)

where 𝜂
𝑘
= 𝛼 exp(−𝛽𝜑(𝑆

𝑘
)), 𝛼 ∼ 𝑁(𝜇

𝛼
, 𝜎
2

𝛼

).
If the degradation path is assumed to be linear in (18),

that is, Λ(𝑡) = 𝑡, then the NGWP model turns into a Linear
Wiener Process model.

𝑀
1
: 𝑌 (𝑡 | 𝑆

𝑘
) = 𝜂
𝑘
𝑡 + 𝜎
𝐵
𝐵 (𝑡) + 𝜎

𝜀
𝜀, (19)

where 𝜂
𝑘
= 𝛼 exp(−𝛽𝜑(𝑆

𝑘
)), 𝛼 ∼ 𝑁(𝜇

𝛼
, 𝜎
2

𝛼

).
Similarly, if the measurement errors are not considered,

then the NGWP model becomes a Wiener Process model
without measurement errors.

𝑀
2
: 𝑌 (𝑡 | 𝑆

𝑘
) = 𝜂
𝑘
Λ (𝑡) + 𝜎

𝐵
𝐵 (Λ (𝑡)) , (20)

where 𝜂
𝑘
= 𝛼 exp(−𝛽𝜑(𝑆

𝑘
)), 𝛼 ∼ 𝑁(𝜇

𝛼
, 𝜎
2

𝛼

).
If the degradation path is treated as a fixed-effect model,

then the following Wiener Process model without random
effects can be used to describe the LED degradation paths.

𝑀
3
: 𝑌 (𝑡 | 𝑆

𝑘
) = 𝜂
𝑘
Λ (𝑡) + 𝜎

𝐵
𝐵 (Λ (𝑡)) + 𝜎

𝜀
𝜀, (21)

where 𝜂
𝑘
= 𝛼 exp(−𝛽𝜑(𝑆

𝑘
)) and 𝛼 and 𝛽 are both constants.

To measure the goodness-of-fit of these different Wiener
Process models above, the Akaike information criterion
(AIC) is employed. AIC, which is frequently used in engi-
neering and statistical literature for the purpose of model
selection, is defined as

AIC = 2𝑚 − 2ℓ, (22)

where 𝑚 is the number of model parameters and ℓ is
the maximized value of the log-likelihood function of the
estimated model. When there are several potential available
models, the one with the smallest AIC among these could be
selected as the best fitting model.

Table 2 shows the estimation results of the parameters,
the log-likelihood function value, and the AIC. From Table 2,
it can be found that the model 𝑀

0
obtains the highest ℓ

and the lowest AIC compared to other models. This implies
that the proposed model has better model fit than other
models. Therefore, a model considering nonlinearity, the
effects of stress level, product-to-product variability, and
measurement errors simultaneously has a better and wider
range of practical applicability.

5.2. Optimal CSADT Plans. We first consider a two-level
CSADT plan (𝑑 = 2), where 𝑆

0
= 20

∘C, 𝑆
1
= 40

∘C,
and 𝑆

2
= 60

∘C. And the lifetime 𝑇 is the first passage
time when degradation path crosses 𝜔 = − ln(0.5). Suppose
(𝐶op, 𝐶mea, 𝐶𝑑) = (0.5, 2, 30); the optimal CSADT plans
under various constraints which were determined by using
the algorithm presented earlier are shown in Table 2. Since
there are three constraints, the optimal plans are obtained by
fixing two of the three and varying the last one. For example,
Table 3(a) displays the optimal solutions by fixing the test
duration and the sample size and varying the budget. When
(𝐶
𝑏
, 𝑡
𝐴
, 𝑁
𝐴
) = (2500, 2000, 50), the optimal test plan turned

out to be (𝑛∗
1

, 𝑛
∗

2

, 𝑓
∗

, 𝑚
∗

) = (31, 19, 300, 4). That is, the opti-
mal sample sizes for stress level 𝑆

1
and 𝑆

2
are 31 and 19,

respectively, and the total test time for the CSADT is 1200
hours. Under such a test plan, the total cost is 2500.

It is interesting to observe that the three constraints all
have a significant impact on the results. As one of them is
increasing and the other two remain constant, the change
of the optimal test plan is getting smaller and smaller. This
result is true because a constraint will be out of action
when it becomes lager enough. In this case, the optimal
plan is completely determined by the other two constraints.
Therefore, the constraints should be developed reasonably in
practical application.

Moreover, the asymptotic variance of �̂�MTTF was gradu-
ally decreasing.This means the test accuracy becomes higher
with the constraints relaxing. Besides, we could observe that
the magnitude of the reduction of Avar(�̂�MTTF | 𝜉) was also
getting smaller slowly. Therefore, we only need to select an
appropriate constraints condition rather than a more relaxed
one within the requirement of test accuracy.

5.3. Sensitivity Analysis. In practice, the estimated parameter
�̂� = (�̂�

𝛼

, �̂�
𝛼
, �̂�, �̂�
𝐵
, �̂�
𝜀
) would depart from the true parameter

𝜃 = (𝜇
𝛼
, 𝜎
𝛼
, 𝛽, 𝜎
𝐵
, 𝜎
𝜀
). Without loss of generality, we assume

that 𝜌
1
, 𝜌
2
, 𝜌
3
denote the estimation bias for 𝜇

𝛼
, 𝜎
𝛼
, 𝛽 (as the

values of �̂�
𝐵
and �̂�

𝜀
are too small, we do not consider their

estimation bias).
Under the same cost configuration (𝐶op, 𝐶mea, 𝐶𝑑, 𝐶𝑏,

𝑡
𝐴
, 𝑁
𝐴
) = (0.5, 2, 30, 2500, 2000, 50), Table 4 displays the

optimal plan under various combinations of �̂�
𝛼

(1 + 𝜌
1
),

�̂�
𝛼
(1 + 𝜌

2
), and �̂�(1 + 𝜌

3
). From these results, we can see that
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Table 2: Comparisons of four degradation models with the degradation data of LEDs.

�̂�
𝛼

�̂�
𝛼

�̂� �̂�
𝐵

�̂�
𝜀

ℓ AIC
𝑀
0

1.2889 0.3120 1831.7 0.0071 0.0270 4241.6 −8473.2
𝑀
1

0.0150 0.0018 1878.9 0.0021 0.0160 3685.3 −7360.6
𝑀
2

1.3781 0.0001 1853.1 0.026 — 3691.2 −7374.4
𝑀
3

1.3629 — 1851.2 0.010 0.0260 4156.9 −8305.8
Remark 1: “—” means that the estimate does not exist in that case.
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Figure 2: Plot of transformation degradation paths of LEDs luminosity data over timeΛ(𝑡) = 𝑡0.5 in hours at (a) 25∘C, (b) 65∘C, and (c) 105∘C.

the optimal test plan (𝑛∗
1

, 𝑛
∗

2

, 𝑓
∗

, 𝑚
∗

) tends to be robust to
estimation bias, given that the bias is not too large.

5.4. Optimal CSADT Plans with 𝑑-Stress, Where 𝑑 ≥ 3. We
have already presented the optimal CSADT plans with two
stress levels. When stress levels 𝑑 ≥ 3, it is not easy to get
results of test plans. Instead, we select a condition of three
stress levels to show the optimal CSADT plans. Suppose three
stress levels are 𝑆

1
= 40
∘C, 𝑆
2
= 50
∘C, and 𝑆

3
= 60
∘C.The cost

configuration is (𝐶op, 𝐶mea, 𝐶𝑑) = (0.5, 2, 30). Table 5 lists the
optimal CSADT plans under various constraints.

No matter how the constraints vary, the optimal plans
demonstrate that the lowest stress levels were allocated to
more units. Comparing Tables 3 and 5, we can find that
the Avar(�̂�MTTF | 𝜉) of the optimal two-level CSADT plan
is smaller than that of the optimal three-level CSADT plan
under the same conditions. It means that the two-level
CSADT plans have higher test accuracy. However, this result
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Table 3: (a) Optimal two-level CSADTplans under various prefixed
budget constraints. (b) Optimal two-level CSADT plans under
various duration constraints. (c) Optimal two-level CSADT plans
under various sample size constraints.

(a)

𝐶
𝑏

𝑛
∗

1

𝑛
∗

2

𝑓
∗

𝑚
∗ Avar/103 Budgets

1000 13 7 320 2 0.8933 1000
1500 18 10 328 3 0.4805 1500
2000 26 15 349 3 0.3212 1999.5
2500 31 19 300 4 0.2363 2500
3000 30 19 314 6 0.1987 3000
3500 31 19 333 6 0.1921 3099
4000 31 19 333 6 0.1921 3099
Remark 2: the test duration constraint 𝑡

𝐴
= 2000 and the sample size

constraint𝑁
𝐴
= 50.

(b)

𝑡
𝐴

𝑛
∗

1

𝑛
∗

2

𝑓
∗

𝑚
∗ Avar/103 Budgets

500 32 18 100 5 0.3001 2250
1000 31 19 200 5 0.2382 2500
1500 31 19 300 4 0.2363 2500
2000 31 19 300 4 0.2363 2500
2500 31 19 300 4 0.2363 2500
3000 31 19 300 4 0.2363 2500
Remark 3: the prefixed budget constraint C

𝑏
= 2500 and the sample size

constraint𝑁
𝐴
= 50.

(c)

𝑁
𝐴

𝑛
∗

1

𝑛
∗

2

𝑓
∗

𝑚
∗ Avar/103 Budgets

20 12 8 85 23 0.4054 2497.5
30 18 12 200 10 0.2974 2500
40 25 15 211 7 0.2515 2498.5
50 31 19 300 4 0.2362 2500
60 32 19 281 4 0.2362 2500
70 32 19 281 4 0.2362 2500
Remark 4: the prefixed budget constraint C

𝑏
= 2500 and the test duration

constraint 𝑡
𝐴
= 2000.

does not intend to suggest that the optimal plans are the only
choice for conducting a CSADT. A degradation test may need
degradation data of more than two stress levels, so as to verify
the validity of the model in (1) and ensure that the research
can be generalized.

6. Conclusion

We have investigated the optimal CSADT plans based on
the NGWP model. The NGWP model which considers
nonlinearity, the effects of stress level, the product-to-product
variability, and measurement errors has higher estimation
accuracy and better goodness-of-fit. By minimizing the
asymptotic variance of the reliability estimation of the prod-
ucts under normal operation conditions subject to sample
size, test duration, and test cost, the objective of CSADT
plans is to properly determine the stress levels, the num-
ber of units allocated to each level, inspection frequency,
and measurement times, simultaneously. An optimization
algorithm is proposed to determine the decision variables.
Moreover, theMLEmethod to estimate unknown parameters
and MTTF of products is presented in this study. Then,
comparison based on degradation data of LEDs is conducted
to show better goodness-of-fit of the NGWP than that of
other models. Finally, optimal two-level CSADT plans and
optimal three-level CSADT plans under various constraints
are demonstrated. A detailed sensitivity analysis for the
estimated parameters is also conducted in this study.

When the stress levels are more than three, a new
algorithm which is more efficient should be developed. If the
sample size is only moderate or even small, it is necessary to
investigate other methods for designing a CSADT. Overall,
many interesting issues about degradation models and accel-
erated test plans require further study.

Appendix

Detailed Expressions of
Avar(�̂�MTTF | 𝜉) and I(𝜃) in (15)

The expression of Fisher information I(𝜃) is

I (𝜃) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐸(−
𝜕
2

ℓ

𝜕𝜇
2

𝛼

) 𝐸(−
𝜕
2

ℓ

𝜕𝜇
𝛼
𝜕𝜎
𝛼

) 𝐸(−
𝜕
2

ℓ

𝜕𝜇
𝛼
𝜕𝛽
) 𝐸(−

𝜕
2

ℓ

𝜕𝜇
𝛼
𝜕𝜎
𝐵

) 𝐸(−
𝜕
2

ℓ

𝜕𝜇
𝛼
𝜕𝜎
𝜀

)

𝐸(−
𝜕
2

ℓ

𝜕𝜎
𝛼
𝜕𝜇
𝛼

) 𝐸(−
𝜕
2

ℓ

𝜕𝜎
2

𝛼

) 𝐸(−
𝜕
2

ℓ

𝜕𝜎
𝛼
𝜕𝛽
) 𝐸(−

𝜕
2

ℓ

𝜕𝜎
𝛼
𝜕𝜎
𝐵

) 𝐸(−
𝜕
2

ℓ

𝜕𝜎
𝛼
𝜕𝜎
𝜀

)

𝐸(−
𝜕
2

ℓ

𝜕𝛽𝜕𝜇
𝛼

) 𝐸(−
𝜕
2

ℓ

𝜕𝛽𝜕𝜎
𝛼

) 𝐸(−
𝜕
2

ℓ

𝜕𝛽
2

) 𝐸(−
𝜕
2

ℓ

𝜕𝛽𝜕𝜎
𝐵

) 𝐸(−
𝜕
2

ℓ

𝜕𝛽𝜕𝜎
𝜀

)

𝐸(−
𝜕
2

ℓ

𝜕𝜎
𝐵
𝜕𝜇
𝛼

) 𝐸(−
𝜕
2

ℓ

𝜕𝜎
𝐵
𝜕𝜎
𝛼

) 𝐸(−
𝜕
2

ℓ

𝜕𝜎
𝐵
𝜕𝛽
) 𝐸(−

𝜕
2

ℓ

𝜕𝜎
2

𝐵

) 𝐸(−
𝜕
2

ℓ

𝜕𝜎
𝐵
𝜕𝜎
𝜀

)

𝐸(−
𝜕
2

ℓ

𝜕𝜎
𝜀
𝜕𝜇
𝛼

) 𝐸(−
𝜕
2

ℓ

𝜕𝜎
𝜀
𝜕𝜎
𝛼

) 𝐸(−
𝜕
2

ℓ

𝜕𝜎
𝜀
𝜕𝛽
) 𝐸(−

𝜕
2

ℓ

𝜕𝜎
𝜀
𝜕𝜎
𝐵

) 𝐸(−
𝜕
2

ℓ

𝜕𝜎
2

𝜀

)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (A.1)
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Table 4: Optimal CSADT plan considering the estimation bias for 𝜇
𝛼

, 𝜎
𝛼

, 𝛽.

𝜌
1

𝜌
2

𝜌
3

𝑁
𝐴

𝑛
∗

1

𝑛
∗

2

𝑓
∗

𝑚
∗ Avar/103 Budgets

5% 5% 5% 29 16 13 280 5 0.4925 2500
5% 0 0 31 19 12 300 4 0.1944 2500
5% −5% −5% 31 19 12 300 4 0.8060 2500
0 5% 0 31 19 12 300 4 0.2485 2500
0 0 −5% 30 20 10 300 4 0.1045 2500
0 −5% 5% 29 16 13 280 5 0.5514 2500
−5% 5% −5% 30 20 10 300 4 0.1368 2500
−5% 0 5% 29 17 12 264 5 0.7048 2500
−5% −5% 0 31 19 12 300 4 0.2759 2500
0 0 0 31 19 12 300 4 0.2363 2500

where

𝐸(−
𝜕
2

ℓ

𝜕𝜇
2

𝛼

) =

𝑑

∑

𝑘=1

𝑛
𝑘
𝑒
−2𝛽/𝑆𝑘Λ



Σ
𝑘

−1

Λ,

𝐸 (−
𝜕
2

ℓ

𝜕𝜇
𝛼
𝜕𝜎
𝛼

) = 𝐸(−
𝜕
2

ℓ

𝜕𝜎
𝛼
𝜕𝜇
𝛼

) = 0,

𝐸(−
𝜕
2

ℓ

𝜕𝜇
𝛼
𝜕𝛽
) = 𝐸(−

𝜕
2

ℓ

𝜕𝛽𝜕𝜇
𝛼

) = −𝜇
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Table 5: (a) Optimal three-level CSADT plans under various
prefixed budget constraints. (b) Optimal-three level CSADT plans
under various duration constraints. (c) Optimal three-level CSADT
plans under various sample size constraints.

(a)

𝐶
𝑏

𝑛
∗

1

𝑛
∗

2

𝑛
∗

3

𝑓
∗

𝑚
∗ Avar/103 Budgets

1000 7 5 4 282 3 1.926 999
1500 13 10 7 280 3 1.031 1500
2000 16 12 10 278 4 0.6934 2000
2500 21 16 13 300 4 0.5150 2500
3000 21 16 13 300 4 0.4303 3000
3500 21 16 13 200 10 0.3908 3500
4000 21 16 13 133 15 0.3719 3997.5
Remark 5: the test duration constraint 𝑡

𝐴
= 2000 and the sample size

constraint𝑁
𝐴
= 50.

(b)

𝑡
𝐴

𝑛
∗

1

𝑛
∗

2

𝑛
∗

3

𝑓
∗

𝑚
∗ Avar/103 Budgets

500 22 16 12 166 3 0.7538 2049
1000 21 16 13 200 5 0.5190 2500
1500 21 16 13 300 4 0.5150 2500
2000 21 16 13 300 4 0.5150 2500
2500 21 16 13 300 4 0.5150 2500
3000 21 16 13 300 4 0.5150 2500
Remark 6: the prefixed budget constraint C

𝑏
= 2500 and the sample size

constraint𝑁
𝐴
= 50.

(c)

𝑁
𝐴

𝑛
∗

1

𝑛
∗

2

𝑛
∗

3

𝑓
∗

𝑚
∗ Avar/103 Budgets

20 8 7 5 90 22 0.8951 2470
30 12 10 8 200 10 0.6518 2500
40 17 13 10 211 7 0.5497 2498.5
50 21 16 13 300 4 0.5150 2500
60 21 16 13 300 4 0.5150 2500
70 22 16 13 281 4 0.5148 2500
Remark 7: the prefixed budget constraint C

𝑏
= 2500 and the test duration

constraint 𝑡
𝐴
= 2000.
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