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Searching for integrable systems and constructing their exact solutions are of both theoretical and practical value. In this paper,
Ablowitz–Kaup–Newell–Segur (AKNS) spectral problem and its time evolution equation are first generalized by embedding a
new spectral parameter. Based on the generalized AKNS spectral problem and its time evolution equation, Lax integrability of
a nonisospectral integrodifferential system is then verified. Furthermore, exact solutions of the nonisospectral integrodifferential
system are formulated through the inverse scattering transform (IST) method. Finally, in the case of reflectionless potentials, the
obtained exact solutions are reduced to 𝑛-soliton solutions. When 𝑛 = 1 and 𝑛 = 2, the characteristics of soliton dynamics of
one-soliton solutions and two-soliton solutions are analyzed with the help of figures.

1. Introduction

Nonlinear phenomena involved in many fields such as
physics, biology, chemistry, and mechanics are often related
to nonlinear partial differential equations (PDEs). The inves-
tigation of exact solutions of nonlinear PDEs plays an impor-
tant role because of its direct connection with dynamical
processes in these nonlinear phenomena. Since the initial-
value problem of the Korteweg–de Vries (KdV) equation
was exactly solved by the IST method [1], finding soliton
solutions of nonlinear PDEs has become extremely active
and some effective methods were proposed such as Hirota’s
bilinear method [2], Painlevé expansion [3], homogeneous
balancemethod [4], and function expansionmethods [5–10].
Among these methods, the IST [1] is a systematic method
which has achieved considerable development and received
a wide range of applications like those in [11–21] since it
is put forward by Gardner, Greene, Kruskal, and Miura in
1967. One of the advantages of the IST is that it can solve a
whole hierarchy of nonlinear PDEs associated with a certain
spectral problem. As early as in 1976, the framework of
IST with varying spectral parameter was introduced for the
first time by Chen and Liu to the nonlinear Schrödinger
(NLS) equation with a linear external potential [22] and by

Hirota and Satsuma to the KdV equation in nonuniform
media [23]. Serkin et al. [24–28] pointed out that the soliton
dynamics of nonautonomous ones which interact elastically
and generally move with varying amplitudes, speeds, and
spectra adapted both to the external potentials and to the
dispersion and nonlinearity variations can be described in the
framework of the IST theory with varying in time spectral
parameter.

In soliton theory, nonlinear PDEs associated with some
linear spectral problems can be generally classified as the
isospectral equations which often describe solitary waves in
lossless and uniformmedia and the nonisospectral equations
describing the solitary waves in a certain type of nonuniform
media. Specifically, when the spectral parameter of the
associated linear spectral problem is independent of time,
one could construct isospectral equations. While starting
from the spectral problem with a time-dependent spectral
parameter, nonisospectral equations are usually derived. In
1974, Ablowitz, Kaup, Newell, and Segur [21] successfully
constructed a hierarchy of isospectral nonlinear PDEs; here
it is written as(𝑞𝑟)

𝑡

= 𝐿𝑛 (−𝑞𝑟 ) , (𝑛 = 0, 1, 2, . . .) , (1)

Hindawi
Complexity
Volume 2017, Article ID 9457078, 10 pages
https://doi.org/10.1155/2017/9457078

https://doi.org/10.1155/2017/9457078


2 Complexity

𝐿 = 𝜎𝜕 + 2 ( 𝑞−𝑟) 𝜕−1 (𝑟, 𝑞) ,
𝜕 = 𝜕𝜕𝑥 ,

𝜕−1 = 12 (∫𝑥
−∞

d𝑥 − ∫+∞
𝑥

d𝑥) ,
𝜎 = (−1 00 1) ,

(2)

from the compatibility condition, that is, the zero curvature
equation 𝑀𝑡 − 𝑁𝑥 + [𝑀, 𝑁] = 0 (3)

of the following spectral problem𝜙𝑥 = 𝑀𝜙, 𝑀 = (−𝑖𝑘 𝑞𝑟 𝑖𝑘) , 𝜙 = (𝜙1𝜙2) , (4)

and its evolution equation𝜙𝑡 = 𝑁𝜙, 𝑁 = (𝐴 𝐵𝐶 −𝐴) , (5)

where 𝑞 = 𝑞(𝑥, 𝑡), 𝑟 = 𝑟(𝑥, 𝑡), and their derivatives of any
order with respect to 𝑥 and 𝑡 are smooth functions which
vanish as 𝑥 tends to infinity, the spectral parameter 𝑘 is
independent with 𝑥 and 𝑡, and 𝐴, 𝐵, and 𝐶 are undetermined
functions of 𝑥, 𝑡, 𝑞, 𝑟, and 𝑘.

When 𝑛 = 2, the isospectral AKNS hierarchy (1) gives(𝑞𝑟)
𝑡

= (𝑞𝑥𝑥𝑥 − 6𝑞𝑟𝑞𝑥𝑟𝑥𝑥𝑥 − 6𝑞𝑟𝑟𝑥) , (6)

which includes the famous KdV equation 𝑞𝑡 = 𝑞𝑥𝑥𝑥 + 6𝑞𝑞𝑥 as
a special case.

Subsequently, in the case of spectral parameter 𝑘 being
dependent on time 𝑡, Calogero and Degasperis [29–31]
and Li [32] proposed effective methods to derive different
hierarchies of nonisospectral equations. For example, the
nonisospectral AKNS hierarchy [20](𝑞𝑟)

𝑡

= 𝐿𝑛 (−𝑥𝑞𝑥𝑟 ) , (𝑛 = 0, 1, 2, . . .) , (7)

can be derived from (3)–(5) equipped with 𝑖𝑘𝑡 = (2𝑖𝑘)𝑛/2. It
is easy to see that when 𝑛 = 0, 1, 2, the nonisospectral AKNS
hierarchy (1) gives the following nonisospectral systems:(𝑞𝑟)

𝑡

= (−𝑥𝑞𝑥𝑟 ) ,
(𝑞𝑟)
𝑡

= (𝑞 + 𝑥𝑞𝑥𝑟 + 𝑥𝑟𝑥) ,
(𝑞𝑟)
𝑡

= (−2𝑞𝑥 − 𝑥𝑞𝑥𝑥 + 2𝑞𝜕−1𝑞𝑟 + 2𝑥𝑞2𝑟2𝑟𝑥 + 𝑥𝑟𝑥𝑥 − 2𝑟𝜕−1𝑞𝑟 − 2𝑥𝑞2𝑟 ) .
(8)

The aim of this paper is to generalize AKNS spectral
problem (4) and its evolution equation (5) for testing the
integrability of the following new and more general non-
isospectral integrodifferential system:

(𝑞𝑟)
𝑡= (−2𝑞𝑥 − 𝑥𝑞𝑥𝑥 + 2𝑞𝜕−1𝑞𝑟 + 2𝑥𝑞2𝑟 + 𝑞 + 𝑥𝑞𝑥 − 𝑥𝑞 − 𝑡𝑞2𝑟𝑥 + 𝑥𝑟𝑥𝑥 − 2𝑟𝜕−1𝑞𝑟 − 2𝑥𝑞2𝑟 + 𝑟 + 𝑥𝑟𝑥 + 𝑥𝑟 + 𝑡𝑟 ) (9)

and extending the IST to system (9). With the help of (2), we
can rewrite system (9) in the form

(𝑞𝑟)
𝑡

= 𝐿2 (−𝑥𝑞𝑥𝑟 ) + 𝐿 (−𝑥𝑞𝑥𝑟 ) + (−𝑥𝑞𝑥𝑟 ) + (−𝑡𝑞𝑡𝑟 ) , (10)

from which we can see that the nonisospectral integrodif-
ferential system (9) with time-dependent coefficient terms is
different from that in [33]

(𝑞𝑟)
𝑡

= 𝐿2𝑚+1 (−𝑥𝑞𝑥𝑟 ) + 𝐿2𝑚 (−𝑥𝑞𝑥𝑟 ) ,
(𝑚 = 0, 1, 2, . . .) . (11)

In order to construct system (9), in this paper we shall employ
a new and more general spectral parameter 𝑘 which satisfies

𝑖𝑘𝑡 = 12 2∑𝑛=0 (2𝑖𝑘)𝑛 . (12)

It is easy to see that the nonisospectral parameter 𝜂𝑡 = (2𝜂)𝑛/2
in [33] is a special case of (12). Here 𝑖𝑘 in (12) is equivalent to𝜂 in [33]. On the other hand, we shall generalize the matrix 𝑁
in [33]

𝑁|(𝑞,𝑟)=(0,0) = (− 12 (2𝑖𝑘) 𝑥 00 12 (2𝑖𝑘) 𝑥) (13)

to the following form:𝑁|(𝑞,𝑟)=(0,0)
⋅ (− 12 [ 2∑

𝑛=0
(2𝑖𝑘)𝑛] 𝑥 − 12 00 12 [ 2∑

𝑛=0
(2𝑖𝑘)𝑛] 𝑥 + 12 ) . (14)

In the very recent work [34], we let the parameter 𝑘 satisfy
𝑖𝑘𝑡 = 12 sin 2𝑖𝑘 = +∞∑

𝑗=0
(−1)𝑗 1(2𝑗 + 1)! (2𝑖𝑘)2𝑗+1 (15)

and employed
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𝑁|(𝑞,𝑟)=(0,0)(− 12 𝑥 sin 2𝑖𝑘 00 12 𝑥 sin 2𝑖𝑘) , (16)

then a general nonisospectral integrodifferential system of
the form (𝑞𝑟)

𝑡

= +∞∑
𝑗=0

(−1)𝑗 1(2𝑗 + 1)! 𝐿2𝑗+1 (−𝑥𝑞𝑥𝑟 ) (17)

is constructed. Equation (17) can be rewritten as

(𝑞𝑟)
𝑡

= 𝐿 (−𝑥𝑞𝑥𝑟 ) − 13! 𝐿3 (−𝑥𝑞𝑥𝑟 ) + 15! 𝐿5 (−𝑥𝑞𝑥𝑟 )
+ +∞∑
𝑗=3

(−1)𝑗 1(2𝑗 + 1)! 𝐿2𝑗+1 (−𝑥𝑞𝑥𝑟 ) (18)

which has the expansion in part

(𝑞𝑟)
𝑡

= (𝑞 + 𝑥𝑞𝑥 − 12 𝑞𝑥𝑥 − 16 𝑥𝑞𝑥𝑥𝑥 + 13 𝑞𝑥𝜕−1 (𝑞𝑟) + 23 𝑥𝑞𝑟𝑞𝑥 + 13 𝑥𝑞2𝑟𝑥 + 43 𝑞𝜕−1 (𝑞𝑥𝑟) + 13 𝑥𝑞𝑟𝑞𝑥𝑥 − 13 𝑥𝑞2𝑟𝑥𝑥𝑟 + 𝑥𝑟𝑥 − 12 𝑟𝑥𝑥 − 16 𝑥𝑟𝑥𝑥𝑥 + 13 𝑟𝑥𝜕−1 (𝑞𝑟) + 23 𝑥𝑞𝑟𝑟𝑥 + 13 𝑥𝑟2𝑞𝑥 + 43 𝑟𝜕−1 (𝑞𝑟𝑥) + 13 𝑥𝑞𝑟𝑟𝑥𝑥 − 13 𝑥𝑟2𝑞𝑥𝑥 )
+ +∞∑
𝑗=2

(−1)𝑗 1(2𝑗 + 1)! 𝐿2𝑗+1 (−𝑥𝑞𝑥𝑟 ) . (19)

Obviously, there is substantial difference between system (9)
and (17) in [34]. It is because, except for the term

𝐿 (−𝑥𝑞𝑥𝑟 ) = (𝑞 + 𝑥𝑞𝑥𝑟 + 𝑥𝑟𝑥) , (20)

the other three terms of (10)

𝐿2 (−𝑥𝑞𝑥𝑟 ) = (−2𝑞𝑥 − 𝑥𝑞𝑥𝑥 + 2𝑞𝜕−1𝑞𝑟 + 2𝑥𝑞2𝑟2𝑟𝑥 + 𝑥𝑟𝑥𝑥 − 2𝑟𝜕−1𝑞𝑟 − 2𝑥𝑞2𝑟 ) ,
(−𝑥𝑞𝑥𝑟 ) , (−𝑡𝑞𝑡𝑟 ) (21)

cannot be contained in (18). Due to appearance of the
third term of (21), system (9) is a variable-coefficient system
with not only space-dependent coefficients but also time-
dependent coefficients. However, (17) has not such a term
with time-dependent coefficients. In fact, the different selec-
tions for (12) and (14) lead to the difference between system
(9) and (17).

The rest of the paper is organized as follows. In Section 2,
we prove the Lax integrability of system (9) by generalizing
AKNS spectral problem (4) and its evolution equation (5).
In Section 3, system (9) is solved via the IST. As a result,
the uniform formulae of exact solutions are obtained. In the
special case of reflectionless potentials, the obtained exact
solutions are reduced to 𝑛-soliton solutions. In Section 4, we
conclude this paper.

2. Lax Integrability

Theorem 1. Suppose that the function 𝐴 in (5) has the form

𝐴 = 𝜕−1 (𝑟, 𝑞) (−𝐵𝐶 ) − 12 [ 2∑
𝑛=0

(2𝑖𝑘)𝑛] 𝑥 − 12 , (22)

then the nonisospectral integrodifferential system (9) can be
derived from (3) and thus system (9) is Lax integrable.

Proof. Firstly, by virtue of (3) equipped with the new spectral
parameter 𝑘 satisfying (12) we have

𝐴𝑥 = 𝑞𝐶 − 𝑟𝐵 − 12 2∑𝑛=0 (2𝑖𝑘)𝑛 , (23)

𝑞𝑡 = 𝐵𝑥 + 2𝑖𝑘𝐵 + 2𝑞𝐴, (24)𝑟𝑡 = 𝐶𝑥 − 2𝑖𝑘𝐶 − 2𝑟𝐴. (25)

Supposing that

𝐴 = 𝜕−1 (𝑟, 𝑞) (−𝐵𝐶 ) − 12 [ 2∑
𝑛=0

(2𝑖𝑘)𝑛] 𝑥 − 12 , (26)

from (24) and (25), we have

(𝑞𝑟)
𝑡

= 𝐿 (−𝐵𝐶 ) − 2𝑖𝑘 (−𝐵𝐶 ) + 2∑
𝑛=0

(2𝑖𝑘)𝑛 (−𝑥𝑞𝑥𝑟 )
+ (−𝑡𝑞𝑡𝑟 ) , (27)

by the use of (2).
We next suppose that

(−𝐵𝐶 ) = 2∑
𝑙=1

(−𝑏𝑙𝑐𝑙 ) (2𝑖𝑘)2−𝑙 (28)
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and substitute (28) into (27).Then comparing the coefficients
of 2𝑖𝑘 in (27) yields

(2𝑖𝑘)0 : (𝑞𝑟)
𝑡

= 𝐿 (−𝑏2𝑐2 ) + (−𝑥𝑞𝑥𝑟 ) + (−𝑡𝑞𝑡𝑟 ) ,
(2𝑖𝑘)1 : (−𝑏2𝑐2 ) = 𝐿 (−𝑏1𝑐1 ) + (−𝑥𝑞𝑥𝑟 ) ,
(2𝑖𝑘)2 : (−𝑏1𝑐1 ) = (−𝑥𝑞𝑥𝑟 ) ,

(29)

fromwhich we derive (10). Finally, the substitution of (2) into
(10), we arrive at the nonisospectral integrodifferential system
(9). Thus, the proof is completed.

3. Soliton Solutions

In this section, we first determine the time dependence of
scattering data for the AKNS spectral problem (4) with the
generalized time evolution equation (5) caused by (22). Based
on the determined scattering data, we then construct exact
solutions of nonisospectral integrodifferential system (9).We
finally reduce the obtained exact solutions to soliton solutions
and analyze the soliton dynamics.

3.1. The Time Dependence of Scattering Data

Theorem 2. The scattering data 𝜅𝑗(𝑡), 𝜅𝑚(𝑡), 𝑐𝑗(𝑡), 𝑐𝑚(𝑡),𝑅(𝑡, 𝑘) = 𝛽(𝑡, 𝑘)/𝛼(𝑡, 𝑘), and 𝑅(𝑡, 𝑘) = 𝛽(𝑡, 𝑘)/𝛼(𝑡, 𝑘) (𝑗 = 1,2, . . . , 𝑛; 𝑚 = 1, 2, . . . , 𝑛) for the generalized spectral problem
(4) possess the following time dependence:

𝜅𝑗𝑡 (𝑡) = − 𝑖2 2∑𝑚=0 [2𝑖𝜅𝑗 (𝑡)]𝑚 ,
𝑐𝑗 (𝑡) = 𝑐𝑗 (0) 𝑒∫𝑡0 [1+2𝑖𝜅𝑗(𝑠)]d𝑠,𝛼 (𝑡, 𝑘) = 𝛼 (0, 𝑘) ,𝛽 (𝑡, 𝑘) = 𝛽 (0, 𝑘) ,

𝜅𝑚𝑡 (𝑡) = − 𝑖2 2∑𝑙=0 [2𝑖𝜅𝑗 (𝑡)]𝑙 ,
𝑐𝑚 (𝑡) = 𝑐𝑚 (0) 𝑒−∫𝑡0 [1+2𝑖𝜅𝑚(𝑠)]d𝑠,𝛼 (𝑡, 𝑘) = 𝛼 (0, 𝑘) ,𝛽 (𝑡, 𝑘) = 𝛽 (0, 𝑘) ,

(30)

where 𝑐𝑗(0), 𝑐𝑚(0), 𝑅(0, 𝑘) = 𝛽(0, 𝑘)/𝛼(0, 𝑘), and 𝑅(0, 𝑘) =𝛽(0, 𝑘)/𝛼(0, 𝑘) are the scattering data of the generalized spec-
tral problem (4) in the case of (𝑞(0, 𝑥), 𝑟(0, 𝑥))𝑇.
Proof. It is easy to see that if 𝜙(𝑥, 𝑘) is a solution of the
generalized spectral problem (4) then 𝑃(𝑥, 𝑘) = 𝜙𝑡(𝑥, 𝑘) −

𝑁𝜙(𝑥, 𝑘) is also a solution of generalized spectral problem (4).
Therefore, 𝑃(𝑥, 𝑘) can be represented by 𝜙(𝑥, 𝑘) and 𝜙(𝑥, 𝑘)
which also satisfies the generalized spectral problem (4) but
is independent of 𝜙(𝑥, 𝑘); that is, there exist two functions𝛾(𝑡, 𝑘) and 𝜏(𝑡, 𝑘) such that𝜙𝑡 (𝑥, 𝑘) − 𝑁𝜙 (𝑥, 𝑘) = 𝛾 (𝑡, 𝑘) 𝜙 (𝑥, 𝑘)+ 𝜏 (𝑡, 𝑘) 𝜙 (𝑥, 𝑘) . (31)

Firstly, we consider the discrete spectral 𝑘 = 𝜅𝑗(Im 𝜅𝑗 >0). Since 𝜙(𝑥, 𝜅𝑗) decays exponentially while 𝜙(𝑥, 𝑘) must
increase exponentially as 𝑥 → +∞, we then have 𝜏(𝑡, 𝑘) = 0.
Thus, (31) is simplified as𝜙𝑡 (𝑥, 𝜅𝑗) − 𝑁𝜙 (𝑥, 𝜅𝑗) = 𝛾 (𝑡, 𝜅𝑗) 𝜙 (𝑥, 𝜅𝑗) . (32)

Left-multiplying (32) by the inner product (𝜙2(𝑥, 𝜅𝑗), 𝜙1(𝑥,𝜅𝑗)) yields
d
d𝑡 𝜙1 (𝑥, 𝜅𝑗) 𝜙2 (𝑥, 𝜅𝑗) − [𝐶𝜙21 (𝑥, 𝜅𝑗) + 𝐵𝜙22 (𝑥, 𝜅𝑗)]= 2𝛾 (𝑡, 𝜅𝑗) 𝜙1 (𝑥, 𝜅𝑗) 𝜙2 (𝑥, 𝜅𝑗) . (33)

Presuming𝜙(𝑥, 𝜅𝑗) to be the normalization eigenfunction
and noting that 2 ∫∞−∞ 𝑐2𝑗 𝜙1(𝑥, 𝜅𝑗)𝜙2(𝑥, 𝜅𝑗)d𝑥 = 1, we have𝛾 (𝑡, 𝜅𝑗) = −𝑐2𝑗 ∫∞

−∞
[𝐶𝜙21 (𝑥, 𝜅𝑗) + 𝐵𝜙22 (𝑥, 𝜅𝑗)] d𝑥. (34)

For convenience, we rewrite (34) as𝛾 (𝑡, 𝜅𝑗) = −𝑐2𝑗 ((𝜙22 (𝑥, 𝜅𝑗) , 𝜙21 (𝑥, 𝜅𝑗))𝑇 , (𝐵, 𝐶)𝑇) , (35)

where the following inner product had been used(𝑓 (𝑥) , 𝑔 (𝑥))= ∫∞
−∞

(𝑓1 (𝑥) 𝑔1 (𝑥) + 𝑓2 (𝑥) 𝑔2 (𝑥)) d𝑥 (36)

for arbitrary two vectors 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥))𝑇 and 𝑔(𝑥) =(𝑔1(𝑥), 𝑔2(𝑥))𝑇.
Using (4), we have𝜙1𝑥 (𝑥, 𝜅𝑗) + 𝑖𝜅𝑗𝜙1 (𝑥, 𝜅𝑗) = 𝑞 (𝑥) 𝜙2 (𝑥, 𝜅𝑗) ,𝜙2𝑥 (𝑥, 𝜅𝑗) − 𝑖𝜅𝑗𝜙2 (𝑥, 𝜅𝑗) = 𝑟 (𝑥) 𝜙1 (𝑥, 𝜅𝑗) (37)

and hence obtain[𝜙1 (𝑥, 𝜅𝑗) 𝜙2 (𝑥, 𝜅𝑗)]
𝑥= 𝑞 (𝑥) 𝜙22 (𝑥, 𝜅𝑗) + 𝑟 (𝑥) 𝜙21 (𝑥, 𝜅𝑗) . (38)

Integrating (38) with respect to 𝑥 from −∞ to +∞ yields∫∞
−∞

[𝑞 (𝑥) 𝜙22 (𝑥, 𝜅𝑗) + 𝑟 (𝑥) 𝜙21 (𝑥, 𝜅𝑗)] d𝑥
= ∫∞
−∞

[𝜙1 (𝑥, 𝜅𝑗) 𝜙2 (𝑥, 𝜅𝑗)]
𝑥
d𝑥 = 0. (39)
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On the other hand, we rewrite (28) as

(𝐵𝐶) = 2∑
𝑙=1

𝑙∑
𝑠=1

𝐿𝑠−1 (𝑥𝑞𝑥𝑟) (2𝑖𝑘)2−𝑙 ,
𝐿 = 𝜎𝜕 − 2 (𝑞𝑟) 𝜕−1 (−𝑟, 𝑞) (40)

and then obtain𝛾 (𝑡, 𝜅𝑗) = −𝑐2𝑗 ((𝜙22 (𝑥, 𝜅𝑗) , 𝜙21 (𝑥, 𝜅𝑗))𝑇 , (𝐵, 𝐶)𝑇)
= −𝑐2𝑗 ((𝜙22 (𝑥, 𝜅𝑗) , 𝜙21 (𝑥, 𝜅𝑗))𝑇 , 2∑

𝑙=1

𝑙∑
𝑠=1

𝐿𝑠−1 (𝑥𝑞𝑥𝑟)
⋅ (2𝑖𝑘)2−𝑙) = −𝑐2𝑗 2∑

𝑙=1

𝑙∑
𝑠=1

(2𝑖𝜅𝑗)2−𝑙
⋅ ((𝜙22 (𝑥, 𝜅𝑗) , 𝜙21 (𝑥, 𝜅𝑗))𝑇 , 𝐿𝑙−1 (𝑞𝑟)) = 12
⋅ 2∑
𝑠=1

𝑠 (2𝑖𝜅𝑗)𝑠−1 .
(41)

Then (32) becomes𝜙𝑡 (𝑥, 𝜅𝑗) − 𝑁𝜙 (𝑥, 𝜅𝑗)= 12 [ 2∑
𝑠=1

𝑠 (2𝑖𝜅𝑗)𝑠−1] 𝜙 (𝑥, 𝜅𝑗) . (42)

Noting that𝑁
󳨀→ (− 12 [ 2∑

𝑛=0
(2𝑖𝜅𝑗)𝑛] 𝑥 − 12 00 12 [ 2∑

𝑛=0
(2𝑖𝜅𝑗)𝑛] 𝑥 + 12 ) ,

𝜙 (𝑥, 𝜅𝑗) 󳨀→ 𝑐𝑗 (01) 𝑒𝑖𝜅𝑗𝑥,
𝜙𝑡 (𝑥, 𝜅𝑗) 󳨀→ 𝑐𝑗𝑡 (01) 𝑒𝑖𝜅𝑗𝑥 + 𝑥𝑐𝑗𝜅𝑗𝑡 (01) 𝑒𝑖𝜅𝑗𝑥,

(43)

as 𝑥 → +∞, then from (42)-(43) we have

𝜅𝑗𝑡 = − 𝑖2 2∑𝑛=0 (2𝑖𝜅𝑗)𝑛 ,
𝑐𝑗𝑡 = 𝑐𝑗 [ 12 2∑𝑠=1𝑠 (2𝑖𝜅𝑗)𝑠−1 + 12 ] . (44)

In a similar way, we obtain𝜅𝑗𝑡 = − 𝑖2 2∑𝑛=0 (2𝑖𝜅𝑗)𝑛 ,
𝑐𝑗𝑡 = −𝑐𝑗 [ 12 2∑𝑠=1𝑠 (2𝑖𝜅𝑗)𝑠−1 + 12 ] . (45)

Secondly, we consider 𝑘 as a real continuous spectral and
take a solution𝜑(𝑥, 𝑘) of the generalized spectral problem (4),
then the solution of the generalized spectral problem (4)𝑃1 (𝑥, 𝑘) = 𝜑𝑡 (𝑥, 𝑘) − 𝑁𝜑 (𝑥, 𝑘) (46)

can be represented linearly by 𝜑(𝑥, 𝑘) and 𝜑(𝑥, 𝑘) which
also satisfies the generalized spectral problem (4) but is
independent of 𝜑(𝑥, 𝑘), that is, there exist two functions𝜔(𝑡, 𝑘) and 𝜗(𝑡, 𝑘) such that𝜑𝑡 (𝑥, 𝑘) − 𝑁𝜑 (𝑥, 𝑘) = 𝜔 (𝑡, 𝑘) 𝜑 (𝑥, 𝑘)+ 𝜗 (𝑡, 𝑘) 𝜑 (𝑥, 𝑘) . (47)

Using the asymptotical properties𝜑𝑡 (𝑥, 𝑘) 󳨀→ −𝑖𝑘𝑡𝑥 (10) 𝑒−𝑖𝑘𝑥,
𝜑 (𝑥, 𝑘) 󳨀→ (10) 𝑒−𝑖𝑘𝑥,
𝜑 (𝑥, 𝑘) 󳨀→ ( 0−1) 𝑒𝑖𝑘𝑥,

(48)

as 𝑥 → −∞, from (47) we obtain𝜗 (𝑡, 𝑘) = 0,𝜔 (𝑡, 𝑘) = 0. (49)

Substituting the Jost relationship𝜑(𝑥, 𝑘)= 𝛼(𝑡, 𝑘)𝜙(𝑥, 𝑘)+𝛽(𝑡, 𝑘)𝜙(𝑥, 𝑘) into (47) yields[𝛼 (𝑡, 𝑘) 𝜙 (𝑥, 𝑘) + 𝛽 (𝑡, 𝑘) 𝜙 (𝑥, 𝑘)]
𝑡− 𝑁 [𝛼 (𝑡, 𝑘) 𝜙 (𝑥, 𝑘) + 𝛽 (𝑡, 𝑘) 𝜙 (𝑥, 𝑘)] = 0. (50)

Letting 𝑥 → −∞ and using𝜙 (𝑥, 𝑘) 󳨀→ (01) 𝑒𝑖𝑘𝑥,
𝜙 (𝑥, 𝑘) 󳨀→ (10) 𝑒−𝑖𝑘𝑥, (51)

from (50) we derive

d𝛼 (𝑡, 𝑘)
d𝑡 = 0,

d𝛽 (𝑡, 𝑘)
d𝑡 = 0. (52)
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Similarly, we have

d𝛼 (𝑡, 𝑘)
d𝑡 = 0,

d𝛽 (𝑡, 𝑘)
d𝑡 = 0. (53)

Finally, solving (44), (45), (52), and (53) yields (30). We
therefore finish the proof.

3.2. Exact Solutions and Soliton Solutions. According to
Theorem 1 and the results in [20], we have the following
Theorem 3.

Theorem 3. Given the scattering data for the generalized spec-
tral problem (4), the nonisospectral integrodifferential system
(9) has exact solutions as follows:

𝑞 (𝑥, 𝑡) = −2𝐾1 (𝑡, 𝑥, 𝑥) ,𝑟 (𝑥, 𝑡) = 𝐾2𝑥 (𝑡, 𝑥, 𝑥)𝐾1 (𝑡, 𝑥, 𝑥) , (54)

where 𝐾(𝑡, 𝑥, 𝑦) = (𝐾1(𝑡, 𝑥, 𝑦), 𝐾2(𝑡, 𝑥, 𝑦))𝑇 satisfies the
Gel’fand-Levitan-Marchenko (GLM) integral equation:

𝐾 (𝑡, 𝑥, 𝑦) − (01) 𝐹 (𝑡, 𝑥 + 𝑦)
+ (01) ∫∞

𝑥
𝐹 (𝑡, 𝑧 + 𝑥) 𝐹 (𝑡, 𝑧 + 𝑦) d𝑧

+ ∫∞
𝑥

𝐾 (𝑡, 𝑥, 𝑠) ∫∞
𝑥

𝐹 (𝑡, 𝑧 + 𝑠) 𝐹 (𝑡, 𝑧 + 𝑦) d𝑧 d𝑠= 0,
(55)

with

𝐹 (𝑡, 𝑥) = 12𝜋 ∫∞
−∞

𝑅 (𝑡, 𝑘) 𝑒𝑖𝑘𝑥d𝑘 + 𝑛∑
𝑗=1

𝑐2𝑗 𝑒𝑖𝜅𝑗𝑥,
𝐹 (𝑡, 𝑥) = 12𝜋 ∫∞

−∞
𝑅 (𝑡, 𝑘) 𝑒−𝑖𝑘𝑥d𝑘 − 𝑛∑

𝑗=1
𝑐2𝑗𝑒−𝑖𝜅𝑗𝑥. (56)

In order to give explicit form of solutions (54), we
consider 𝑅(𝑡, 𝑘) = 𝑅(𝑡, 𝑘) = 0. In this reflectionless potentials
case, the GLM integral equation (55) can be solved exactly.
For convenience, we use 𝐾(𝑡, 𝑥, 𝑦) = (𝐾1(𝑡, 𝑥, 𝑦), 𝐾2(𝑡,𝑥, 𝑦))𝑇to rewrite (55) as

𝐾1 (𝑡, 𝑥, 𝑦) − 𝐹𝑑 (𝑡, 𝑥 + 𝑦) + ∫∞
𝑥

𝐾1 (𝑡, 𝑥, 𝑠)
⋅ ∫∞
𝑥

𝐹𝑑 (𝑡, 𝑧 + 𝑠) 𝐹𝑑 (𝑡, 𝑧 + 𝑦) d𝑧 d𝑠 = 0,
𝐾2 (𝑡, 𝑥, 𝑦) + ∫∞

𝑥
𝐹𝑑 (𝑡, 𝑧 + 𝑥) 𝐹𝑑 (𝑡, 𝑧 + 𝑦) d𝑧

+ ∫∞
𝑥

𝐾2 (𝑡, 𝑥, 𝑠)
⋅ ∫∞
𝑥

𝐹𝑑 (𝑡, 𝑧 + 𝑠) 𝐹𝑑 (𝑡, 𝑧 + 𝑦) d𝑧 d𝑠 = 0.
(57)

Using (56), we can get

∫∞
𝑥

𝐹𝑑 (𝑡, 𝑠 + 𝑧) 𝐹𝑑 (𝑡, 𝑧 + 𝑦) d𝑧
= − 𝑛∑
𝑗=1

𝑛∑
𝑚=1

𝑖𝑐2𝑗 (𝑡) 𝑐2𝑚 (𝑡)𝜅𝑗 − 𝜅𝑚 𝑒𝑖𝜅𝑗(𝑥+𝑠)−𝑖𝜅𝑚(𝑥+𝑦). (58)

Supposing that

𝐾1 (𝑥, 𝑦, 𝑡) = 𝑛∑
𝑝=1

𝑐𝑝 (𝑡) 𝑔𝑝 (𝑡, 𝑥) 𝑒−𝑖𝜅𝑝𝑦,
𝐾2 (𝑥, 𝑦, 𝑡) = 𝑛∑

𝑝=1
𝑐𝑝 (𝑡) ℎ𝑝 (𝑡, 𝑥) 𝑒−𝑖𝜅𝑝𝑦 (59)

and substituting (59) into (57) yield𝑔𝑚 (𝑡, 𝑥) + 𝑐𝑚 (𝑡) 𝑒−𝑖𝜅𝑚𝑥
+ 𝑛∑
𝑗=1

𝑛∑
𝑝=1

𝑐2𝑗 (𝑡) 𝑐𝑚 (𝑡) 𝑐𝑝 (𝑡)(𝜅𝑗 − 𝜅𝑚) (𝜅𝑗 − 𝜅𝑝) 𝑒𝑖(2𝜅𝑗−𝜅𝑚−𝜅𝑝)𝑥𝑔𝑝 (𝑥, 𝑡)
= 0,ℎ𝑚 (𝑥, 𝑡) − 𝑛∑

𝑗=1

1(𝜅𝑗 − 𝜅𝑚) 𝑐2𝑗 (𝑡) 𝑐𝑚 (𝑡) 𝑒𝑖(2𝜅𝑗−𝜅𝑚)𝑥
+ 𝑛∑
𝑗=1

𝑛∑
𝑝=1

𝑐2𝑗 (𝑡) 𝑐𝑚 (𝑡) 𝑐𝑝 (𝑡)(𝜅𝑗 − 𝜅𝑚) (𝜅𝑗 − 𝜅𝑝) 𝑒𝑖(2𝜅𝑗−𝜅𝑚−𝜅𝑝)𝑥ℎ𝑝 (𝑥, 𝑡)
= 0, (𝑚 = 1, 2, . . . , 𝑛) .

(60)

Introducing the vectors𝑔 (𝑡, 𝑥) = (𝑔1 (𝑡, 𝑥) , 𝑔2 (𝑡, 𝑥) , . . . , 𝑔𝑛 (𝑡, 𝑥))𝑇 ,ℎ (𝑡, 𝑥) = (ℎ1 (𝑡, 𝑥) , ℎ2 (𝑡, 𝑥) , . . . , ℎ𝑛 (𝑡, 𝑥))𝑇 ,Λ = (𝑐1 (𝑡) 𝑒𝑖𝜅1𝑥, 𝑐2 (𝑡) 𝑒𝑖𝜅2𝑥, . . . , 𝑐𝑛 (𝑡) 𝑒𝑖𝜅𝑛𝑥)𝑇 ,Λ = (𝑐1 (𝑡) 𝑒−𝑖𝜅1𝑥, 𝑐2 (𝑡) 𝑒−𝑖𝜅2𝑥, . . . , 𝑐𝑛 (𝑡) 𝑒−𝑖𝜅𝑛𝑥)𝑇 ,
(61)
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we can write (60) in the matrix forms𝑊 (𝑡, 𝑥) 𝑔 (𝑡, 𝑥) = −Λ (𝑡, 𝑥) ,𝑊 (𝑡, 𝑥) ℎ (𝑡, 𝑥) = 𝑖𝑃 (𝑡, 𝑥) Λ (𝑡, 𝑥) , (62)

where 𝑊 (𝑡, 𝑥) = 𝐸 + 𝑃 (𝑡, 𝑥) 𝑃𝑇 (𝑡, 𝑥) ,𝑃 (𝑡, 𝑥) = ( 𝑐𝑗 (𝑡) 𝑐𝑚 (𝑡)𝜅𝑗 − 𝜅𝑚 𝑒𝑖(𝜅𝑗−𝜅𝑚)𝑥)
𝑛×𝑛

, (63)

and 𝐸 is a 𝑛 × 𝑛 unit matrix.
Supposing 𝑊−1(𝑡, 𝑥) exists, then we have𝑔 (𝑡, 𝑥) = −𝑊−1 (𝑡, 𝑥) Λ (𝑡, 𝑥) ,ℎ (𝑡, 𝑥) = 𝑖𝑊−1 (𝑡, 𝑥) 𝑃 (𝑡, 𝑥) Λ (𝑡, 𝑥) . (64)

Substituting (64) into (59) we have𝐾1 (𝑥, 𝑦, 𝑡) = − tr (𝑊−1 (𝑡, 𝑥) Λ (𝑡, 𝑥) Λ𝑇 (𝑡, 𝑦)) ,𝐾2 (𝑥, 𝑦, 𝑡)= 𝑖 tr (𝑊−1 (𝑡, 𝑥) 𝐸 (𝑡, 𝑥) Λ (𝑡, 𝑥) Λ𝑇 (𝑡, 𝑦)) , (65)

where tr(⋅) means the trace of a given matrix.
Substituting (65) into (54), we obtain the following 𝑛-

soliton solutions of the nonisospectral integrodifferential
system (9):𝑞 (𝑥, 𝑡) = 2 tr (𝑊−1 (𝑡, 𝑥) Λ (𝑡, 𝑥) Λ𝑇 (𝑡, 𝑥)) ,𝑟 (𝑥, 𝑡)

= − (d/d𝑥) tr (𝑊−1 (𝑡, 𝑥) 𝐸 (𝑡, 𝑥) (d/d𝑥) 𝐸𝑇 (𝑡, 𝑥))
tr (𝑊−1 (𝑡, 𝑥) Λ (𝑡, 𝑥) Λ𝑇 (𝑡, 𝑥)) . (66)

Particularly, when 𝑛 = 𝑛 = 1, (66) give the one-soliton
solutions:𝑞

= 2𝑐21 (0) 𝑒−2𝑖𝜅1𝑥−2 ∫𝑡0 [1+2𝑖𝜅1(𝑠)]d𝑠1 + (𝑐21 (0) 𝑐21 (0) / (𝜅1 − 𝜅1)2) 𝑒2𝑖(𝜅1−𝜅1)𝑥+4𝑖 ∫𝑡0 [𝜅1(𝑠)−𝜅1(𝑠)]d𝑠 , (67)

𝑟
= 2𝑐21 (0) 𝑒2𝑖𝜅1𝑥+2 ∫𝑡0 [1+2𝑖𝜅1(𝑠)]d𝑠1 + (𝑐21 (0) 𝑐21 (0) / (𝜅1 − 𝜅1)2) 𝑒2𝑖(𝜅1−𝜅1)𝑥+4𝑖 ∫𝑡0 [𝜅1(𝑠)−𝜅1(𝑠)]d𝑠 , (68)

where 𝜅1 and 𝜅1 are determined by the Riccati equations

𝜅1𝑡 = − 𝑖2 2∑𝑛=0 (2𝑖𝜅1)𝑛 ,
𝜅1𝑡 = − 𝑖2 2∑𝑛=0 (2𝑖𝜅1)𝑛 . (69)
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Figure 1: Local spatial structure of one-soliton solution (67) with 𝜅1
and 𝜅1 satisfying (69).
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Figure 2: Local spatial structure of one-soliton solution (68).

3.3. Soliton Dynamics. In this part, we further investigate
the soliton dynamics of system (9) by means of one-soliton
solutions and two-soliton solutions. To determine 𝜅1 and 𝜅1
of (69), we employ Zhang et al.’s direct algorithm [35] of exp-
function method and gain two special solutions of (69):𝜅1 = 𝑖4 (1 + 𝑖√3)

+ √32 [1 + ((𝑖 + √3 − 4𝜅1 (0)) / (−𝑖 + √3 + 4𝜅1 (0))) 𝑒𝑖√3𝑡] , (70)

𝜅1 = 𝑖4 (1 + 𝑖√3)
+ √32 [1 + ((𝑖 + √3 − 4𝜅1 (0)) / (−𝑖 + √3 + 4𝜅1 (0))) 𝑒𝑖√3𝑡] . (71)

In Figures 1 and 2, two local spatial structures of one-soliton
solutions (67) and (68) are shown by selecting the parameters
as 𝜅1(0) = 1, 𝜅1(0) = −0.5, 𝑐1(0) = 1, and 𝑐1(0) =0.2. We can see from Figures 1 and 2 that the local spatial
structures of one-soliton solutions (67) and (68) possess the
bell-shaped characteristics.The dynamical evolutions of two-
soliton solutions determined by (66) are shown in Figures
3 and 4, where the parameters are selected as 𝜅1(0) = 1,𝜅1(0) = 0.5, 𝜅2(0) = −0.3, 𝜅2(0) = −1.5, 𝑐1(0) = −0.01,
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Figure 3: Dynamical evolutions of two-soliton solution determined by (66) at different times: (a) 𝑡 = −11.112, (b) 𝑡 = −11.104, (c) 𝑡 = −11,
and (d) 𝑡 = −10.94.
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Figure 4: Dynamical evolutions of two-soliton solution determined by (66) at different times: (a) 𝑡 = 2.8, (b) 𝑡 = 2.9, (c) 𝑡 = 3, and (d)𝑡 = 3.3.
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𝑐1(0) = 0.25, 𝑐2(0) = 0.5, and 𝑐2(0) = −0.1, respectively.
Figures 3 and 4 show that the inelastic scatterings can happen
between two-soliton solutions determined by (66).

4. Conclusions and Discussions

In summary, we have verified Lax integrability of the new
and more general nonisospectral integrodifferential system
(9). This is due to the generalizations on AKNS spectral
problem (4) and its time evolution equation (5) by embedding
a new spectral parameter. To exactly solve the nonisospectral
integrodifferential system (9), the IST is employed. As a
result, exact solutions (54) are obtained. In the case of
reflectionless potentials, the obtained exact solutions (54)
are reduced to 𝑛-soliton solutions (66). When 𝑛 = 1
and 𝑛 = 2, the characteristics of soliton dynamics of
one-soliton solutions and two-soliton solutions are analyzed
with the help of figures. To the best of our knowledge,
the nonisospectral integrodifferential system (9), the exact
solutions (54), and the 𝑛-soliton solutions (66) have not been
reported in literatures.How to construct other nonisospectral
integrodifferential systems and their soliton solutions in the
framework of IST method is worthy of study. This is our task
in the future.
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partial differential equations,” Journal of Mathematical Physics,
vol. 24, no. 3, pp. 522–526, 1983.

[4] M. Wang, “Exact solutions for a compound KdV-Burgers
equation,” Physics Letters A, vol. 213, no. 5-6, pp. 279–287, 1996.

[5] E. Fan, “Travelling wave solutions in terms of special functions
for nonlinear coupled evolution systems,” Physics Letters A, vol.
300, no. 2-3, pp. 243–249, 2002.

[6] J.-H. He and X.-H. Wu, “Exp-function method for nonlinear
wave equations,” Chaos, Solitons & Fractals, vol. 30, no. 3, pp.
700–708, 2006.

[7] S. Zhang and T.-C. Xia, “A generalized auxiliary equation
method and its application to (2 + 1)-dimensional asymmetric
Nizhnik–Novikov–Vesselov equations,” Journal of Physics A:
Mathematical and General, vol. 40, no. 2, pp. 227–248, 2007.

[8] S. Zhang and D.-D. Liu, “The third kind of Darboux transfor-
mation and multisoliton solutions for generalized Broer-Kaup
equations,” Turkish Journal of Physics, vol. 39, no. 2, pp. 165–177,
2015.

[9] C.-Q. Dai and Y.-Y. Wang, “Controllable combined Peregrine
soliton and Kuznetsov-Ma soliton in PT-symmetric nonlinear
couplers with gain and loss,” Nonlinear Dynamics, vol. 80, no.
1-2, pp. 715–721, 2015.

[10] R. Abazari, “Biswas, Solitary wave solutions of coupled Boussi-
nesq equation,” Complixity, vol. 21, no. S2, pp. 151–155, 2016,
http://onlinelibrary.wiley.com/advanced/search.

[11] A. I. Nachman andM. J. Ablowitz, “Amultidimensional inverse-
scattering method,” Studies in Applied Mathematics, vol. 71, no.
3, pp. 243–250, 1984.

[12] W. L. Chan and K.-S. Li, “Nonpropagating solitons of the
variable coefficient andnonisospectral Korteweg-deVries equa-
tion,” Journal of Mathematical Physics, vol. 30, no. 11, pp. 2521–
2526, 1989.

[13] B. Z. Xu and S. Q. Zhao, “Inverse scattering transformation
for the variable coefficient sine-Gordon type equation,” Applied
Mathematics-A Journal of Chinese Universities Series B, vol. 9,
no. 4, pp. 331–337, 1994.

[14] G. Biondini and G. Kovačič, “Inverse scattering transform for
the focusing nonlinear Schrödinger equation with nonzero
boundary conditions,” Journal of Mathematical Physics, vol. 55,
2014.

[15] S. Zhang and X.-D. Gao, “Mixed spectral AKNS hierarchy from
linear isospectral problem and its exact solutions,”Open Physics,
vol. 13, no. 1, pp. 310–322, 2015.

[16] S. Zhang, B. Xu, and H.-Q. Zhang, “Exact solutions of a KdV
equation hierarchy with variable coefficients,” International
Journal of Computer Mathematics, vol. 91, no. 7, pp. 1601–1616,
2014.

[17] S. Zhang and D. Wang, “Variable-coefficient nonisospectral
Toda lattice hierarchy and its exact solutions,” Pramana—
Journal of Physics, vol. 85, no. 6, pp. 1143–1156, 2015.

[18] S. Zhang and X. Gao, “Exact solutions and dynamics of a
generalized AKNS equations associated with the nonisospec-
tral depending on exponential function,” Journal of Nonlinear
Sciences and Applications, vol. 9, no. 6, pp. 4529–4541, 2016.

[19] X. D. Gao and S. Zhang, “Time-dependent-coefficient AKNS
hierarchy and its exact multi-soliton solutions,” International
Journal of Applied Science andMathematics, vol. 3, no. 2, pp. 72–
75, 2016.

[20] D. Y. Chen, Introduction of Soliton, Science Press, Beijing, 2006.
[21] M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution

equations and inverse scattering, Cambridge University Press,
Cambridge, 1991.

[22] H. H. Chen and C. S. Liu, “Solitons in nonuniform media,”
Physical Review Letters, vol. 37, no. 11, pp. 693–697, 1976.

[23] R. Hirota and J. Satsuma, “N-Soliton Solution of the K-dV
Equation with Loss and Nonuniformity Terms,” Journal of the
Physical Society of Japan, vol. 41, no. 6, pp. 2141-2142, 1976.

[24] V. N. Serkin and A. Hasegawa, “Novel soliton solutions of
the nonlinear Schrodinger equation model,” Physical Review
Letters, vol. 85, no. 21, pp. 4502–4505, 2000.

http://onlinelibrary.wiley.com/advanced/search


10 Complexity

[25] V. N. Serkin and T. L. Belyaeva, “Optimal control of optical
soliton parameters: Part 1. The Lax representation in the
problem of soliton management,” Quantum Electronics, vol. 31,
no. 11, pp. 1007–1015, 2001.

[26] V.N. Serkin, A.Hasegawa, andT. L. Belyaeva, “Nonautonomous
solitons in external potentials,” Physical Review Letters, vol. 98,
2007.

[27] V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Solitary waves
in nonautonomous nonlinear and dispersive systems: Nonau-
tonomous solitons,” Journal of Modern Optics, vol. 57, no. 14-15,
pp. 1456–1472, 2010.

[28] V.N. Serkin, A.Hasegawa, andT. L. Belyaeva, “Nonautonomous
matter-wave solitons near the Feshbach resonance,” Physical
Review, vol. 81, 2010.

[29] F. Calogero and A. Degasperis, “Extension of the spectral
transform method for solving nonlinear evolution equations,”
Lettere Al Nuovo Cimento, vol. 22, no. 4, pp. 131–137, 1978.

[30] F. Calogero and A. Degasperis, “Extension of the spectral
transform method for solving nonlinear evolution equations.-
II,” Lettere Al Nuovo Cimento, vol. 22, no. 7, pp. 263–269, 1978.

[31] F. Calogero and A. Degasperis, “Exact solution via the spectral
transform of a generalization with linearly x-dependent coeffi-
cients of the modified Korteweg-de-Vires equation,” Lettere Al
Nuovo Cimento, vol. 22, no. 7, pp. 270–273, 1978.

[32] Y. S. Li, “A class of evolution equations and the spectral
deformation,” Science in China Series A: Mathematics, vol. 25,
no. 9, pp. 911–917, 1982.

[33] T.-k. Ning, D.-y. Chen, and D.-j. Zhang, “The exact solutions
for the nonisospectral AKNS hierarchy through the inverse
scattering transform,” Physica A, vol. 339, no. 3-4, pp. 248–266,
2004.

[34] S. Zhang and J. H. Li, “On nonisospectral AKNS system
with infinite number of terms and its exact solutions,” IAENG
International Journal of Applied Mathematics, vol. 47, no. 1, pp.
89–96, 2017.

[35] S. Zhang, J. H. Li, and L. Y. Zhang, “A direct algorithm of exp-
function method for non-linear evolution equations in fluids,”
Thermal Science, vol. 20, no. 3, pp. 881–884, 2016.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


