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The problem of enumerating spanning trees in lattices with Klein bottle boundary condition is considered here. The exact closed-
form expressions of the numbers of spanning trees for 4.8.8 lattice, hexagonal lattice, and 33⋅42 lattice on the Klein bottle are
presented.

1. Introduction

Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) denote a graph with no multiple edges
and no loops and with vertex set 𝑉(𝐺) = {V

1
, V
2
, . . . , V

𝑛
} and

edge set 𝐸(𝐺). The degree 𝑘
𝑠
of a vertex V

𝑠
is the number of

edges attached to it. A 𝑘-regular graph is a graph with the
property that each of its vertices has the same degree 𝑘. The
adjacency matrix𝐴(𝐺) of 𝐺 is the 𝑛 × 𝑛matrix with elements
𝐴(𝐺)

𝑠𝑗
= 1 if V

𝑠
and V

𝑗
are connected by an edge and zero

otherwise. The Laplacian matrix 𝑄(𝐺) is the 𝑛 × 𝑛 matrix
with the element 𝑄(𝐺)

𝑠𝑗
= 𝑘

𝑠
𝛿

𝑠𝑗
− 𝐴(𝐺)

𝑠𝑗
, where 𝛿

𝑠𝑗
is the

Kronecker delta, equal to 1 if 𝑠 = 𝑗, and zero otherwise.
Denote by 𝑡(𝐺) the number of spanning trees of a graph 𝐺.
Enumeration of spanning trees on the graph is a problem
of fundamental interest in mathematics and physics. This
number can be calculated in several ways. A basic result is
“the Matrix-Tree Theorem.”

Theorem 1 (see [1]). Let 𝐺 be a graph with vertex set
{V
1
, V
2
, . . . , V

𝑛
} and let 𝑄(𝐺) be its Laplacian matrix. Then,

𝑡 (𝐺) = det (𝑄(𝐺){𝑠}) , (1)

where 𝑄(𝐺){𝑠} is the submatrix of 𝑄(𝐺) by deleting the sth row
and the sth column from 𝑄(𝐺) for 1 ≤ 𝑠 ≤ 𝑛.

Note that one of the eigenvalues of 𝑄(𝐺) is always zero.
We can express 𝑡(𝐺) that can be expressed by the nonzero
eigenvalue of 𝑄(𝐺) as follows.

Lemma 2 (see [1]). Let 0 < 𝜇
1
≤ 𝜇

2
≤ ⋅ ⋅ ⋅ ≤ 𝜇

𝑛−1
be the

Laplacian eigenvalues of a connected graph 𝐺 with 𝑛 vertices.
Then, 𝑡(𝐺) = 𝜇

1
𝜇

2
. . . 𝜇

𝑛−1
/𝑛.

By two methods, Ciucu et al. [2] obtained a factorization
theorem for the number of spanning trees of the plane graphs
with reflective symmetry (all orbits have two vertices). In
[3], Zhang and Yan obtained a factorization theorem for
the number of spanning trees of the more general graphs
with reflective symmetry (i.e., the so-called graphs with an
involution, and all orbits have one or two vertices). A graph
𝐺 is said to be 𝑛-rotational symmetric if the cyclic group
of order 𝑛 is a subgroup of the automorphism group of 𝐺.
Yan and Zhang [4] also obtained a factorization theorem
for 𝑛-rotational symmetric graph. As applications, they got
explicit expressions for the numbers of spanning trees and
the asymptotic tree number entropy for some lattices with
cylindrical boundary condition.

Lattices are of special interest for their structures. In
particular, the number of spanning trees in a lattice was
studied extensively. It turns out that 𝑡(𝐺) has asymptotically
exponential growth; one defines the quantity 𝑧(𝐺) by

𝑧 (𝐺) = lim
|𝑉(𝐺)|→∞

log 𝑡 (𝐺)
|𝑉 (𝐺)|

. (2)

This limit is known as the asymptotic tree number entropy,
asymptotic growth constant, or thermodynamical limit.

Closed-form expressions for 𝑡(𝐺) have been obtained for
many lattices.Wu [5] evaluated the number of spanning trees
on a large planar lattice, exactly for the square, triangular,
and honeycomb lattice. Tzeng and Wu [6] obtained the
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spanning tree generating function for a hypercubic lattice
in 𝑑 dimensions under free, periodic, and a combination of
free and periodic boundary conditions and a quartic lattice
embedded on aMöbius strip and the Klein bottle. Shrock and
Wu [7] got a general formulation for the number of spanning
trees on lattices in high dimensions. With the formulation,
closed-form expressions for the number of spanning trees
for hypercubic, body-centred cubic, face-centred cubic, and
specific planar lattices including the kagomé, diced, 4.8.8
(bathroom-tile), Union Jack, and 3.12.12 lattices are obtained.
With the same method, Chang and Shrock [8] got closed-
form expressions of the number of spanning trees for the 𝑑-
dimensional body-centred cubic lattice and thermodynam-
ical limit. They also gave an exact integral expression for
thermodynamical limit on the face-centred cubic lattice and
4.8.8 lattice. Chang and Wang [9] considered the number of
spanning trees of some Archimedean lattices and hypercubic
lattices. More related results can be found in [10, 11].

In this paper, we present an exact closed-form result for
the asymptotic growth constant for spanning trees of lattices
embedded on Klein bottle, exactly for 4.8.8 lattice, hexagonal
lattice, and 33 ⋅ 42 lattice. The number of spanning trees of
4.8.8 lattice is gotten in Section 2. With the same method, we
consider hexagonal lattice and 33 ⋅ 42 lattice in Sections 3 and
4, respectively.

2. The 4.8.8 Lattice

Introduce some notation firstly. Let 𝐵−1 and 𝐵𝑇 be the inverse
and the transpose of a matrix 𝐵. And let 𝐼

𝑚
denote the𝑚×𝑚

identity matrix. Set

𝑅

𝑛
=

[

[

[

[

[

[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 0 ⋅ ⋅ ⋅

...
... d d d

0 0 ⋅ ⋅ ⋅ 0 1

0 0 ⋅ ⋅ ⋅ 0 0

]

]

]

]

]

]

]𝑛×𝑛

,

𝐾

1
=

[

[

[

[

[

[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 0 d
...

...
... d d

0 0 0 ⋅ ⋅ ⋅ 1

1 0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]𝑚×𝑚

,

𝐾

2
=

[

[

[

[

1

1

c
1

]

]

]

]𝑚×𝑚

.

(3)

Let 𝑈 be an𝑚 × 𝑚matrices with entries

𝑈

𝑡,𝑗
=
√

1

𝑚

𝑒

𝑖(2𝑗𝑡𝜋/𝑚)
; 𝑡, 𝑗 = 1, 2, . . . , 𝑚.

(4)

It is not difficult to check that the elements of the 𝑚 × 𝑚
matrices 𝑈−1 are

(𝑈

−1
)

𝑡,𝑗
=
√

1

𝑚

𝑒

−𝑖(2𝑡𝑗𝜋/𝑚)
.

(5)

The entries of the 𝑚 × 𝑚 matrices 𝑈−1𝐾
1
𝑈, 𝑈−1(𝐾𝑇

1
)𝑈 and

𝑈

−1
𝐾

2
𝑈 are

(𝑈

−1
𝐾

1
𝑈)

𝑡,𝑗
= 𝑒

𝑖𝜃
𝑡
𝛿

𝑡,𝑗
, (𝑈

−1
(𝐾

𝑇

1
)𝑈)

𝑡,𝑗
= 𝑒

−𝑖𝜃
𝑡
𝛿

𝑡,𝑗
,

(𝑈

−1
𝐾

2
𝑈)

𝑡,𝑗
= 𝑒

−𝑖𝜃
𝑡
𝛿

𝑡+𝑗,𝑛
,

(6)

where 𝜃
𝑡
= 2𝑡𝜋/𝑚 for 𝑡, 𝑗 = 1, 2, . . . , 𝑚.

The 4.8.8 lattice L
4.8.8

is shown in Figure 1(a). If we add
edges (𝑏

𝑗
, 𝑏

∗

𝑗
), for 1 ≤ 𝑗 ≤ 𝑛 inL

4.8.8
, we obtain a graph with

cylindrical boundary condition, denoted by L𝑐
4.8.8

. Adding
edges (𝑎

𝑠
, 𝑎

∗

𝑚+1−𝑠
), for 1 ≤ 𝑠 ≤ 𝑚 in L𝑐

4.8.8
, a 4.8.8 lattice

with toroidal boundary condition, denoted byL𝑡
4.8.8

, can be
gotten.

Yan and Zhang [4] got the number of spanning trees and
the asymptotic tree number entropy ofL𝑐

4.8.8
:

𝑡 (L
𝑐

4.8.8
) =

8

𝑛

𝑚

𝑚−1

∏

𝑗=1

√

𝑎

𝑏

[(𝑐 + 4

√

𝑎𝑏)

𝑛

− (𝑐 − 4

√

𝑎𝑏)

𝑛

] ,

𝑧 (L
𝑐

4.8.8
) = lim
𝑚,𝑛→∞

1

4𝑚𝑛

log 𝑡 (L𝑐
4.8.8
)

=

1

4

log 2 + 1

4𝜋

×∫

𝜋

0

log [7−3 cos𝑥+4 sin(𝑥
2

)

√

5−cos𝑥] 𝑑𝑥

≈ 0.7867,

(7)

where 𝑎 = 1 − cos(2𝑗𝜋/𝑚), 𝑏 = 10 − 2 cos(2𝑗𝜋/𝑚), and 𝑐 =
14 − 6 cos(2𝑗𝜋/𝑚).

Shrock and Wu [7] showed that the number of spanning
trees and the asymptotic tree number entropy ofL𝑡

4.8.8
can be

expressed as

𝑡 (L
𝑡

4.8.8
) =

16

𝑛𝑚

×

𝑛−1

∏

𝑠=0

𝑚−1

∏

𝑗=0

(
𝑠,𝑗
)
̸=(0,0)

4 (7−3 cos 𝜃
1
−3 cos 𝜃

2
−cos 𝜃

1
cos 𝜃
2
) ,

𝑧 (L
𝑡

4.8.8
) = lim
𝑚,𝑛→∞

1

4𝑚𝑛

log 𝑡 (L𝑡
4.8.8
)

=

1

4

log 2 + 1

4𝜋

×∫

𝜋

0

log [7−3 cos𝑥+4 sin(𝑥
2

)

√

5 − cos𝑥] 𝑑𝑥,

≈ 0.7867,

(8)

where 𝜃
1
= 2𝑠𝜋/𝑛 and 𝜃

2
= 2𝑗𝜋/𝑚. Chang and Shrock

[8] obtained a closed-form expression of L𝑡
4.8.8

by an exact
closed-form evaluation of the integral given in [7].
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Figure 1: (a) The 4.8.8 lattice; (b) the hexagonal lattice; (c) the 33 ⋅ 42 lattice.

By adding edges (𝑎
𝑠
, 𝑎

∗

𝑠
), for 1 ≤ 𝑠 ≤ 𝑚 in L𝑐

4.8.8
,

4.8.8 latticeL𝐾
4.8.8

with Klein bottle boundary condition can
be gotten. By a suitable labelling of vertices of L𝐾

4.8.8
, the

adjacency matrix 𝑋 of it can be written in terms of a linear
combination of direct products of smaller ones:

𝑋 = 𝐴 ⊗ 𝐼

𝑚
+ 𝐵 ⊗ 𝐾

1
+ 𝐵

𝑇
⊗ 𝐾

𝑇

1
+ 𝐶 ⊗ 𝐾

2
, (9)

where

𝐴 =

[

[

[

[

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

]

]

]

]

⊗ 𝐼

𝑛
+

[

[

[

[

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

]

]

]

]

⊗ 𝑅

𝑛

+

[

[

[

[

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

]

]

]

]

⊗ 𝑅

𝑇

𝑛
,

𝐵=

[

[

[

[

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

]

]

]

]

⊗ 𝐼

𝑛
, 𝐶=

[

[

[

[

[

[

[

0 0 ⋅ ⋅ ⋅ 0 1

0 0 ⋅ ⋅ ⋅ 0 0

...
... ⋅ ⋅ ⋅

...
...

0 0 ⋅ ⋅ ⋅ 0 0

1 0 ⋅ ⋅ ⋅ 0 0

]

]

]

]

]

]

]4𝑛×4𝑛

.

(10)

By (6), we have



4 The Scientific World Journal

(𝐼

4𝑛
⊗ 𝑈)

−1
(𝑑𝐼

4𝑚𝑛
− 𝑋) (𝐼

4𝑛
⊗ 𝑈)

= (𝐼

4𝑛
⊗ 𝑈)

−1
[(𝑑𝐼

4𝑛
− 𝐴) ⊗ 𝐼

𝑚
− 𝐵 ⊗ 𝐾

1
− 𝐵

𝑇
⊗ 𝐾

𝑇

1
− 𝐶 ⊗ 𝐾

2
] (𝐼

4𝑛
⊗ 𝑈)

= (𝑑𝐼

4𝑛
− 𝐴) ⊗ (𝑈

−1
𝐼

𝑚
𝑈) − 𝐵 ⊗ (𝑈

−1
𝐾

1
𝑈) − 𝐵

𝑇
⊗ (𝑈

−1
(𝐾

𝑇

1
)𝑈) − 𝐶 ⊗ (𝑈

−1
𝐾

2
𝑈)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐴



1
𝐶



1
0

𝐴



2
𝐶



2

d c
...

𝐴



𝑚/2
+ 𝐶



𝑚/2

c d
...

𝐶



𝑚−2
𝐴



𝑚−2

𝐶



𝑚−1
𝐴



𝑚−1
0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝐴



𝑚
+ 𝐶



𝑚

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, if 𝑚 is even,

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐴



1
𝐶



1
0

𝐴



2
𝐶



2

d c
...

c d
...

𝐶



𝑚−2
𝐴



𝑚−2

𝐶



𝑚−1
𝐴



𝑚−1
0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝐴



𝑚
+ 𝐶



𝑚

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, if 𝑚 is odd,

(11)

where for 𝑗 = 1, 2, . . . , 𝑚,

𝐴



𝑗
= 𝑑𝐼

4𝑛
− 𝐴 − 𝑒

𝑖𝜃
𝑗
𝐵 − 𝑒

−𝑖𝜃
𝑗
𝐵

𝑇

= 𝐷

1
(𝜃

𝑗
) ⊗ 𝐼

𝑛
− 𝐷

2
⊗ 𝑅

𝑛
− (𝐷

2
)

𝑇
⊗ 𝑅

𝑇

𝑛
,

𝐶



𝑗
= −𝑒

−𝑖𝜃
𝑗
𝐶,

𝐷

1 (
𝑥) =

[

[

[

[

𝑑 −1 −1 0

−1 𝑑 −𝑒

−𝑖𝑥
−1

−1 −𝑒

𝑖𝑥
𝑑 −1

0 −1 −1 𝑑

]

]

]

]

,

𝐷

2
=

[

[

[

[

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

]

]

]

]

,

(12)

d is the degree of the vertices ofL𝐾
4.8.8

.
Interchanging rows and columns, those matrices can

be changed into a block-diagonal form having the same
determinants:

det (𝑋) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

























































𝐿

1

𝐿

2

d
𝐿

𝑚/2−1

𝐴



𝑚/2
+ 𝐶



𝑚/2
0

0 𝐴



𝑚
+ 𝐶



𝑚

























































,

if 𝑚 is even,














































𝐿

1

𝐿

2

d
𝐿

(𝑚−1)/2

𝐴



𝑚
+ 𝐶



𝑚















































,

if 𝑚 is odd,
(13)

where 𝐿
𝑗
= [

𝐴


𝑗
𝐶


𝑗

𝐶


𝑚−𝑗
𝐴


𝑚−𝑗

].
For an even value of 𝑚 (the case when 𝑚 is odd is

similar), the Laplacian characteristic polynomial ofL𝐾
4.8.8

can
be expressed as

𝜙 (L
𝐾

4.8.8
, 𝑥) = det (𝑥𝐼

4𝑚𝑛
− (𝑑𝐼

4𝑚𝑛
− 𝑋))

= 𝜙

1
(𝑥) 𝜙

2
(𝑥) ⋅ ⋅ ⋅ 𝜙

𝑚/2
(𝑥) 𝜙

𝑚
(𝑥) ,

(14)
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where

𝜙

𝑗
(𝑥) = det(𝑥𝐼

8𝑛
− [

𝐴



𝑗
𝐶



𝑗

𝐶



𝑚−𝑗
𝐴



𝑚−𝑗

]) (15)

for 𝑗 = 1, . . . , 𝑚/2 − 1, 𝜙
𝑗
(𝑥) = det(𝑥𝐼

4𝑛
− 𝐴



𝑗
− 𝐶



𝑗
) and for

𝑗 = 𝑚/2,𝑚. Note that

𝑑

𝑑𝑥

𝜙 (L
𝐾

4.8.8
, 𝑥) = 𝜙



𝑚
(𝑥)

𝑚/2

∏

𝑗=1

𝜙

𝑗 (
𝑥)

+ 𝜙

𝑚
(𝑥)

𝑚/2

∑

𝑗=1

∏

𝑚/2

𝑘=1
𝜙

𝑘
(𝑥)

𝜙

𝑗 (
𝑥)

𝜙



𝑗
(𝑥) .

(16)

Hence, by Lemma 2,

4𝑚𝑛𝑡 (L
𝐾

4.8.8
) = 𝜇

1
𝜇

2
⋅ ⋅ ⋅ 𝜇

4𝑚𝑛−1

= (−1)

4𝑚𝑛−1 𝑑

𝑑𝑥

𝜙 [L
𝐾

4.8.8
, 𝑥]









𝑥=0

= −𝜙



𝑚
(0)

𝑚/2

∏

𝑗=1

𝜙

𝑗 (
0)

− 𝜙

𝑚
(0)

[

[

𝑚/2

∑

𝑗=1

∏

𝑚/2

𝑘=1
𝜙

𝑘
(𝑥)

𝜙

𝑗
(𝑥)

𝜙



𝑗
(𝑥)

]

]























𝑥=0

,

(17)

where 𝜇
1
, 𝜇

2
, . . . , 𝜇

4𝑚𝑛−1
are the nonzero Laplacian eigenval-

ues ofL𝐾
4.8.8

.
Note that thematrix𝑑𝐼

4𝑛
−𝐴−𝐵−𝐵

𝑇
−𝐶 also is a Laplacian

matrix of a graph, denoted by L0
4.8.8

(see Figure 2(a)). Then,
𝜙

𝑚
(0) = det(−𝐴

𝑚
− 𝐶



𝑚
) = det(−𝑑𝐼

4𝑛
+ 𝐴 + 𝐵 + 𝐵

𝑇
+ 𝐶) = 0

and 𝜙
𝑚
(0) = (−1)

4𝑛−1
4𝑛𝑡(L0

4.8.8
). So, we have

𝑚𝑡 (L
𝐾

4.8.8
) = 𝑡 (L

0

4.8.8
)

𝑚/2

∏

𝑗=1

𝜙

𝑗 (
0) . (18)

Formula (18) is also suitable for other lattices on the Klein
bottle with similar proof, but making use of different Lapla-
cian matrix. It will be used later on for two other types of
lattices, replacing L0

4.8.8
by L0
ℎ
(see Figure 2(b)) and L0

3
3
⋅4
2

(see Figure 2(c)), respectively.
In the following, we turn to calculate 𝜙

𝑗
(0). Let 𝑌 be a

subset of the row/column index set of 𝑃. For convenience,
let 𝑃𝑌 denote the determinant of the matrix obtained from
𝑃 by deleting all rows and columns whose indices are in
𝑌. For 𝑗 = 1, . . . , 𝑚/2 − 1, noticing that 𝜃

𝑗
= −𝜃

𝑚−𝑗
and

𝐷

1
(𝜃

𝑗
) = 𝐷

1
(−𝜃

𝑗
), expanding the determinant 𝜙

𝑗
(0) =

det [ 𝐴


𝑗
𝐶


𝑗

𝐶


𝑚−𝑗
𝐴


𝑚−𝑗

], along the first row, and then expanding the
resulting determinants along the first column, we have

𝜙

𝑗
(0) =























𝐷

1
(𝜃

𝑗
) ⊗ 𝐼

𝑛
− 𝐷

2
⊗ 𝑅 − (𝐷

2
)

𝑇
⊗ 𝑅

𝑇
𝑒

−𝑖𝜃
𝑗
𝐶

𝑒

−𝑖𝜃
𝑚−𝑗
𝐶 𝐷

1
(𝜃

𝑚−𝑗
) ⊗ 𝐼

𝑛
− 𝐷

2
⊗ 𝑅 − (𝐷

2
)

𝑇
⊗ 𝑅

𝑇























=































































































𝐷

1
(𝜃

𝑗
) 𝐷

2
𝑒

−𝑖𝜃
𝑗
𝐷

𝑇

2

𝐷

𝑇

2
𝐷

1
(𝜃

𝑗
) 𝐷

2

d d d
𝐷

𝑇

2
𝐷

1
(𝜃

𝑗
) 𝐷

2

𝐷

𝑇

2
𝐷

1
(𝜃

𝑗
) 𝑒

−𝑖𝜃
𝑗
𝐷

2

𝑒

𝑖𝜃
𝑗
𝐷

𝑇

2
𝐷

1
(−𝜃

𝑗
) 𝐷

2

𝐷

𝑇

2
𝐷

1
(−𝜃

𝑗
) 𝐷

2

d d d
𝐷

𝑇

2
𝐷

1
(−𝜃

𝑗
) 𝐷

2

𝑒

𝑖𝜃
𝑗
𝐷

2
𝐷

𝑇

2
𝐷

1
(−𝜃

𝑗
)































































































= 3𝜙

𝑗
(0)

{1}
− 6 (3 + cos 𝜃

𝑗
) 𝜙

𝑗
(0)

{1,2,3,4}
+ (6 + 2 cos 𝜃

𝑗
) 𝜙

𝑗
(0)

{1,2,3,4,5}

− 𝜙

𝑗
(0)

{1,8𝑛}
− 2(6 + 2 cos 𝜃

𝑗
)

2𝑛

.

(19)

Now, we turn to calculate 𝜙
𝑗
(0)

{1}, 𝜙
𝑗
(0)

{1,2,3,4}, 𝜙
𝑗
(0)

{1,2,3,4,5},
and 𝜙

𝑗
(0)

{1,8𝑛}.
Let 𝐹
2𝑛
= 𝜙

𝑗
(0)

{1}, 𝐿
2𝑛−1

= 𝜙

𝑗
(0)

{1,2,3,4}, 𝐹
2𝑛
= 𝜙

𝑗
(0)

{1,8𝑛},
and 𝐿

2𝑛−1
= 𝜙

𝑗
(0)

{1,2,3,4,8𝑛}. Also set Γ
𝑗−1

= Γ

{1,2,3,4}

𝑗
, 𝑗 =

2, . . . , 𝑛, Γ
𝑛
∈ {𝐹

𝑛
, 𝐿

𝑛
, 𝐹



𝑛
, 𝐿



𝑛
}.

By the Laplace expansion theorem, we obtain several
expansions. First, an expansion by rows 1, 2, and 3:

𝐹

𝑛
= (18 − 2 cos 𝜃

𝑗
) 𝐿

𝑛−1
− 8𝐹

𝑛−1
;

𝐹



𝑛
= (18 − 2 cos 𝜃

𝑗
) 𝐿



𝑛−1
− 8𝐹



𝑛−1
.

(20)
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1

2

n − 1

n

(a)

1

2

3

2n

2n − 1

(b)

1

2

3

4

2n

2n − 1

(c)

Figure 2: (a)L0
4.8.8

; (b)L0
ℎ
; (c)L0

3
3
⋅4
2 .

An expansion by rows 1, 2, 3, and 4, we get

𝐿

𝑛
= (36 − 12 cos 𝜃

𝑗
) 𝐿

𝑛−1
− (18 − 2 cos 𝜃

𝑗
) 𝐹

𝑛−1
;

𝐿



𝑛
= (36 − 12 cos 𝜃

𝑗
) 𝐿



𝑛−1
− (18 − 2 cos 𝜃

𝑗
) 𝐹



𝑛−1
.

(21)

The recursion relations (20) and (21) give

Γ

𝑛
= (28 − 12 cos 𝜃

𝑗
) Γ

𝑛−1

− (6 + 2 cos 𝜃
𝑗
) Γ

𝑛−2
, Γ

𝑛
∈ {𝐹

𝑛
, 𝐿

𝑛
, 𝐹



𝑛
, 𝐿



𝑛
} .

(22)

Note that

𝐹

0
= 0, 𝐹

1
= det[

[

3 −𝑒

𝑖𝜃
𝑗
−1

−𝑒

−𝑖𝜃
𝑗

3 −1

−1 −1 3

]

]

= 18 − 2 cos 𝜃
𝑗
,

𝐿

0
= 1, 𝐿

1
=det

[

[

[

[

3 −1 −1 0

−1 3 −𝑒

𝑖𝜃
𝑗
−1

−1 −𝑒

−𝑖𝜃
𝑗

3 −1

0 −1 −1 3

]

]

]

]

=36−12 cos 𝜃
𝑗
,

𝐹



0
= −1, 𝐹



1
= det[ 3 −𝑒

−𝑖𝜃
𝑗

−𝑒

−𝑖𝜃
𝑗

3

] = 8.

(23)

Making use of the initial conditions, respectively, and solving
(22), we obtain

𝐹

𝑛
=

18 − 2 cos (2𝑗𝜋/𝑚)

4√40 − 48 cos (2𝑗𝜋/𝑚) + 8cos2 (2𝑗𝜋/𝑚)
(𝑎

𝑛
− 𝑏

𝑛
) ;

𝐿

𝑛
=

36 − 12 cos (2𝑗𝜋/𝑚) − 𝑏

4√40 − 48 cos (2𝑗𝜋/𝑚) + 8cos2 (2𝑗𝜋/𝑚)
𝑎

𝑛

−

36 − 12 cos (2𝑗𝜋/𝑚) − 𝑎

4√40 − 48 cos (2𝑗𝜋/𝑚) + 8cos2 (2𝑗𝜋/𝑚)
𝑏

𝑛
;

𝐹



𝑛
=

8 + 𝑏

4√40 − 48 cos (2𝑗𝜋/𝑚) + 8cos2 (2𝑗𝜋/𝑚)
𝑎

𝑛

−

8 + 𝑎

4√40 − 48 cos (2𝑗𝜋/𝑚) + 8cos2 (2𝑗𝜋/𝑚)
𝑏

𝑛
,

(24)

where 𝑎 = 14 − 6 cos(2𝑗𝜋/𝑚) +

2√40 − 48 cos(2𝑗𝜋/𝑚) + 8cos2(2𝑗𝜋/𝑚) and 𝑏 = 14 − 6 cos

(2𝑗𝜋/𝑚) − 2√40 − 48 cos(2𝑗𝜋/𝑚) + 8cos2(2𝑗𝜋/𝑚).
By combining (19) and (24), we obtain

𝜙

𝑗
(0) = 𝑎

2𝑛
+ 𝑏

2𝑛
− 2(6 + 2 cos(

2𝑗𝜋

𝑚

))

2𝑛

,

𝑗 = 1, . . . ,

𝑚

2

− 1.

(25)

Similarly, by calculation, we have

𝑡 (L
0

4.8.8
) = det(−𝐴

𝑚
− 𝐶



𝑚
)

{1}
= 𝐹

𝑛









𝑗=𝑚

= 16𝐹

𝑛−1
− 64𝐹

𝑛−2
= 2𝑛8

𝑛
.

(26)
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Expanding the determinant along the first row and then
expanding the resulting determinants along the first column,
we have
det [𝐴

𝑚/2
+ 𝐶



𝑚/2
] = 3𝐹

𝑛
− 3 (6 + 2 cos𝜋) 𝐿

𝑛−1

+ (6+2 cos𝜋) 𝐹𝑛−1−𝐹


𝑛
−2(6+2 cos𝜋)𝑛

= 𝑎

𝑛
+ 𝑏

𝑛
− 2(6 + 2 cos𝜋)𝑛

= 4

𝑛
[(5 + 2

√

6)

𝑛

+ (5 − 2

√

6)

𝑛

− 2] .

(27)

Thus, we have the following.

Theorem 3. The number of spanning trees of 4.8.8 lattice can
be expressed as

𝑡 (L
𝐾

4.8.8
)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

2 × 32

𝑛
𝑛

𝑚

[(5+2
√
6)

𝑛

+(5−2
√
6)

𝑛

−2]

×

𝑚/2−1

∏

𝑗=1

[𝑎

2𝑛
+𝑏

2𝑛
− 2(6+2 cos(

2𝑗𝜋

𝑚

))

2𝑛

] ,

(𝑚 𝑖𝑠 𝑒V𝑒𝑛)
2×8

𝑛
𝑛

𝑚

×

(𝑚−1)/2

∏

𝑗=1

[𝑎

2𝑛
+𝑏

2𝑛
−2(6+2 cos(

2𝑗𝜋

𝑚

))

2𝑛

] ,

(𝑚 𝑖𝑠 𝑜𝑑𝑑) ,

(28)

where 𝑎 = 14 − 6 cos(2𝑗𝜋/𝑚) +

2√40 − 48 cos(2𝑗𝜋/𝑚) + 8cos2(2𝑗𝜋/𝑚) and 𝑏 =

14−6 cos(2𝑗𝜋/𝑚)−2√40 − 48 cos(2𝑗𝜋/𝑚) + 8cos2 (2𝑗𝜋/𝑚).

3. The Hexagonal Lattice

The hexagonal lattice L
ℎ
is shown in Figure 1(b). If we

identify 𝑎
1
and 𝑏∗
1
, 𝑎

∗

𝑚
and 𝑏∗
2𝑛
, and 𝑏

𝑠
and 𝑏∗
𝑠
for 𝑓 or 𝑠 =

2, . . . , 2𝑛−1 inL
ℎ
, we obtain a graphwith cylindrical bound-

ary condition, denoted by L𝑐
ℎ
. Adding edges (𝑎

𝑠
, 𝑎

∗

𝑚+1−𝑠
) for

1 ≤ 𝑠 ≤ 𝑚, inL𝑐
ℎ
, a hexagonal lattice with toroidal boundary

condition, denoted byL𝑡
ℎ
, can be gotten.

Yan and Zhang [4] got the number of spanning trees and
the asymptotic tree number entropy ofL𝑐

ℎ
:

𝑡 (L
𝑐

ℎ
) =

2

𝑛

𝑚

𝑚−1

∏

𝑗=1

√

𝑎

𝑏

[(𝑐 +

√

𝑎𝑏)

𝑛

− (𝑐 −

√

𝑎𝑏)

𝑛

] ,

𝑧 (L
𝑐

ℎ
) = lim
𝑚,𝑛→∞

1

2𝑚𝑛

log 𝑡 (L𝑐
ℎ
)

=

1

4𝜋

∫

2𝜋

0

log (3 − cos𝑥+√7−8 cos𝑥 + cos2𝑥) 𝑑𝑥

≈ 0.8077,

(29)

where 𝑎 = 1 − cos(2𝑗𝜋/𝑚), 𝑏 = 7 − cos(2𝑗𝜋/𝑚), and 𝑐 =
3 − cos(2𝑗𝜋/𝑚) .

Shrock and Wu [7] showed that the number of spanning
trees and the asymptotic tree number entropy of L𝑡

ℎ
can be

expressed as

𝑡 (L
𝑡

ℎ
) =

3

𝑛𝑚

𝑛−1

∏

𝑠=0

𝑚−1

∏

𝑗=0

(𝑠,𝑗) ̸=(0,0)

[6−2 cos 𝜃
1
−2 cos 𝜃

2
−2 cos (𝜃

1
+ 𝜃

2
)] ,

𝑧 (L
𝑡

ℎ
) = lim
𝑚,𝑛→∞

1

2𝑚𝑛

log 𝑡 (L𝑡
ℎ
)

=

1

8𝜋

2
∬

2𝜋

0

log (6 − 2 cos𝑥 − 2 cos𝑦

−2 cos (𝑥 + 𝑦)) 𝑑𝑥 𝑑𝑦,

≈ 0.8077,

(30)

where 𝜃
1
= 2𝑠𝜋/𝑛 and 𝜃

2
= 2𝑗𝜋/𝑚.

By adding edges (𝑎
𝑠
, 𝑎

∗

𝑠
) for 1 ≤ 𝑠 ≤ 𝑚, in L𝑐

ℎ
, a hexag-

onal latticeL𝐾
ℎ
with Klein bottle boundary condition can be

gotten. For the number of spanning trees ofL𝐾
ℎ
, we have the

following result.

Theorem 4. The number of spanning trees of hexagonal lattice
can be expressed as

𝑡 (L
𝐾

ℎ
)=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

3×2

4𝑛−1
𝑛

𝑚

×

𝑚/2−1

∏

𝑗=1

[𝑎

2𝑛
+𝑏

2𝑛
− 2

𝑛+1

× (1+cos(
2𝑗𝜋

𝑚

))

𝑛

] , 𝑖𝑓 𝑚 𝑖𝑠 𝑒V𝑒𝑛,

3 × 2

𝑛−1
𝑛

𝑚

×

(𝑚−1)/2

∏

𝑗=1

[𝑎

2𝑛
+𝑏

2𝑛
− 2

𝑛+1

×(1+cos(
2𝑗𝜋

𝑚

))

𝑛

] , 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑,

(31)

where 𝑎 = 3 − cos(2𝑗𝜋/𝑚) +

√7 − 8 cos(2𝑗𝜋/𝑚) + cos2(2𝑗𝜋/𝑚) and 𝑏 = 3− cos(2𝑗𝜋/𝑚) −

√7 − 8 cos(2𝑗𝜋/𝑚) + cos2(2𝑗𝜋/𝑚).

Proof. By suitable labelling of vertices of L𝐾
ℎ
, the adjacency

matrix𝑋 of it can be written in terms of a linear combination
of direct products of smaller ones:

𝑋 = 𝐴 ⊗ 𝐼

𝑚
+ 𝐵 ⊗ 𝐾

1
+ 𝐵

𝑇
⊗ 𝐾

𝑇

1
+ 𝐶 ⊗ 𝐾

2
, (32)

where

𝐴 = [

𝐴

1
𝐼

𝑛

𝐼

𝑛
𝐴

2

] , 𝐵 = [

0

𝑛
0

𝑛

𝐼

𝑛
0

𝑛

] ,

𝐶 = [

0

𝑛
0

𝑛

0

𝑛
𝐶

1

] ,

(33)
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𝐴

1
= (𝑎

1

𝑠𝑗
)

𝑛×𝑛
, in which 𝑎1

𝑠𝑗
= 𝑎

1

𝑗𝑠
= 1 if 𝑠 is odd and 𝑗 = 𝑠 + 1;

else, 𝑎1
𝑠𝑗
= 0; 𝐴

2
= (𝑎

2

𝑠𝑗
)

𝑛×𝑛
, in which 𝑎2

𝑠𝑗
= 𝑎

2

𝑗𝑠
= 1, if 𝑠 is

even, and 𝑗 = 𝑠 + 1; else, 𝑎2
𝑠𝑗
= 0; 𝐶

1
= (𝑐

𝑠𝑗
)

𝑛×𝑛
, in which

𝑐

1𝑛
= 𝑐

𝑛1
= 1, otherwise 0.

Interchanging rows and columns, we have

𝜙

𝑗
(0) = 𝑇

=

















3𝐼

2𝑛
− 𝑅

2𝑛
− 𝑅

𝑇

2𝑛
− 𝐴

3
(𝜃) 𝐶

3
(−𝜃)

𝐶

3
(𝜃) 3𝐼

2𝑛
− 𝑅

2𝑛
− 𝑅

𝑇

2𝑛
− 𝐴

3
(−𝜃)

















,

(34)

where 𝐴
3
(𝑥) = (𝑎

3

𝑠𝑗
)

2𝑛×2𝑛
, in which 𝑎3

𝑠𝑗
= 𝑎

3

𝑗+2,𝑠+2
= 𝑒

(−1)
𝑖/2
𝑥,

if 𝑠 is even, and 𝑗 = 𝑠 + 1, 𝑎

3

2𝑛−1,2𝑛
= 1 + 𝑒

−𝑖𝑥, and
𝑎

3

2𝑛,2𝑛−1
= 1 + 𝑒

𝑖𝑥; else, 𝑎3
𝑠𝑗
= 0; 𝐶

3
(𝑥) = (𝑐

3

𝑠𝑗
)

2𝑛×2𝑛
, in which

𝑐

3

1,2𝑛
= −1 − 𝑒

𝑖𝑥, 𝑐3
2𝑛,1

= −1 − 𝑒

−𝑖𝑥, otherwise 0. Expanding
the determinant𝑇 along the first row and then expanding the
resulting determinants along the first column, we have

𝑇 = 3𝑇

{1}
− 𝑇

{1,2,3}
− (2 + 2 cos 𝜃

𝑗
) 𝑇

{1,4𝑛}

− 2 × 15

2𝑛
(2 + 2 cos 𝜃

𝑗
)

𝑛
.

(35)

Let 𝐹
4𝑛−1

= 𝑇

{1}, 𝐿
2(2𝑛−1)

= 𝑇

{1,2}, 𝐹
4𝑛−2

= 𝑇

{1,4𝑛}, and
𝐿



2(2𝑛−1)
= 𝑇

{1,2,4𝑛}. Also, set Γ
𝑗−1

= Γ

{1,2}

𝑗
, 𝑗 = 2, . . . , 𝑛,

Γ

𝑛
∈ {𝐹

𝑛
, 𝐿

𝑛
, 𝐹



𝑛
, 𝐿



𝑛
}.

By the Laplace expansion theorem, we obtain several
expansions. First, an expansion by rows 1 and 2 is as follows:

𝐹

𝑛
= 3𝐿

𝑛−1
− (2 + 2 cos 𝜃

𝑗
) 𝐹

𝑛−2
;

𝐹



𝑛
= 3𝐿



𝑛−1
− (2 + 2 cos 𝜃

𝑗
) 𝐹



𝑛−2
.

(36)

An expansion by rows 1 and 2 is as follows:

𝐿

𝑛
= 3𝐿

𝑛−1
− 𝐹

𝑛−1
;

𝐿



𝑛
= 3𝐿



𝑛−1
− 𝐹



𝑛−1
.

(37)

The recursion relations (36) and (37) give

Γ

𝑛
= (6 − 2 cos 𝜃

𝑗
) Γ

𝑛−1
− (2 cos 𝜃

𝑗
+ 2) Γ

𝑛−2
,

Γ

𝑛
∈ {𝐹

𝑛
, 𝐿

𝑛
, 𝐹



𝑛
, 𝐿



𝑛
} .

(38)

Note that

𝐹

3
=det[[

[

3 −1 − 𝑒

𝑖𝜃
𝑗

0

−1 − 𝑒

𝑖𝜃
𝑗

3 −𝑒

𝑖𝜃
𝑗

0 −𝑒

𝑖𝜃
𝑗

3

]

]

]

=18 − 6 cos 𝜃
𝑗
, 𝐹

1
=3,

𝐿

2
= det[ 3 −𝑒

𝑖𝜃
𝑗

−𝑒

−𝑖𝜃
𝑗

3

] = 8, 𝐿

0
= 1,

𝐹



2
= det[ 3 −1 − 𝑒

𝑖𝜃
𝑗

−1 − 𝑒

−𝑖𝜃
𝑗

3

] = 7 − 2 cos 𝜃
𝑗
, 𝐹



0
= 1.

(39)

Making use of the initial conditions, respectively, and solving
(38), we obtain

𝐹

𝑛
=

9 − 3 cos (2𝑗𝜋/𝑚) + 3𝑐
2𝑐

𝑎

(𝑛−1)/2

−

9 − 3 cos (2𝑗𝜋/𝑚) − 3𝑐
2𝑐

𝑏

(𝑛−1)/2
;

𝐿

𝑛
=

5 + cos (2𝑗𝜋/𝑚) + 𝑐
2𝑐

𝑎

𝑛/2
−

5 + cos (2𝑗𝜋/𝑚) − 𝑐
2𝑐

𝑏

𝑛/2
;

𝐹



𝑛
=

4 − cos (2𝑗𝜋/𝑚) + 𝑐
2𝑐

𝑎

𝑛/2
−

4 − cos (2𝑗𝜋/𝑚) − 𝑐
2𝑐

𝑏

𝑛/2
,

(40)

where 𝑎 = 3 − cos(2𝑗𝜋/𝑚) + 𝑐, 𝑏 = 3 − cos(2𝑗𝜋/𝑚) − 𝑐 and
𝑐 = √7 − 8 cos(2𝑗𝜋/𝑚) + cos2(2𝑗𝜋/𝑚). By combining (35)
and (40) we obtain

𝜙

𝑗
(0) = 𝑎

2𝑛
+ 𝑏

2𝑛
− 2

𝑛+1
15

2𝑛
(1 + cos(

2𝑗𝜋

𝑚

))

𝑛

,

𝑗 = 1, . . . ,

𝑚

2

− 1.

(41)

Similarly, by calculation, we have

𝑡 (L
0

ℎ
) = 𝜙

𝑚
(0)

{1}

= det (−𝐴
𝑚
− 𝐶



𝑚
)

{1}

= 𝐹

2𝑛−1







𝑗=𝑚
= 3𝑛2

𝑛−1
.

(42)

Expanding the determinant along the first row and then
expanding the resulting determinants along the first column,
we have

det [𝐴
𝑚/2
+ 𝐶



𝑚/2
] = 3𝐹

2𝑛−1
− 𝐿

2𝑛−2

− (2 + 2 cos𝜋) 𝐹
2𝑛−1

− 2 × 15

2𝑛

× (2 + 2 cos𝜋)𝑛

= 𝑎

𝑛
+ 𝑏

𝑛
− 2

× 15

2𝑛
(2 + 2 cos𝜋)𝑛 = 8𝑛.

(43)

By formula (18), the result holds.

4. The 33 ⋅ 42 Lattice

The 33 ⋅ 42 lattice can be constructed by starting with the
square lattice and adding a diagonal edge connecting the
vertices in the upper left to the lower right corners of each
square in every other row as shown in Figure 1(c). If we
identify 𝑎

1
and 𝑏∗
1
, 𝑎∗
𝑚
and 𝑏∗
2𝑛
, and 𝑏

𝑠
and 𝑏∗
𝑠
for 𝑠 = 2, . . . , 2𝑛−

1, in L
3
3
⋅4
2 , we obtain a graph with cylindrical boundary

condition, denoted by L𝑐
3
3
⋅4
2 . Adding edges (𝑎

𝑠
, 𝑎

∗

𝑚+1−𝑠
) for

1 ≤ 𝑠 ≤ 𝑚, in L𝑐
3
3
⋅4
2 , a 33 ⋅ 42 lattice with toroidal boundary

condition, denoted byL𝑡
3
3
⋅4
2 , can be gotten.
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Yan and Zhang [4] got the number of spanning trees and
the asymptotic tree number entropy ofL𝑐

3
3
⋅4
2 :

𝑡 (L
𝑐

3
3
⋅4
2) =

2

𝑛

𝑚

𝑚−1

∏

𝑗=1

√

𝑎

𝑏

[(𝑐 +

√

𝑎𝑏)

𝑛

− (𝑐 −

√

𝑎𝑏)

𝑛

] ,

𝑧 (L
𝑐

3
3
⋅4
2) = lim
𝑚,𝑛→∞

1

2𝑚𝑛

log 𝑡 (L𝑐
3
3
⋅4
2)

=

1

4𝜋

∫

2𝜋

0

log [11 − 11 cos𝑥 + 2cos2𝑥

+ ((11 − 11 cos𝑥 + 2cos2𝑥)
2

−2 − 2 cos𝑥)
1/2

] 𝑑𝑥 ≈ 1.4069,

(44)

where 𝑎 = 7 − 9 cos(2𝑗𝜋/𝑚) + 2cos2(2𝑗𝜋/𝑚), 𝑏 = 17 −

13 cos(2𝑗𝜋/𝑚)+2cos2(2𝑗𝜋/𝑚), and 𝑐 = 11−11 cos(2𝑗𝜋/𝑚)+
2cos2(2𝑗𝜋/𝑚).

Chang andWang [9] showed that the number of spanning
trees and the asymptotic tree number entropy ofL𝑡

3
3
⋅4
2 can be

expressed as

𝑡 (L
𝑡

3
3
⋅4
2) =

3

𝑛𝑚

𝑚−1

∏

𝑠=0

𝑛−1

∏

𝑗=0

(𝑠,𝑗) ̸=(0,0)

[22 − 22 cos 𝜃
1
+ 4cos2𝜃

1

−2 cos 𝜃
2
− 2 cos (𝜃

1
− 𝜃

2
) ] ,

𝑧 (L
𝑡

3
3
⋅4
2) = lim
𝑚,𝑛→∞

1

2𝑚𝑛

log 𝑡 (L𝑡
3
3
⋅4
2)

=

1

4𝜋

∫

2𝜋

0

log [11 − 11 cos𝑥 + 2cos2𝑥

+ ((11 − 11 cos𝑥 + 2cos2𝑥)
2

,

− 2−2 cos𝑥)
1/2

] 𝑑𝑥≈1.4069,

(45)

where 𝜃
1
= 2𝑠𝜋/𝑚 and 𝜃

2
= 2𝑗𝜋/𝑛.

By adding edges (𝑎
𝑠
, 𝑎

∗

𝑠
) for 1 ≤ 𝑠 ≤ 𝑚, in L𝑐

3
3
⋅4
2 , a 33 ⋅

4

2 latticeL𝐾
3
3
⋅4
2 with Klein bottle boundary condition can be

gotten. For the number of spanning trees of L𝐾
3
3
⋅4
2 , we have

the following theorem.

Theorem 5. The number of spanning trees of 33 ⋅ 42 lattice
L𝐾
3
3
⋅4
2 can be expressed as

𝑡 (L
𝐾

3
3
.4
2)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

3 × 2

𝑛−1
× 48

𝑛
𝑛

𝑚

×

𝑚/2−1

∏

𝑗=1

[𝑎

2𝑛
+ 𝑏

2𝑛
− 2

× (2 + 2 cos(
2𝑗𝜋

𝑚

))

𝑛

] , 𝑖𝑓𝑚𝑖𝑠𝑒V𝑒𝑛,

3 × 2

𝑛−1
𝑛

𝑚

×

(𝑚−1)/2

∏

𝑗=1

[𝑎

2𝑛
+ 𝑏

2𝑛
− 2

× (2 + 2 cos(
2𝑗𝜋

𝑚

))

𝑛

] , 𝑖𝑓𝑚𝑖𝑠𝑜𝑑𝑑,

(46)

where 𝑎 = [11 − 11 cos(2𝑗𝜋/𝑚) + 2cos2(2𝑗𝜋/𝑚)] +
√

[11 − 11 cos(2𝑗𝜋/𝑚) + 2cos2(2𝑗𝜋/𝑚)]2−2 − 2 cos(2𝑗𝜋/𝑚)
and 𝑏 = [11 − 11 cos(2𝑗𝜋/𝑚) + 2cos2(2𝑗𝜋/𝑚)] −
√

[11 − 11 cos(2𝑗𝜋/𝑚)+ 2cos2(2𝑗𝜋/𝑚)]2 − 2−2 cos(2𝑗𝜋/𝑚).

Proof. By a suitable lebelling of vertices of L𝐾
3
3
⋅4
2 , the adja-

cency matrix 𝑋 of it can be written in terms of a linear
combination of direct products of smaller ones:

𝑋 = 𝐴 ⊗ 𝐼

𝑚
+ 𝐵 ⊗ 𝐾

1
+ 𝐵

𝑇
⊗ 𝐾

𝑇

1
+ 𝐶 ⊗ 𝐾

2
, (47)

where 𝐴 = 𝑅
2𝑛
+ 𝑅

𝑇

2𝑛
and 𝐵 = (𝑏

𝑠𝑗
)

2𝑛×2𝑛
, where 𝑏

𝑠𝑗
= 1, if 𝑠

is odd, and 𝑗 = 𝑠 + 1; else, 𝑏
𝑠𝑗
= 𝛿

𝑠𝑗
, 𝐶 = (𝑐

𝑠𝑗
)

2𝑛×2𝑛
, in which

𝑐

1,2𝑛
= 𝑐

2𝑛,1
= 1, otherwise 0. Using the same notations as

Section 2, we have

𝜙

𝑗
(0) = (5 − 2 cos 𝜃

𝑗
) 𝜙

𝑗
(0)

{1}
− (2 + 2 cos 𝜃

𝑗
) 𝜙

𝑗
(0)

{1,2}

− 𝜙

𝑗
(0)

{1,12𝑛}
− 2 × (2 + 2 cos 𝜃

𝑗
)

𝑛
.

(48)

Let 𝐹
2𝑛
= 𝜙

𝑗
(0)

{1}, 𝐿
2𝑛−1

= 𝜙

𝑗
(0)

{1,2}, 𝐹
2𝑛−1

= 𝜙

𝑗
(0)

{1,2𝑛},
and 𝐿

2𝑛−1
= 𝜙

𝑗
(0)

{1,2,2𝑛}. Also set Γ
𝑗−1

= Γ

{1,2}

𝑗
, 𝑗 = 2, . . . , 𝑛,

Γ

𝑛
∈ {𝐹

𝑛
, 𝐿

𝑛
, 𝐹



𝑛
, 𝐿



𝑛
}.

By the Laplace expansion theorem, we obtain several
expansions. First, an expansion by rows 1 and 2 is as follows:

𝐹

𝑛
= (5 − 2 cos 𝜃

𝑗
) 𝐿

𝑛−1
− 𝐹

𝑛−1
;

𝐹



𝑛
= (5 − 2 cos 𝜃

𝑗
) 𝐿



𝑛−1
− 𝐹



𝑛−1
.

(49)

An expansion by rows 1 and 2 is as follows:

𝐿

𝑛
= (5 − 2 cos 𝜃

𝑗
) 𝐿

𝑛−1
− (2 + 2 cos 𝜃

𝑗
) 𝐹

𝑛−1
;

𝐿



𝑛
= (5 − 2 cos 𝜃

𝑗
) 𝐿



𝑛−1
− (2 + 2 cos 𝜃

𝑗
) 𝐹



𝑛−1
.

(50)
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The recursion relations (49) and (50) give

Γ

𝑛
= (22 − 22 cos(

2𝑗𝜋

𝑚

) + 2cos2 (
2𝑗𝜋

𝑚

)) Γ

𝑛−1

− (2 cos 𝜃
𝑗
+ 2) Γ

𝑛−2
, Γ

𝑛
∈ {𝐹

𝑛
, 𝐿

𝑛
, 𝐹



𝑛
, 𝐿



𝑛
} .

(51)

Note that

𝐹

0
= 0, 𝐹

1
= 5 − 2 cos 𝜃

𝑗
,

𝐿

0
= 1,

𝐿

1
= det[

5 − 2 cos 𝜃
𝑗
−1 − 𝑒

𝑖𝜃
𝑗

−1 − 𝑒

−𝑖𝜃
𝑗
5 − 2 cos 𝜃

𝑗

]

= 23 − 22 cos 𝜃
𝑗
+ 4cos2𝜃

𝑗
,

𝐹



0
= 1,

𝐹



1
= det [

5 − 2 cos 𝜃
𝑗

−1

−1 5 − 2 cos 𝜃
𝑗

]

= 24 − 20 cos 𝜃
𝑗
+ 4cos2𝜃

𝑗
.

(52)

Making use of the initial conditions, respectively, and solving
(51), we obtain

𝐹

𝑛
=

5 − 2 cos (2𝑗𝜋/𝑚)
√𝑐

(𝑎

𝑛
− 𝑏

𝑛
) ;

𝐿

𝑛
=

23 − 22 cos 𝜃
𝑗
+ 2cos2𝜃

𝑗
− 𝑏

√𝑐

𝑎

𝑛

−

23 − 22 cos 𝜃
𝑗
+ 2cos2𝜃

𝑗
− 𝑎

√𝑐

𝑏

𝑛
;

𝐹



𝑛
=

24 − 20 cos 𝜃
𝑗
+ 2cos2𝜃

𝑗
+ 𝑏

√𝑐

𝑎

𝑛

−

24 − 20 cos 𝜃
𝑗
+ 2cos2𝜃

𝑗
+ 𝑎

√𝑐

𝑏

𝑛
,

(53)

where 𝑎 = (11 − 11 cos(2𝑗𝜋/𝑚) + 2 cos(2𝑗𝜋/𝑚)) + √𝑐, 𝑏 =
(11 − 11 cos(2𝑗𝜋/𝑚) + 2 cos(2𝑗𝜋/𝑚)) − √𝑐, and 𝑐 = (11 −
11 cos(2𝑗𝜋/𝑚) + 2 cos(2𝑗𝜋/𝑚))2 − 2 − 2 cos(2𝑗𝜋/𝑚). By
combining (48) and (53) we obtain

𝜙

𝑗
(0) = 𝑎

2𝑛
+ 𝑏

2𝑛
− 2 × (2 + 2 cos(

2𝑗𝜋

𝑚

))

𝑛

,

𝑗 = 1, . . . ,

𝑚

2

− 1.

(54)

Similarly, by calculation, we have

𝑡 (L
0

3
3
⋅4
2) = 𝜙𝑚

(0)

{1}
= det (−𝐴

𝑚
− 𝐶



𝑚
)

{1}

= 3 × 2

𝑛−1
𝑛.

(55)

When 𝑚 is even, expanding the determinant along the
first row and then expanding the resulting determinants
along the first column, we have

det [𝐴
𝑚/2
+ 𝐶



𝑚/2
] = (5 − 2 cos𝜋) 𝐹

𝑛
− (2 + 2 cos𝜋) 𝐿

𝑛−1

− 𝐹



𝑛−1
− 2 × (1 + cos𝜋)𝑛

= 𝑎

𝑛
+ 𝑏

𝑛
− 2 × (1 + cos𝜋)𝑛 = 48𝑛.

(56)

By formula (18), the result holds.

5. Concluding Remarks

In this paper, we computed the numbers of spanning trees for
4.8.8 lattice, hexagonal lattice, and 33 ⋅ 42 lattice with a Klein
bottle boundary condition. For the asymptotic tree number
entropy of graphs, Lyons [11] got the following result.

Theorem 6. Let {𝐺
𝑛
} be a tight sequence of finite con-

nected graphs with bounded average degree such that
lim
𝑛→∞

(log 𝑡(𝐺
𝑛
)/|𝑉(𝐺

𝑛
)|) = ℎ. If {𝐺

𝑛
} is a se-

quence of connected subgraph of {𝐺

𝑛
}, such that

lim
𝑛→∞

(|{V ∈ 𝑉(𝐺



𝑛
); 𝑑

𝐺
𝑛

(V) = 𝑑

𝐺


𝑛

(V)}|/|𝑉(𝐺
𝑛
)|) = 1,

then lim
𝑛→∞

(log 𝑡(𝐺
𝑛
)/|𝑉(𝐺



𝑛
)|) = ℎ.

By Theorem 6 (or compared with the results by Chang
and Shrock [8], Chang and Wang [9], Shrock and Wu [7],
and Yan and Zhang [4]), we can see that 4.8.8 lattices have
the same asymptotic tree number entropywith three different
boundary conditions (cylindrical, toroidal, and Klein bottle).
Also hexagonal lattice and 33 ⋅ 42 lattice have the same
property.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by Promotive Research Fund for
Excellent Young and Middle-Aged Scientists of Shandong
Province (Grant no. BS2013DX026) and AMEP of Linyi
University.

References

[1] N. L. Biggs, Algebraic Graph Theory, Cambridge University
Press, Cambridge, UK, 2nd edition.

[2] M. Ciucu, W. Yan, and F. Zhang, “The number of spanning
trees of plane graphs with reflective symmetry,” Journal of
Combinatorial Theory A, vol. 112, no. 1, pp. 105–116, 2005.

[3] F. Zhang and W. Yan, “Enumerating spanning trees of graphs
with an involution,” Journal of Combinatorial Theory A, vol. 116,
no. 3, pp. 650–662, 2009.

[4] W. Yan and F. Zhang, “Enumeration of spanning trees of graphs
with rotational symmetry,” Journal of Combinatorial Theory A,
vol. 118, no. 4, pp. 1270–1290, 2011.



The Scientific World Journal 11

[5] F.-Y. Wu, “Number of spanning tees on a lattice,” Journal of
Physics A, vol. 10, pp. L113–L115, 1977.

[6] W.-J. Tzeng and F. Y.Wu, “Spanning trees on hypercubic lattices
and nonorientable surfaces,” Applied Mathematics Letters, vol.
13, no. 7, pp. 19–25, 2000.

[7] R. Shrock and F.-Y. Wu, “Spanning trees on graphs and lattices
in d dimensions,” Journal of Physics A, vol. 33, pp. 3881–3902,
2000.

[8] S.-C. Chang and R. Shrock, “Some exact results for spanning
trees on lattices,” Journal of Physics A, vol. 39, pp. 5653–5658,
2006.

[9] S.-C. Chang and W. Wang, “Spanning trees on lattices and
integral identities,” Journal of Physics A, vol. 39, pp. 10263–10275,
2006.

[10] S.-C. Chang, L.-C. Chen, and W.-S. Yang, “Spanning trees on
the Sierpinski gasket,” Journal of Statistical Physics, vol. 126, pp.
649–667, 2007.

[11] R. Lyons, “Asymptotic enumeration of spanning trees,” Combi-
natorics, Probability and Computing, vol. 14, pp. 491–522, 2005.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


