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Gastric cancer is a completely curable cancer when it can be detected at its early stage. Thus, because early detection of gastric
cancer is important, cancer screening by gastroscopy is performed. Recently, the hyperspectral camera (HSC), which can observe
gastric cancer at a variety of wavelengths, has received attention as a gastroscope. HSC permits the discerning of the slight color
variations of gastric cancer, and we considered its applicability to a gastric cancer diagnostic support system. In this paper, after
correcting reflectance to absorb the individual variations in the reflectance of the HSC, a gastric cancer diagnostic support system
was designed using the corrected reflectance. In system design, the problems of selecting the optimum wavelength and optimizing
the cutoff value of a classifier are solved as a pattern recognition problem by the use of training samples alone. Using the hold-out
methodwith 104 cases of gastric cancer as samples, design and evaluation of the systemwere independently repeated 30 times. After
analyzing the performance in 30 trials, the mean sensitivity was 72.2% and the mean specificity was 98.8%.The results showed that
the proposed system was effective in supporting gastric cancer screening.

1. Introduction

Gastric cancer is a completely curable cancer when it can be
detected at its early stage.Thus, because early detection of gas-
tric cancer is important, cancer screening by gastroscopy is
performed.However, about 20% of gastric cancers are report-
edly missed [1], and, in addition, detection greatly depends
on the physician’s proficiency. Accordingly, regardless of the
physician’s skill, the development of diagnostic support sys-
tem that provides constant diagnostic accuracy is urgently
needed.

Because there is wide variability of cancer, not just in
gastric cancer, even the same carcinoma can differ from
person to person. Therefore, a hyperspectral camera (HSC),
which can observe gastric cancer at a variety of wavelengths,

has received attention [2]. The HSC has advanced the field of
remote sensing. The images captured by the HSC contain 81
reflectance data values per 5 nm in thewavelength range from
400 to 800 nm for each pixel.

TheHSC can discern the slight color differences of gastric
cancer [3], and it is thought to be applicable to a gastric cancer
diagnostic support system. However, because the color of
the inner wall of the stomach varies from person to person,
the individual differences in color should be absorbed to
discriminate gastric cancer.

In this paper, a certain type of reflectance correction is
performed to absorb the individual differences, and a system
is designed using the corrected reflectance. The design of
such a system involves two tasks. One is that of selecting the
optimum wavelength. The HSC can observe gastric cancer
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Figure 1: Relationship between wavelength and reflectance.

with various wavelengths, but, considering cost and real-time
processing, the reflectance is obtained from the optimum
wavelength alone.The other task is that of determining cutoff
values to distinguish gastric cancer in classifier design. These
problems are solved with a pattern recognitionmethod using
training samples alone. First, with regard to the selection of
the optimum wavelength, using the feature selection method
in which the Mahalanobis distance [4] is defined as the cri-
terion function, an optimum wavelength is selected from the
candidate wavelengths. Next, with regard to classifier design,
a minimum-distance classifier [5] is modified and used. The
efficacy of the designed system is evaluated by the hold-out
method [5] using test samples independent of training sam-
ples.

2. Materials and Methods

Endoscopic resections were performed in 104 cases of gastric
cancer at Yamaguchi University Medical School Hospital
between April 2010 and August 2012 [6], and the gastric
cancers were photographed by HSC immediately after the
resections. Reflectance values were measured in pairs of
normal and tumor tissues in each of the 104 cases treated by
endoscopic submucosal dissection. Using one of the cases as
an example, Figure 1 shows the relationship between wave-
length and reflectance of the normal and tumor sites, respec-
tively. In general, the reflectance of the tumor site is larger
than that of the normal site, as well as when the wavelength is
greater than 650 nm, and the difference in reflectance values
between the normal site and the tumor site can be clearly
seen. In system design, reflectance values at 51 wavelengths
between 550 nm and 800 nm were used because there is
heavy overlapping between normal and tumor sites in the
wavelength range from 400 to 550 nm for almost all samples.
The resolution of the HSC is 480 × 640 pixels.

Because the tissue type, shape, and color of gastric tumors
vary, reflectance is not always uniform even in tumor sites.
Thus, 10 points were obtained from the tumor regions. The
10 points were chosen so that they were uniformly dispersed
throughout the tumor as much as possible. In the same
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Figure 2: Examples of reflectance with individual differences.

manner, 11 points obtained from the normal sites were also
chosen. One of the 11 points was used for reflectance correc-
tion, and, using the remaining points, the mean of normal
sites was estimated. For details of the photographs, please see
[2].

2.1. Design of the Proposed System. In pattern recognition, the
samples used for system design are called training samples,
and those for system evaluation are called test samples.
Training samples and test samples must be different [7].

Figure 2 indicates the reflectance values from normal
sites with ∙ and those from tumor sites with ×, as examples.
These examples show that there are individual differences in
reflectance values, in which the values sometimes indicate
normal cases and other times tumor cases.These results indi-
cate that a single cutoff value for reflectance cannot distin-
guish between a normal site and a tumor site.Therefore, a cor-
rected reflectance value is used. The mean reflectance value
𝑥
𝑖

(𝜆)
is estimated from 10 reflectance values of a normal train-

ing sample corresponding to a case 𝑖 at wavelength 𝜆. Using
the mean reflectance value 𝑥𝑖

(𝜆)
, the corrected reflectance

value𝑋𝑖
(𝜆)

for 𝑥𝑖
(𝜆)

is described as follows:

𝑋
𝑖

(𝜆)
= 𝑥
𝑖

(𝜆)
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𝑖

(𝜆)

= 0.

(1)

Meanwhile, the corrected reflectance value 𝑌𝑖
(𝜆)

for the mean
reflectance value 𝑦𝑖

(𝜆)
, obtained from 10 reflectance values

of a tumor training sample corresponding to the case 𝑖, is
described as follows:

𝑌
𝑖

(𝜆)
= 𝑦
𝑖

(𝜆)
− 𝑥
𝑖

(𝜆)
. (2)

From now on, we explain the design process using the cor-
rected reflectance values,𝑋 and 𝑌.

First, the optimum wavelength is found. For wavelength
selection, the criterion of wavelength 𝜆 is determined. The
Mahalanobis distance 𝐷

(𝜆)
, which represents the statistical
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distance between the normal and tumor distributions, is used
as the criterion:

𝐷
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2
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, (3)

where 𝜇
𝑋(𝜆)

and 𝜎2
𝑋(𝜆)

are the respectivemean and variance of
the corrected reflectance value of a normal site at wavelength
𝜆 and 𝜇

𝑌(𝜆)
and 𝜎2
𝑌(𝜆)

are the respective mean and variance of
the corrected reflectance value of a tumor site. Equation (1),
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Consequently,𝐷
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is as follows:
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)

2

. (5)

Because there are individual differences in reflectance,
using reflectance values from the normal sites in each indi-
vidual, the reflectance value of the normal site is corrected by
(1) and then the reflectance value of the tumor is corrected by
(2).Therefore, in all of the normal training samples, the value
of corrected reflectance is zero. As a pattern recognition prob-
lem, normal and tumor sites are identified as a 2-class prob-
lem. The difference in the usual 2-class problem is that the
distribution of the normal class is limited to the original point
by correction. For this reason, at a glance, rather than being
a 2-class problem, this appears to be a 1-class problem for the
tumor site.

A wavelength that maximizes the value of𝐷
(𝜆)

is selected
from 51 candidate wavelengths and is defined as the optimum
wavelength ̂𝜆. This is described as follows:

𝐷
(𝜆̂)
= max
𝜆

𝐷
(𝜆)
. (6)

Second, we explain the design process of a classifier to
discriminate between pixels at the normal site and the tumor
site within the images. In this paper, the minimum-distance
classifier, which is the simplest classifier, ismodified andused.
The minimum-distance classifier assigns a pattern 𝑥 to the
class associated with the nearest mean value of the two classes
and is described as follows:
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Here, |𝑎| is the absolute value of a. The cutoff value of
this minimum-distance classifier is the midpoint, 𝜇

𝑌(𝜆̂)
/2,

between the mean corrected reflectance value of a normal
site, 𝜇

𝑋(𝜆̂)
(= 0), and the mean corrected reflectance value of a

tumor site, 𝜇
𝑌(𝜆̂)

.
There is generally a trade-off relationship between sen-

sitivity and specificity; that is, the higher the sensitivity,
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Figure 3: Modified minimum-distance classifier.

the lower the specificity and vice versa. Because the system
is used for gastric cancer screening, a cutoff value that
yields the maximum sensitivity to avoid missing cancer is
expected while maintaining high specificity. A cutoff value
is defined by multiplying parameters 𝛼 and 𝜇

𝑌(𝜆̂)
, that is,

𝛼𝜇
𝑌(𝜆̂)

. Accordingly, optimization of a cutoff value represents
optimization of parameter 𝛼. When especially 𝛼 = 1/2,
this classifier becomes the minimum-distance classifier (see
Figure 3).

In this study, to optimize the cutoff value parameter 𝛼,
we took the approach of assigning the highest value of dis-
crimination performance to be the optimumvalue by actually
performing discrimination. Because optimization of param-
eter 𝛼was performed in the classifier design stage, parameter
𝛼 should be optimized using training samples alone. Thus,
training samples were further divided into subtraining sam-
ples and subtest samples, and, by using subtraining samples, a
classifier was designed that discriminates the subtest samples.
This process was applied to each predetermined candidate
value of parameter 𝛼, and, among the candidate values, a
value that met the conditions of discrimination ability was
selected as the optimum value 𝛼̂. The idea of resampling the
available samples as subsamples comes from the literature
[8, 9]. The candidate values of parameter 𝛼 were determined
to be {1/2, 1/3, 1/4, 1/5}. Optimization of the parameter was
conducted according to the following procedures. Procedure
5 is the condition of discrimination ability.

Procedure 1. Training samples are randomly divided into
subtraining samples and subtest samples.

Procedure 2. Using subtraining samples, 𝜇
𝑌(𝜆̂)

is obtained.

Procedure 3. Cutoff values are obtained using 𝛼𝜇
𝑌(𝜆̂)

and 𝛼 ∈
{1/2, 1/3, 1/4, 1/5}.

Procedure 4. Using each cutoff value, subtest samples are
discriminated.

Procedure 5. Regarding discrimination ability for the subtest
samples, parameter 𝛼 with a specificity of 99% or more and
maximal sensitivity is selected as the optimum value 𝛼̂.
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Figure 4: Flowchart of system design and assessment.

2.2. Validation of the Proposed System. The best method to
evaluate the system is to assess the percentages of the sensi-
tivity and specificity after the test samples are discriminated
practically. In this paper, 104 cases were available as samples.
The 104 samples were randomly divided into 54 training
samples and 50 test samples, and, using the 54 training
samples alone, a system was designed through which 50 test
samples were discriminated. The trials described above were
repeated independently 30 times, and the discrimination
ability of the system was evaluated. The flowchart of the
evaluation is shown in Figure 4. In addition, in parameter
optimization of the cutoff values, the 54 training sampleswere
randomly divided into 27 subtraining samples and 27 subtest
samples.

In the test samples, at first, the mean value is calculated
from 11 reflectance values of normal sites in the training
samples, and the reflectance value that is closest to the mean
value of the 11 reflectance values is selected from them as
a typically normal reflectance value. The mean value of the
remaining 10 reflectance values is calculated again and is
defined as the mean reflectance value of normal sites. With
respect to tumor sites, similar to the normal sites of the
training samples, the mean value of 10 reflectance values of
tumor sites is defined as the mean reflectance value of tumor
sites. The corrected reflectance values of the normal and
tumor sites are obtained by subtracting the typically normal
reflectance values from the respective mean reflectance val-
ues.

3. Results and Discussion

Figure 5 shows the corrected reflectance values from the
values in Figure 2. The reflectance values of the tumor sites
are relatively larger in each case as compared with those of
the normal sites. The wavelength and the value of parameter
𝛼 are each acquired from 30 independent trials. With respect
to the wavelength, 770 nm was chosen 11 of 30 times, and,
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Figure 5: Examples of corrected reflectance values for training
samples.

Table 1: ̂𝜆 and 𝛼̂ values with the highest frequencies of selection.

First rank Second rank Third rank
Optimum wavelength ̂𝜆 770 nm 675 nm 680 nm
Optimum parameter 𝛼̂ 1/4 1/5 1/3

Table 2: Discrimination ability of the system using 770 nm and 1/4
for test samples.

Rate of
discrimination
(%)

Sensitivity (%) Specificity
(%) Youden index

85.5 72.2 98.8 0.710
[84.6, 86.4] [70.5, 73.9] [98.4, 99.2] [0.692, 0.728]

The numbers in the upper row indicate the mean values, and the numbers in
the lower row indicate the 95% confidence interval.

for 𝛼, 1/4 was chosen 15 times. In this study, the most
frequent wavelength was 770 nm, and 1/4 was the optimum
solution. The second-rank wavelength of 675 nm was chosen
5 of 30 times, with 1/5 chosen 7 times. Also, the third-rank
wavelength of 680 nm and 1/3 were chosen 3 and 4 times in
30, respectively. These are shown in Table 1.

The results of the discrimination with the use of 770 nm
and 1/4 are shown in Table 2. Within the 30 discrimination
trials, the mean sensitivity and specificity were 72.2% and
98.8%, respectively. Also, the Youden index [10], which is
defined as sensitivity + specificity − 1, is shown for reference.
High specificity is needed for gastric cancer screening, and
sensitivity must also be high so that no cancer is missed.
Although a sensitivity of 72.2% seems to be low, the discrim-
ination in this study is conducted for each pixel, and, thus,
despite the low sensitivity of each discrimination, pixels that
are discerned as cancer congregate to form one region within
the image, leading to avoidance of missing cancer by the
physician.

The point of this study can be found in the correction
of individual differences of reflectance. Therefore, to clarify
the effects of this correction, we conducted an experiment
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Table 3: Discrimination ability with and without correction.

Optimum
wavelength

Optimum
parameter

Rate of
discrimination (%) Sensitivity (%) Specificity (%) Youden index

With correction 770 nm 1/4 85.5 72.2 98.8 0.710
Without correction 780 nm 1/5 67.0 73.8 60.2 0.340

Table 4: Effect of an increase in the number of features.

Wavelength Optimum
parameter

Rate of
discrimination (%)

Sensitivity
(%)

Specificity
(%) Youden index

770 nm 1/4 85.5 72.2 98.8 0.710
770 nm, 675 nm 1/4 86.4 74.9 97.9 0.729

comparing techniques that perform correction with tech-
niques that do not perform correction. In both techniques,
feature selection was performed using the Mahalanobis
distance, and the modified minimum-distance classifier was
used. As shown in Table 3, when comparing with and with-
out correction, discrimination ability was improved with
correction, and, accordingly, the validity of the correctionwas
revealed.

We used only one wavelength for discrimination in our
original study. Therefore, we conducted an experiment to
determine whether discrimination performance could be
improved by increasing the number of wavelengths. Specif-
ically, the discrimination experiment was conducted on two-
dimensional feature space by combining the optimum wave-
length of 770 nm and the second-rank wavelength of 675 nm.
The results are shown in Table 4. Even when the number
of features was increased, the discrimination performance
remained virtually unchanged. By using the value of the
Youden index, hypothesis tests were conducted of the dif-
ferences in average value with respect to the performance of
770 nm independently and the combined performance of
770 nm and 675 nm, and there was no significant difference
in the results of either test (𝑃 = 0.13).

Real-time processing was required in this study. Not only
does increasing the number of features lengthen the process-
ing time, but also the hardware scale increases. Since no clear
improvement in discrimination performance is obtained by
increasing the number of features, by emphasizing the real-
time processing, we have adopted a one-dimensional system
by using one wavelength. For practical use, there may be
a problem with the photographic speed of the HSC, which
photographs atmanywavelengths. However, since the system
uses a single optimum wavelength, the photographic speed
of the HSC does not matter, and thus real-time processing is
achievable.

Finally, when this system is applied in practical use,
correction will be a problem. Correction requires normal
samples, but such samples are not actually available. There-
fore, in this paper, we hypothesize that when the camera
photographs the inside of the stomach, almost all of the pixels
within the image will be normal pixels. If the image contains
many pixels of cancer, a doctor can easily detect cancer
without the support of the system. In general, this hypothesis
is considered to be formed for the images used for gastric

cancer screening. If this hypothesis is satisfied, one pixel is
randomly selected within the images and can be used as a
normal pixel for correction.

This research depends on the data that is acquired. This
means that the individual wavelength and cutoff value should
be optimized depending on the hyperspectral camera that is
used. Therefore, the values of 770 nm and 1/4 might not be
valid when another hyperspectral camera is used. However,
as revealed in this study, to resolve the problem of individual
differences in patients, the value of this study is in establishing
an approach whereby real-time processing is possible.

4. Conclusion

In this paper, we developed a diagnostic support system for
gastric cancer that could discern between a pixel of a normal
site and a pixel of a tumor site for each pixel in the images of
104 gastric cancer cases photographed by aHSC. Based on the
results of 30 independent trials with the optimal wavelength
770 nmand cutoff value of 1/4, it was shown that this system is
effective in screening for gastric cancer, achieving an average
sensitivity of 72.2% and average specificity of 98.8%.

From the standpoint of this study, whether a lesion is
gastric cancer is ultimately determined by the physician, and
the system supports the physician to avoid missing gastric
cancer. For this purpose, the system can discriminate on a
pixel-by-pixel basis and support a physician’s interpretation
with a color display of the regions consisting of pixels
discriminated as a tumor in the images.

The data used here are from images of tissues pho-
tographed by the HSC immediately after gastric cancer resec-
tion. In the future, we aim to use the system in the clinical
setting, and we are planning to perform experiments using
images photographed from within the stomach.
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