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This paper proposes a novel relative navigation control strategy based on the relation space method (RSM) for articulated
underground trackless vehicles. In the RSM, a self-organizing, competitive neural network is used to identify the space around the
vehicle, and the spatial geometric relationships of the identified space are used to determine the vehicle’s optimal driving direction.
For driving control, the trajectories of the articulated vehicles are analyzed, and data-based steering and speed control modules
are developed to reduce modeling complexity. Simulation shows that the proposed RSM can choose the correct directions for
articulated vehicles in different tunnels. The effectiveness and feasibility of the resulting novel relative navigation control strategy
are validated through experiments.

1. Introduction

Undergroundmining has an important role in the acquisition
ofmany of the world’s natural resources, and articulated vehi-
cles are typically used for underground mining operations,
since they have the small turning radii required for navigating
the narrow tunnels inmost underground environments.With
the application of new equipment and technology, intelligent
underground mining vehicles have been the object of sig-
nificant development in recent decades, which has greatly
improved mining safety and efficiency [1]. Autonomous
navigation is central to the operation of such vehicles, and
many navigation techniques are in use, including global
positioning (GPS), inertial navigation (INS), and ultrasonic
positioning systems [2–4]. Many existing autonomous robots
use computer vision and other sensors to supplement GPS
data when navigating. However, most of these navigation
methods cannot be applied in the underground due to the
inherent uncertainty in the environment. For instance, there
are no detectable GPS signals in underground environments,
the detection range of normal ultrasonic radar is limited
and unstable underground, and the cost of an INS is too

high. Compared to the above-mentioned three positioning
methods, laser radar is an ideal positioning device in under-
ground environments owing to its wide detection range and
reasonable cost; laser range finders have been successfully
used in agricultural robots [5], for example.

Navigation methods can be divided into absolute and
relative navigation according to whether the environmental
model (e.g., map information) is needed or not [6]. For
absolute navigation, the driving path for the vehicle must be
planned beforehand. Optimal path planning and integrated
local trajectory planning have been used for autonomous
ground vehicles [7–9]. The vehicles’ absolute position with
respect to some fixed real-world coordinate system must be
known (known as localization), which is normally obtained
by dead reckoning through the data transferred by sensors
installed in the vehicle [10–12].This type of navigation should
keep the vehicle following the predetermined path, which
requires map path and artificial marking equipment. How-
ever, the cost of the positioning device in a large-scale mining
operation is extremely high, and underground mining envi-
ronments change with the depth of the mine, which requires
the planned path to be updated in real time. Therefore, the
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utilization of absolute navigation is restricted to some extent
in underground mining operations.

Relative navigation, on the other hand, does not require
an environmental model, and it is unnecessary to plan the
driving path using an accurate position on the map. By
applying the relative navigationmethod, the vehicle can sense
its surrounding via on-board sensors that detect the shape
and size of the tunnel in front of the vehicle in order to avoid
collisions; the method has been widely applied by some min-
ing companies by implementing supersonic detectors [13–
15]. Traditional relative navigation has limitations in complex
tunnel environments, such as the inability to choose the
correct way to proceed at intersections. Therefore, Roberts
has proposed a “nodal map” method to enable the relative
navigation method to choose the correct way to proceed
intersections [16].However, improving the navigation driving
efficiency remains a problem. In this paper, a novel relative
navigation control strategy that considers the structural and
driving features of articulated vehicles is proposed to improve
autonomous driving efficiency.The kinematics model is built
based on the articulated structure, and the steering and speed
control models are built based on the vehicle’s operation
data, which has both high applicability and low complexity.
The space information is processed using a self-organizing,
competitive neural network, through which the space is
divided into free space and trap space. According to the
different impacts of the space information in front of the
vehicle, the relation space method (RSM) is proposed as the
key to a vehicle being able to choose the correct driving
direction.

The remainder of this paper is organized as follows. In
Section 2, we describe how to identify the space information
using a self-organizing, competitive neural network and how
to find the optimal strategy direction using the RSM. In
Section 3, we outline the kinematics and dynamic models of
an articulated vehicle. The dynamic model is built based on
the data that are collected from the prototype. The control
method is also described in this section. In Section 4, we
focus on the results of simulation and experiment; we present
conclusions in Section 5.

2. Relation Space Method

In underground mining operations, tunnel environments
change over the course of tunnel length. Since there is no
planned path for the vehicle using relative navigation, the
information about the space around the vehicle therefore
becomes very important, which not only affects the vehicle’s
driving mode but also determines navigational accuracy.The
vehicle’s navigation is designed based on the space informa-
tion, and thus the navigationalmethod proposed in this paper
is designated as the relation spacemethod.Thefirst step in the
RSM is to identify the space around the vehicle using a self-
organizing, competitive neural network, which can be used
to determine the vehicle’s optimal driving direction based on
the existing spatial geometric relationships.
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Figure 1: General structure of self-organizing, competitive neural
network.

2.1. Space Identification. As mentioned above, the first step
in the RSM is to identify the space. Since artificial neural
networks have been widely used in statistical classification
problems owing to their strong self-organizing characteris-
tics, adaptability, fault tolerance, and reasoning ability, they
have given good results [17, 18]. Thus, in this paper, we apply
a self-organizing, competitive neural network to identify the
space information, which is a way of training the network’s
self-organizing feature. In this paper, laser radar is used to
detect the underground environment, leveraging its features
of high resolution, strong antijamming ability, small volume,
and low cost.

Figure 1 shows the basic self-organizing, competitive
network structure, which includes input and competitive
layers.The input sample of the network isX = [𝑥1, 𝑥2, . . . , 𝑥𝑛]
and the output is U = [𝑢1, 𝑢2, . . . , 𝑢𝑞]. 𝑤𝑖𝑗 denotes the
competitiveweight from input nodes to neurons, and it can be
modified through training. The neurons in the input layer of
the self-organizing network are connected to neurons in the
output layer through the weight, and the neurons in the com-
petitive layer compete with each other, and only one or a few
neurons can “win” to adapt to the current input sample. The
competitive learning rule is the main factor. The connection-
weight value of the network is 𝑤𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑁, 𝑗 =1, 2, . . . ,𝑀), and it satisfies the constraint conditions

𝑁∑
𝑖=1

𝑤𝑖𝑗 = 1. (1)

The input samples are binary vectors, and, for the state of
competitive-layer neurons 𝑗, the weight sum of the input
node is given according to (2) as follows:

𝑆𝑖 = 𝑛∑
𝑖=1

𝑤𝑖𝑗 ⋅ 𝑥𝑖. (2)

𝑥𝑖 in (2) are the 𝑖th elements of the input sample vector.
According to the mechanism of competition, 𝑘 neurons with
maximum weight values win. The output is

𝑢𝑘 = {{{
1, 𝑆𝑘 > 𝑆𝑗, ∀𝑗, 𝑘 ̸= 𝑗,
0, others. (3)

For each 𝑖, the weights after the competition are amended in
accordance with

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂 ⋅ (𝑥𝑖 − 𝑤𝑖𝑗) , (4)
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Figure 2: Flowchart of space identification process.

where 𝜂 is the learning parameter, which is generally taken
to be in the range of 0 to 1. In consideration of the learning
efficiency, in this paper, 𝜂 is set to 0.1.

Figure 2 is a flowchart of the space identification using
a self-organizing, competitive neural network. The first step
is to obtain the space data, collected from the laser radar,
which were normalized using a normalized formula. The
second step is to create the neural network, which needs to
be initialized and trained. The competitive neural network
is applied in no-teacher learning, and there is no desired
output, so there is no need to set up the training process
to judge whether the end of network training results in an
error.The network training number must be set to determine
the training efficiency; in this paper, it is set to 1000. After
training, a simulation function is used to check the network-
classified space model. If the space identification is not
successful, the network should be reinitialized, retrained, and
retested.There are two output types, denoted as free space and
trap space. Free space is the region that the vehicle can go
through and trap space is the region that the vehicle should
avoid.

2.2. OptimalDrivingDirection. After the space is divided into
free space and trap space using the self-organizing, compet-
itive neural network, the vehicle’s optimal driving direction
is determined based on the spatial geometric relationships.
Figure 3 shows the free space and trap space for the vehicle
in the tunnel environment, as well as an obstacle in front
of the vehicle. Figure 3(a) shows all of the free and trap
spaces identified using the neural network; the pointsmarked
with asterisks represent the free space and those marked
with open circles represent the trap space. Figure 3(b) shows
the coordinate system built for the navigational method
proposed in this paper. Its origin point is located at the center
of the laser radar, its 𝑦-axis is in the direction of the course
angle of the vehicle, and its𝑥-axis can be obtained by applying
the right-hand screw rule. 𝑃𝑖(𝑥𝑖, 𝑦𝑖) are the detected points in
steps of Δ𝜃, and Δ𝜃 = 1∘ in this paper; 𝑖 (𝑖 = 1, 2, . . . , 𝑁)
is the index of the detected points and 𝐷𝑂𝑃𝑖 is the distance
between the origin point 𝑂 and 𝑃𝑖. It is known that 𝑃𝑖(𝑥𝑖, 𝑦𝑖)
are the positions of the wall or the obstacles. In the complex
environment, the free space is not unique, which is defined
as the sub-free space (SFS), based on whether the index of
the detected points, 𝐼, is continuous. The SFS is denoted as
SF𝑗 (𝑗 ∈ 𝑍, 𝑗 = 1, 2, . . . ,𝑀). There are two SFSs depicted in
Figure 3(b), and therefore𝑀 = 2.

All of the SFSs are candidate driving regions, but the
best direction for the vehicle still needs to be determined.
The optimal strategic direction is defined as the angular
bisector of two laser beams in the largest-area SFS. In order
to calculate the area of the subspaces, the area formula of a
triangle can be applied. The area of the two laser beams is
denoted as Δ, which can be approximately calculated by

Δ = 12 ⋅ 𝐷𝑂𝑃𝑖 ⋅ 𝐷𝑂𝑃𝑖+1 ⋅ sin (Δ𝜃) . (5)

In Figure 3, the triangles 𝑃𝑂𝑃𝑎𝑃𝑏 and 𝑃𝑂𝑃𝑐𝑃𝑑 are two SFSs,𝜃𝑗 refers to the detection angle of SF𝑗, and the straight lines𝑂𝐵𝑗 form the angular bisector of 𝜃𝑗. Each 𝑂𝐵𝑗 is a candidate
optimal strategic direction.The area of SF𝑗 is denoted asΔSF𝑗,
and the indexes of the detected points in the two boundary
beams of SF𝑗 are denoted as 𝑈𝑗 and 𝑉𝑗, respectively. On the
basis of (5), ΔSF𝑗 can be calculated approximately by

ΔSF𝑗 = 12 ⋅
𝑉𝑗−1∑
𝑘=𝑈𝑗

(𝐷𝑂𝑃𝑘 ⋅ 𝐷𝑂𝑃𝑘+1) ⋅ sin (Δ𝜃) . (6)

We call ΔSF𝑗 the relation space, and the larger ΔSF𝑗 is, the
more likely the optimal strategic direction is contained in it.
However, if the areas of two SFSs are equal, it is impossible
to find the optimal strategic direction by only comparing the
areas. Both the area and the space angle of a SFS affect the
selection of the optimal strategic direction. The larger the
space angle, the wider the SFS. Therefore, an impact factor𝑀 is introduced and designated as the relation space factor,
and it is written as

𝑀𝑗 = ΔSF𝑗 ⋅ 𝜃𝑗. (7)
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Figure 3: Free space and trap space (𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑍, 2 < 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑁).

The optimal strategic direction is 𝑀max, which can be
obtained by

𝑀max = max {𝑀1,𝑀2, . . . ,𝑀𝑗} . (8)

3. Driving Control for an Articulated Vehicle

3.1. Kinematics Model of an Articulated Vehicle. Driving
control for articulated vehicles includes steering and speed
control. An underground mining vehicles’ top speed is
usually low (25 km/h) and its gross dead weight is very large;
therefore, we assume that the wheels of the articulated vehicle
do not slip. Figure 4 shows the geometry of an articulated
vehicle in steering operations. The dynamic model of the
articulated vehicle considered in this paper has a front section
and rear section, which are connected by a joint 𝐻. The
front and rear sections can rotate relative to each other,
and steering is achieved by driving the articulation joint. In
Figure 4, 𝜆 refers to the articulated angle and 𝑉 refers to
the ground speed of the front body; 𝜂1 and 𝜂2 are defined as
the orientation angle of the front body and back body with
respect to 𝑥-axis, respectively. The half-length of the body
is defined as the distance between the front bumper or rear
bumper of the vehicle and the articulation joint, referred to
as 𝑙1 and 𝑙2, respectively. 𝑃1(𝑥1, 𝑦1) and 𝑃2(𝑥2, 𝑦2) refer to the
coordinates of the middle point of the vehicle’s front and rear
bumpers, respectively. Point 𝑂󸀠󸀠 is the center of the turning
circle, and 𝑟1 and 𝑟2 are defined as the distance between 𝑂󸀠󸀠
and 𝑃1, 𝑃2, respectively [19–23].

The equations of lines 𝑃1𝐻 and 𝑃2𝐻 are, respectively,
defined as

𝑦 = 𝑘1 ⋅ 𝑥 + 𝑏1, (9)

𝑦 = 𝑘2 ⋅ 𝑥 + 𝑏2, (10)

where 𝑘1 and 𝑏1 are the linear slope and intercept of line𝑃1𝐻, respectively, and 𝑘2 and 𝑏2 are the linear slope and
intercept of line 𝑃2𝐻, respectively. Combining (9) and (10),
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Figure 4: Geometry of the articulated vehicle while steering.

it is straightforward to obtain the coordinates of point 𝑂󸀠󸀠 as
follows:

𝑥 = 𝑏2 − 𝑏1𝑘1 − 𝑘2 ,
𝑦 = 𝑘1 ⋅ 𝑏2 − 𝑏1𝑘1 − 𝑘2 + 𝑏1.

(11)

Based on the dynamic characteristics of the articulated
vehicle, for the first body, we have

̇𝑥1 = V ⋅ cos 𝜂1,
̇𝑦1 = V ⋅ sin 𝜂1. (12)

According to the geometric relationship of 𝑃1 and 𝑃2, we can
show that

𝑥2 + 𝑙2 ⋅ cos 𝜂2 + 𝑙1 ⋅ cos 𝜂1 = 𝑥1,
𝑦2 + 𝑙2 ⋅ sin 𝜂2 + 𝑙1 ⋅ sin 𝜂1 = 𝑦1, (13)

and it is straightforward to obtain

𝜂1 = 𝜂2 − 𝛾. (14)
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Since we have assumed that there is no slip, we have

̇𝑥2 ⋅ sin 𝜂2 − ̇𝑦2 ⋅ cos 𝜂2 = 0,
̇𝑥1 ⋅ sin 𝜂1 − ̇𝑦1 ⋅ cos 𝜂1 = 0. (15)

Differentiating (11) with respect to time, substituting in (12)
and (15), the angular velocity equation is obtained as follows:

̇𝜂1 = −V ⋅ sin 𝛾 − 𝑙2 ⋅ 𝛾̇𝑙1 ⋅ cos 𝛾 + 𝑙2 . (16)

3.2. Obstacles along the Vehicle’s Trajectory. It is important to
determine the obstacles along the vehicle’s trajectory, since
they affect the vehicle’s driving strategy. Figure 5 shows the
obstacles along the trajectory, where 𝑂 is the center of the

laser radar and also the original point of the coordinate
system; the points 𝑎, 𝑏, 𝑐, 𝑑 and 𝑎󸀠, 𝑏󸀠, 𝑐󸀠, 𝑑󸀠 refer to the
vehicle’s edge points on the right-hand side and left-hand side,
respectively. 𝜆 refers to the articulated angle, 𝑂󸀠 refers to the
center point of the trajectory ring, 𝑃𝑖 refers to the position of
the obstacle,𝐷𝑂𝑃𝑖 refers to the linear distance between𝑂 and𝑃𝑖, and 𝛽 refers to the orientation of line 𝑂𝑃𝑖 with respect to
the 𝑥-axis. 𝑅𝑐 and 𝑅𝑓 are the inner and outer diameters of the
trajectory ring, respectively, and 𝑙1 and 𝑙2 are the lengths of
the front and rear parts of the trajectory ring, respectively.

Based on the geometric relationship, we have

𝑥𝑖 = 𝐷𝑂𝑃𝑖 ⋅ cos𝛽,
𝑦𝑖 = 𝐷𝑂𝑃𝑖 ⋅ sin𝛽. (17)

The coordinate of point 𝑂󸀠 can be written as

𝑥𝑂󸀠 = 𝑙2 ⋅ sin 𝜆 + 𝑙1 + 𝑙2 ⋅ cos 𝜆tan 𝜆 ,
𝑦𝑂󸀠 = 0.

(18)

It can be seen that when the vehicle turns right,

𝑅𝑐 = min (𝐷𝑂󸀠𝑎, 𝐷𝑂󸀠𝑑) ,
𝑅𝑓 = max (𝐷𝑂󸀠𝑏󸀠 , 𝐷𝑂󸀠𝑐󸀠) , (19)

where 𝐷𝑂󸀠𝑎, 𝐷𝑂󸀠𝑑, 𝐷𝑂󸀠𝑏󸀠 , and 𝐷𝑂󸀠𝑐󸀠 refer to the distance
between𝑂󸀠 and 𝑎, 𝑑, 𝑏󸀠, and 𝑐󸀠, respectively, especially when𝑙1 = 𝑙2,𝐷𝑂󸀠𝑎 = 𝐷𝑂󸀠𝑑, and𝐷𝑂󸀠𝑏󸀠 = 𝐷𝑂󸀠𝑐󸀠 .The distance between𝑃𝑖 and 𝑂󸀠 is denoted as dis[𝑖] (𝑖 = 1, 2, 3, . . . , 𝑁):

dis [𝑖] = √(𝐷𝑂𝑃𝑖 ⋅ cos𝛽 − (𝑙2 ⋅ sin 𝜆 + 𝑙1 + 𝑙2 ⋅ cos 𝜆tan 𝜆 ))2 + (𝐷𝑂𝑃𝑖 ⋅ sin𝛽)2. (20)

The obstacles along the trajectory ring actually affect the
vehicle’s driving; these obstacles are designated as positive
obstacles in this paper. These positive obstacles can be
selected by the following equation:

𝑅𝑐 ≤ dis [𝑖] ≤ 𝑅𝑓. (21)

The coordinates of the positive obstacles are saved in array 𝑄
as

𝑄 = {(𝑥1, 𝑦1) , (𝑥2, 𝑦2) , (𝑥3, 𝑦3) , . . . , (𝑥𝑖, 𝑦𝑖)} . (22)

3.3. Data-Based Steering and Speed Control Module. The
trajectory of the articulated vehicle and the obstacles affecting
the vehicle’s driving have been analyzed in the preceding
sections. The steering and speed control are very important
parts of the vehicle’s overall driving control, the effects of
which mostly depend on the vehicle’s kinematics model [24,
25].Therefore, it is essential to build the vehicle’s steering and
speed kinematics models as accurately as possible, a strategy

validated by the fact that a data-driven approach to control
methodology has improved the navigational efficiency of
ground robots [26, 27]. For the method described in this
paper, the steering and speed models are built based on
the vehicle’s operation data in order to reduce the modeling
complexity.

3.3.1. Data-Based Steering ControlModule. It is easy to collect
the vehicle’s articulated angle, steering time, and so forth,
which can clearly reflect the vehicle’s steering kinematics
model. The optimal strategic direction has been found using
the RSM. The articulated angle is denoted as 𝜆 and the angle
of optimal strategic direction with respect to the 𝑥-axis in the
coordinate system is denoted as 𝜑, with each 𝜑 relative to an
articulated angle 𝜆(strategy). It is known that each articulated
angle is relative to a time point; therefore, the steering time𝑇𝑆(𝐿-𝑅) (steering from left to right) or 𝑇𝑆(𝑅-𝐿) (steering from
right to left) from a given current position to a strategic
direction can be obtained using the dichotomy principle. In
consideration of driving smoothness and safety, a threshold
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value, denoted as𝑇𝑆, is set.𝑇𝑆 is an experience parameter that
can prevent the vehicle from steering too often. The steering
rules are as follows:

(i) If 𝜆 − 𝜆(strategy) > 0 and 𝑇𝑆(𝑅-𝐿) ≤ 𝑇𝑆, then steer left.
(ii) If 𝜆 − 𝜆(strategy) < 0 and 𝑇𝑆(𝐿-𝑅) ≤ 𝑇𝑆, then steer right.
(iii) 𝑇𝑆(𝐿-𝑅) > 𝑇𝑆 and 𝑇𝑆(𝑅-𝐿) > 𝑇𝑆; then maintain the

current articulated angle.

These rules not onlymake the vehicle drive along the strategic
direction but also improve its driving smoothness.

3.3.2. Data-Based Speed Control Module. Unlike passenger
vehicles, the articulated mining vehicles’ driving mode is
much simpler, typically consisting of constant, acceleration,
deceleration, and braking modes. It is easy to collect the
vehicle’s driving speed and time, which can clearly reflect the
vehicle’s speed kinematics model.

The effects of positive obstacles on the vehicle’s speed
control have been analyzed previously. To ensure the safety of
articulated vehicles, allowance 𝛿󸀠 is introduced in the speed
control. The trajectory for speed control can be rewritten as

𝑅𝑐 − 𝛿󸀠 ≤ dis [𝑖] ≤ 𝑅𝑓 + 𝛿󸀠, (23)

in which allowance 𝛿󸀠 acts as an experience parameter that
can offset speed control errors. Based on (23), the objective
obstacle points in the speed control are obtained, which are
saved in array 𝑄𝑉:
𝑄𝑉
= {(𝑥𝑉1 , 𝑦𝑉1) , (𝑥𝑉2 , 𝑦𝑉2) , (𝑥𝑉3 , 𝑦𝑉3) , . . . , (𝑥𝑉𝑖 , 𝑦𝑉𝑖)} . (24)

The distance between the vehicle and the obstacles in 𝑄𝑉 is
actually arcs, denoted as𝐷𝑉𝑖 ; therefore, we have
𝐷𝑉𝑖 = arcsin

󵄨󵄨󵄨󵄨󵄨𝑦𝑉𝑖 󵄨󵄨󵄨󵄨󵄨
√𝑦𝑉𝑖2 + (𝑥𝑉1 − 𝑥𝑉𝑖)2

⋅ dist [𝑖]

(1 ≤ 𝑖 ≤ 𝑁) ,
(25)

and the minimum value of𝐷𝑉𝑖 is
𝐷𝑉min = min {𝐷𝑉1 , 𝐷𝑉2 , 𝐷𝑉3 , . . . , 𝐷𝑉𝑖} . (26)

The vehicle’s driving time considering𝐷𝑉min at a speed V can
be written as

𝑇 = 𝐷𝑉min
V

. (27)

It can be seen from (25)–(27) that each velocity is relative to a
time point, and therefore the driving times considering𝐷𝑉min
in deceleration and braking modes are denoted as 𝑇𝑑 and 𝑇𝑏,
respectively.

The drivers can change the vehicle’s driving mode by
comparing 𝑇, 𝑇𝑑, and 𝑇𝑏. In the method described in this
paper, the vehicle’s speed control is achieved by imitating the
driver’s driving habits, and the control rules are as follows:

(i) If 𝑇 > 𝑘𝑑 ⋅ 𝑇𝑑, then speed up.
(ii) If 𝑇𝑑 < 𝑇 ≤ 𝑘𝑑 ⋅ 𝑇𝑑, then maintain current speed.
(iii) If 𝑘𝑏𝑇𝑏 < 𝑇 ≤ 𝑇𝑑, then slow down.
(iv) If 𝑇 ≤ 𝑘𝑏 ⋅ 𝑇𝑏, then brake.

In the above rules, 𝑘𝑏 and 𝑘𝑑 are amplification factors for
braking and deceleration times, respectively (0 < 𝑘𝑏 <1, 𝑘𝑑 > 1). These amplification factors provide allowance
for not only eliminating errors but also ensuring the safety
of the vehicle; they can be adjusted according to the sizes of
the vehicle and of the tunnel. The amplification factors and
safety distance, denoted as 𝐿, are indispensable. The vehicle
will initiate emergency braking immediately if the distance
between the vehicle and the obstacles is shorter than 𝐿, which
is the highest priority. The safety distance is related to the
vehicle’s structure, and it can further increase the vehicle’s
security; and 𝐿 = 15 cm in this paper.

4. Simulation and Experiment

The original data of the vehicle’s kinematics model are
collected from the articulated vehicle prototype and include
speed, articulated angle, and time. Two steering and three
speed kinematics models of an articulated vehicle are gener-
ated using these data. In this paper, the order of the steering
and speed fitting equations is 3. Figure 6 shows the fitting
curves of the vehicle steering process. The black asterisks
represent the original data, the blue line represents the fitting
curve, and the red line indicates the fitting error. The two
steering kinematics models include steering from left to right
and steering from right to left.

The cubic fitting equations of steering from left to right
and steering from right to left are written, respectively, as

𝜆𝐿-𝑅 = 0.0538𝑡3 − 1.4437𝑡2 + 15.9857𝑡 − 50.9267
(0 ≤ 𝑡 ≤ 13.6) ,

𝜆𝑅-𝐿 = −0.0376𝑡3 + 1.0408𝑡2 − 14.8118𝑡 − 48.1576
(0 ≤ 𝑡 ≤ 12.6) .

(28)

Figure 7 shows the vehicle speed fitting curves in different
driving modes. The three speed kinematics modes include
acceleration, deceleration, and braking.

The cubic fitting equations of the vehicle acceleration,
deceleration, and braking modes can be written, respectively,
as

𝑉𝑎 = 0.039528𝑡3 − 0.435515𝑡2 + 1.645189𝑡
− 0.0913833 (0 ≤ 𝑡 ≤ 4.8) ,

𝑉𝑑 = 0.004281𝑡3 − 0.077942𝑡2 + 0.149005𝑡
+ 2.0259928 (0 ≤ 𝑡 ≤ 9.7) ,

𝑉𝑏 = −24.309795𝑡3 − 56.591949𝑡2 − 32.670702𝑡
+ 2.232053 (0 ≤ 𝑡 ≤ 1.4) .

(29)
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Figure 6: Fitting curves for the vehicle steering from (a) left to right and from (b) right to left.

4.1. Simulation. We have developed software, the interface of
which is shown in Figure 8, to simulate an articulated vehicle
driving in a tunnel environment. The articulated vehicle
kinematics models were built before running the simulation.
The structure parameters of the articulated vehicle and tunnel
can be reset in the software, which were initially set according
to an articulated vehicle prototype in our lab and the corridor
of our laboratory building.

Figure 9 shows the driving tracks of the articulated vehicle
based on the RSM in different tunnels. In the tunnel depicted
in Figure 9(a), there is one sharp curve and one intersection;
in that depicted in Figure 9(b), there is one right-angle curve
and several obtuse-angle curves. The simulation result shows
that the vehicle can drive in different tunnels smoothly.

4.2. Experiment

4.2.1. ArticulatedVehicle Prototype. After the algorithms have
been verified in the simulation environment, we conducted
experiments on our autonomous prototype research platform
to verify the proposed control strategy. Figure 10(a) is a
structural diagram of the prototype, while Figure 10(b) is a
photograph of the prototype in our laboratory.The prototype
is scaled down based on a real mining vehicle, which includes
one SICK LMS511-10100 laser radar, one ADVANTEC ARK-
3500 (Intel i5, 2.5 GHz processor) industrial personal com-
puter (IPC), one EPEC (3724) programmable logic controller,
two DSP (TMS320F2808) drivers, one steering motor, one
angle encoder, and one remote controller. The laser radar is
mounted in the front body, with a detection range of 80m and

Table 1: Characteristics of articulated vehicle prototype.

Spec. Value
Length of front body 521.5mm
Length of rear body 528.2mm
Width 1049.7mm
Tire radius 201.5mm
Rotation range Right, 47.9∘; left, 44.4∘

Top speed 2.14m/s

a detection angle range of−5∘ to 185∘ from left to right in steps
of 1∘, including 190 detection points. The update frequency
of the data detection is 100Hz. The IPC is physically the
upper computer depicted in the figure used to identify the
space information and run the relation space algorithm,while
the EPEC is the lower computer. Two DSP drivers are used
to drive the brushless direct current (BLDC) motors. The
angle encoder is used to detect the articulated angle of the
prototype.

Table 1 lists the characteristics of the prototype.
Figure 11 shows the map of the laboratory corridor in

which the experiments were conducted. The width of the
corridor is 2.2m and the driving distance in the experiment
is 40m, starting from point A and stopping at D. The width
ratio of the prototype to the corridor is very close to reality.

4.2.2. Experimental Results. We chose positions A, B, and C
for space identification using a self-organizing, competitive
neural network. Position A is the general tunnel, position B
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Figure 7: Fitting curves of different speed modes: (a) acceleration; (b) deceleration; and (c) braking.

Figure 8: Simulation software interface.

is the cross-road tunnel, and position C is the bend tunnel.
We tested the space identification twice at C, once with no
obstacles in the corner and once with an obstacle set up in the
corner. The experiments essentially covered all navigational
situations that an articulated vehicle may encounter driving

in underground mining tunnels. Figure 12 shows the result
of space identification; the blue asterisks represent the free
space, the red open circles represent the trap space, and the
five-pointed stars represent the normalized center of the self-
organizing, competitive neural network. It can be seen in the
figure that the space can be classified into free space and trap
space effectively in various driving situations using a self-
organizing, artificial neural network.

We also performed multigroup driving experiments in
auto andmanualmodes, respectively.The space identification
and driving control methods proposed in this paper are
applied in auto mode. The most skilled person drives the
prototype by remote controller in manual mode. Figure 13
shows the vehicle’s articulated angle and speed during this
experiment. The blue lines represent manual mode and the
red lines represent automode. Specifically, Figure 13(a) shows
that the articulated angle varies with time in both auto and
manual modes, with right turns marked with a positive
number and left turns marked with a negative number. It
can be seen in the figure that the articulated angle has little
fluctuation in auto mode. In the course of turning the corner,
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Figure 9: Simulation results of the articulated vehicle driving in different tunnels.
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the articulated angle changes from left 11∘ to right 47∘ in
manual mode, while it changes from left 10∘ to right 40∘
in auto mode. The smaller fluctuation of the articulated

angle could make the prototype drive more smoothly and
more stably. Figure 13(b) shows that the velocity varies with
time in both auto and manual modes. It can be seen that
the maximum speed in both modes is approximately 2m/s;
however, the average speeds are 0.8 and 0.75m/s in auto
and manual modes, respectively. These results prove that the
relative navigationmethod proposed in this paper is efficient.

5. Conclusions

This paper reports the results of an investigation of a relative
navigation strategy based on the relation space method
(RSM) for autonomous underground articulated vehicles.
In the RSM, a self-organizing neural network was used to
identify the vehicle’s driving space, and the vehicle’s optimal
driving direction was determined using the spatial geometric
relationships of the identified space, which allowed us to
automatically obtain the correct direction to drive in various
kinds of tunnels. The kinematics model of the articulated
structure was deeply analyzed and applied to the speed and
steering control of the vehicle. In order to reduce modeling
complexity and improve computational efficiency, straight-
forward steering and speed control modules were built on the
basis of the vehicle’s operation data, which is straightforward
to implement in different vehicles even without knowing the
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Figure 12: Result of space identification at (a) position A, (b) position B, (c) position C without a barrier in the corner, and (d) position C
with an obstacle in the corner.
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specific vehicle parameters. Software was developed to verify
the feasibility of primarily the driving control method. An
additional set of experiments were carried out in the corridor
of our laboratory using an articulated vehicle prototype. One
set of experiments featured driving the prototype in manual
mode by a driver with a remote controller; the other set used
the automated driving method proposed in this paper. The
results show that the vehicle can choose the correct direction
over the course of the entire journey by applying the new
method. Moreover, the articulated angle of the prototype
in auto mode is less volatile than the articulated angle in
manual mode, and, moreover, the average speed is improved.
Comparisons of the results demonstrate the feasibility and
effectiveness of the new strategy.
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