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Aiming to ensure the stability of the spacecraft with multiuncertainties and mitigate the threat of the initial actuator saturation,
a Robust Linear Quadratic Regulator (RLQR) via sliding mode guidance (SMG) for orbiting a tumbling asteroid is proposed in
this paper. The orbital motion of the spacecraft near a tumbling asteroid is modelled in the body-fixed frame considering the sun-
relative effects, and the orbiting control problem is formulated as a stabilization of a nonlinear time-varying system. RLQR based
on the adaptive feedback linearization is proposed to stabilize the spacecraft orbiting with the uncertainties of the asteroid’s rotation
and gravitational field. In order to avoid the initial actuator saturation, SMG is applied to generate the transition process trajectory
of the closed-loop system. The effectiveness of the proposed control scheme is verified by the simulations of orbiting the asteroid
Toutatis 4179.

1. Introduction

The exploration of asteroids has become a hot topic of inter-
ests. Equilibria and periodic orbits near asteroids are usually
highly unstable due to the irregular shapes and the complex
rotation of the asteroids. Hence, the control of a spacecraft in
closed proximity of an asteroid is among themost challenging
technical problems in the exploration of asteroids [1].

Many researches have paid great attention to the orbital
control of the spacecrafts near asteroids. Sawai et al. [2]
presented a control based on the one-dimensional altimetry
measurements to stabilize a hovering spacecraft. Broschart
and Scheeres [3] investigated the stability of realistic hovering
control in the body-fixed and the inertial reference frames,
respectively. Then, Broschart and Scheeres [4] proposed the
sufficient conditions for a dead-band controller to bound
spacecraft hovering motion in time-invariant Lagrangian
dynamical systems. Wie [5] presented the dynamic modeling
and control analysis of multiple gravity tractors in halo
orbits. Furfaro et al. [6] investigated a novel closed-loop

autonomous guidance law based on multiple sliding surfaces
for the soft landing of the spacecraft on the designated point
on the asteroid. Liu et al. [7] presented orbital control law
for the spacecraft, which consists of PD controller and a
nonsingular terminal sliding mode controller, to track the
soft landing trajectory. Guelman [8] investigated a simple
three-dimensional guidance law for the orbit transfer to a
quasi-circular orbit about a rotating small celestial body using
continuous thrust. In these previous contributions, asteroids
are assumed to be a pure rotation configuration about the axis
with its maximum inertia. However, the rotation of asteroids
is very complex in practice and lots of them are time-varying
[9]. The asteroid with nonprincipal axis rotational motion
is so-called “tumbling asteroid” [10]. Nazari et al. [11]
investigated the observer based body-frame hovering control
over a tumbling asteroid, which is based on the time-varying
LQR or the Lyapunov-Floquet transformation and time-
invariant LQR, respectively. However, the rotation of the
asteroid needs to be modelled in his control, which will cost
a huge amount of telescope observing time to be determined
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[12], and the effect of the gravitational fields uncertainty
is not analyzed. Hence, designing a robust control law for
the spacecraft under the multiuncertainties of the asteroid’s
gravitational field and rotation is urgent.

The initial actuator saturation problem also needs to be
considered.The output of the controllermay have a high peak
at the start, whosemagnitude depends on the size of the initial
error. As the continuous adjustable thrust is small, the control
output may rise over the limitation of the thrust and threaten
the stability of the system [13]. Aiming to avoid this problem,
arranging the transition process is a good idea to acquire
an acceptable controlled quantity. In many researches of the
active disturbance rejection controllers, TrackingDifferentia-
tor (TD) is applied to arrange the transition process to avoid
much larger control outputs [14–17]. However, the stability
of the TD is difficult to be approved and the magnitude of
the control output via TD is hardly adjustable. The sliding
mode control is an important improvement of the control
theory [18]. Based on it, the sliding mode guidance (SMG) is
confirmed due to its good performance in the orbital control
of the spacecraft near asteroids [19]. We apply the SMG to
arrange the transition process of the controller. By doing this,
the max magnitude of the control output becomes adjustable
and the threat of the initial actuator saturation problem is
reduced.

In this paper, we proposed RLQR via the SMG for
stabilizing the orbit of the spacecraft around a tumbling
asteroid, which does not need to model the rotation of the
asteroid. Firstly, the spacecraft orbitalmotion near a tumbling
asteroid ismodeled as a restricted three-body problem.RLQR
based on the adaptive feedback linearization is proposed.
The feedback linearization consists of a feedforward control,
which is based on the spheric harmonic coefficient model of
the asteroids gravitational field, and an adaptive compensator
to ensure the robust stability against model uncertainties.
Aiming tomitigate the threat of the initial actuator saturation,
the SMG is applied to arrange the transition process of the
RLQR. Simulations of orbiting the Toutatis 4769 are per-
formed to verify the effectiveness of the proposed controller.
The results of applying the RLQR with and without the SMG
are compared to show the advantages.

The rest of the paper is organized in the following
form. In Section 2, the orbital dynamic of spacecraft orbital
motion is modeled and the problem formulation for control
is proposed. In Section 3, the RLQR based on the adaptive
feedback linearization is proposed. The SMG is applied
to arrange the transition process of the proposed RLQR.
In Section 4, simulations of orbiting the Toutatis 4769 are
performed. Conclusions are drawn in Section 5.

2. Problem Formulation

For the relative orbitalmotion of a spacecraft near an asteroid,
the dynamic model includes the nonspherical gravity field of
the asteroid and the solar radiation pressure (SRP) [1]. Inmost
previous researches, the orbital dynamic of the spacecraft
was formulated into two regimes: the gravity dominated
regime, in which the effects on the spacecraft from the sun
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Figure 1: Two relative frames of the orbiting.

were ignored, and 𝑇 the solar dominated regime, in which
the gravity of the asteroid was out of consideration. Few
researches considered both of the effects from the sun and
the asteroid [20]. In this section, the orbital dynamic of the
spacecraft near a tumbling asteroid is modeled as a restricted
three-body problem with the joint perturbations.

2.1. Orbital Dynamic of the Spacecraft near Tumbling Aster-
oids. Before the modeling, two relative frames need to be
defined. As shown in Figure 1, the inertial frame 𝑜 − 𝑥

𝐼
𝑦
𝐼
𝑧
𝐼

centered at the mass center of the asteroid. The 𝑥
𝐼-axis is

parallel to the sun-line. The 𝑦
𝐼-axis is coinciding with the

direction of the velocity vector of the asteroid. The 𝑥
𝐼-, 𝑦
𝐼-,

and 𝑧
𝐼-axis compose the right-handed coordinate system.

The body-fixed frame 𝑜−𝑥𝑦𝑧 fixes on asteroid with the origin
coinciding with the mass center of the asteroid. The 𝑧, 𝑥, and
𝑦 are coinciding with the axis of the asteroids maximum,
minimum, and intermediate moment of inertia, respectively.

The orbital motion of spacecraft in the inertial frame can
be expressed as
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+ u𝐼,
(1)

whereΩ𝐼
𝑠
is the orbital angular velocity vector of the asteroid,

r𝐼
𝑎
is the vector of the sun to the asteroid, r𝐼

𝑝
is the vector of

the sun to the probe, r𝐼 is the vector of the asteroid to the
probe, r𝐼 = r𝐼

𝑝
− r𝐼
𝑎
, 𝜇
𝑠
is the gravitational parameter of the

sun, g𝐼 is the gravitational acceleration of the asteroid, p𝐼
𝑠
is

the solar radiation pressure on the probe, and u𝐼 is the vector
of control.



Mathematical Problems in Engineering 3

Assume that the asteroid orbits the sun in a circle; (1) can
be simplified as

̈r𝐼 + 2Ω
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× ̇r𝐼 +Ω𝐼
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(2)

Transform (2) into the body-fixed frame; it can be
expressed as
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(4)

where Ω
𝑎
is the rotation vector of the asteroid and f

𝑠
is the

sun-relative effect on the spacecraft.

2.1.1. Sun-Relative Effects. Define Ω𝐼
𝑠

= [0, 0, 𝜔
𝑠
]
𝑇, and

the following equation can be established according to the
assumption of asteroids circle orbit:

𝜇
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𝑠
. (5)

Apply the Taylor expansion; an approximate linearization
of (4) can be expressed as

f
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(6)

Considering that the main effect of the SRP arises from
its first-order perturbations [21], p𝐼

𝑠
can be defined as
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, (7)

where 𝜉 is a defined constant parameter of SRP.
Define the transformation matrix from the inertial frame

to the body-fixed frame as 𝐻(𝑡) = {ℎ
𝑖𝑗
}
3×3

and the rotation
vector asΩ

𝑎
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𝑥
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𝑦
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]
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where
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(9)

As usually 𝜔
𝑠

≪ 𝜔
𝑖

≪ 1, 𝑖 = 𝑥, 𝑦, 𝑧, and the elements of
transformation matrix ℎ

𝑖𝑗
≤ 1, 𝑖, 𝑗 = 1, 2, 3, hence (9) can be

simplified as

𝑀 (𝑡) ≈
2
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]

. (10)

2.1.2. Asteroid’s Gravitational Field. Thegravitational acceler-
ation of the asteroid can be modelled by the gradient of the
gravitational potential function of the asteroid as

g =
𝜕𝑈 (r)

𝜕r
. (11)

Different from the regular large objects, the bodies of
asteroids are very irregular. Several methods have been
investigated to approach the gravitational field of asteroids,
such as the Spherical Harmonic Expansion Model (SHEM)
[22], the polyhedronmodel [23], and the ellipsoidal harmonic
expansion model [24]. The second-order SHEM, which
models the asteroid’s perturbation potential with the most
significant gravity coefficients and is widely used in the
previous researches, is selected to formulate the nominal
gravitational field in this paper. It can be expressed as
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(12)

where 𝜇
𝑎
is the gravitational parameter of the asteroid, 𝑟

0

is the normalizing radius, 𝐶
20

and 𝐶
22

are the spherical
harmonic gravity coefficient, and 𝑟, 𝛿, and 𝛾 are the radius,
latitude, and longitude of the field point, respectively.

Regard the asteroid as a three-axis ellipsoid with three
main axes 𝑙

1
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Then, the real gravity of the asteroid can be formulated as

g =
𝜕𝑈
0

𝜕r
+ Δg, (14)

where Δg is the uncertainty of the asteroids gravitational
model.

Hypothesis 1. Δg is bounded and the constant Γ exists, which
satisfy the following conditions:

Γ = max {
󵄩󵄩󵄩󵄩Δg (r)󵄩󵄩󵄩󵄩} . (15)

2.2. Problem Formulation for Controller Design. The stable
hovering in the inertial frame is equivalent to a stable orbiting
in the body-fixed frame. Hence, the stable orbiting condition
in the body-fixed frame is expressed as

̇r = −Ω
𝑎 (𝑡) × r. (16)

Define the error vector as

e = ̇r +Ω
𝑎 (𝑡) × r. (17)

Substitute (3) into (17); the time derivative of the error
state is expressed as

ė = −Ω
𝑎 (𝑡) × e + f

𝑠
+ g + u. (18)

Then, the stable orbiting control problem can be formu-
lated as the stabilization of the nonlinear system equation
(18).

The rotation of the asteroid is difficult to be modelled
before the close proximity orbiting observation. Hence,
the following assumptions need to be declared before the
controller design:

(i) The rotation vectorΩ
𝑎
(𝑡) is unmodeled, but its upper

bound is known.
(ii) The current state of the rotation can be observed, so

that the error vector e can be applied to the feedback.
(iii) The position r and the velocity ̇r of the spacecraft in

the body-fixed frame are provided by the navigation
system.

3. Robust Linear Quadratic Regulator via
Sliding Mode Guidance

3.1. Robust LinearQuadratic Regulator. Thenonlinear system
equation (18) can be transformed into (19). Consider

ė = 𝐴 (𝑡) e + f
𝑠
+ g + u, (19)

𝐴 (𝑡) =
[
[
[

[

0 𝜔
𝑧 (𝑡) −𝜔

𝑦 (𝑡)

−𝜔
𝑧 (𝑡) 0 𝜔

𝑥 (𝑡)

𝜔
𝑦 (𝑡) −𝜔

𝑥 (𝑡) 0

]
]
]

]

= {𝑎
𝑖𝑗
}
3×3

. (20)

Because the rotation vectorΩ
𝑎
(𝑡) is unmodeled, the time-

varying matrix 𝐴(𝑡) is uncertain. However, the upper bound

of Ω
𝑎
(𝑡) is known. Hence, we can define the upper bound

matrix of 𝐴(𝑡) as

𝐴
+

= {𝑎
+

𝑖𝑗
}
3×3

, 𝑎
+

𝑖𝑗
= max {𝑎

𝑖𝑗 (𝑡)} . (21)

Design RLQR for the stabilization of the nonlinear system
equation (19) as

u = uff + u
1

+ u
𝑎
. (22)

uff is a feedforward control as

uff = −f
𝑠
−

𝜕𝑈
0

𝜕r
. (23)

u
1
is a linear quadratic regulator, which minimizes the

cost function as (25). It can be expressed as

u
1

= −𝑅
−1

𝑃e, (24)

𝐽 =
1

2
∫

∞

𝑡0

[e𝑇 (𝑡) 𝑄e𝑇 (𝑡) + u
1

𝑇
(𝑡) 𝑅u

1 (𝑡)] 𝑑𝑡, (25)

where 𝑄 and 𝑅 are positive weight matrices and 𝑃 is a
positive symmetricmatrix, which is the solution of theRiccati
equation as

𝑃𝐴
+

+ 𝐴
+𝑇

𝑃 − 𝑃𝑅
−1

𝑃 + 𝑄 = 0. (26)

u
𝑎
is an adaptive compensator, which can be expressed as

u
𝑎

= −𝛽𝑃e,

̇𝛽 =
{

{

{

e𝑇𝑃𝑃e, e ∉ 𝛿

0, e ∈ 𝛿

𝛽 (0) = 0,

(27)

where 𝛽 is the adaptive parameter and 𝛿 is an adjustable field
in the error space that contains the origin.

Theorem 1. Considering the spacecraft orbiting problemwhich
is formulated as the stabilization of a nonlinear system as (19),
define the error state as (18) and apply the robust LQR as (24).
If Hypothesis 1 is satisfied, the closed-loop system is globally
uniformly stable.

Proof. Define a Lyapunov function candidate as

𝑉
1

= e𝑇𝑃e +
1

2
(𝛽
∗

− 𝛽)
2

, (28)

where 𝛽
∗ is a constant, which make all e ∉ 𝛿 satisfy the

condition as

min {𝛽
∗ 󵄨󵄨󵄨󵄨𝜅 (e)𝑖

󵄨󵄨󵄨󵄨} ≥ Γ, 𝑖 = 𝑥, 𝑦, 𝑧,

𝜅 (e) = 𝑃e = [𝜅 (e)𝑥 , 𝜅 (e)𝑦 , 𝜅 (e)𝑧]
𝑇

.

(29)
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The time derivative of 𝑉
1
can be expressed as

�̇�
1

= (𝐴 (𝑡) e + f
𝑠
+ g + u)

𝑇
𝑃e − ̇𝛽 (𝛽

∗
− 𝛽)

+ e𝑇𝑃 (𝐴 (𝑡) e + f
𝑠
+ g + u)

= [𝐴 (𝑡) e − 𝑅
−1

𝑃e]
𝑇

𝑃e + e𝑇𝑃 [𝐴 (𝑡) e − 𝑅
−1

𝑃e]

+ Δg𝑇𝑃e − 𝛽e𝑇𝑃𝑃e − ̇𝛽 (𝛽
∗

− 𝛽)

= e𝑇 [𝐴 (𝑡) − 𝑅
−1

𝑃]
𝑇

𝑃e + e𝑇𝑃 [𝐴 (𝑡) − 𝑅
−1

𝑃] e

+ Δg𝑇𝑃e − 𝛽
∗e𝑇𝑃𝑃e − 𝛽 (e𝑇𝑃𝑃e − ̇𝛽)

≤ e𝑇 [𝐴
+

− 𝑅
−1

𝑃]
𝑇

𝑃e + e𝑇𝑃 [𝐴
+

− 𝑅
−1

𝑃] e

+ (Γ sign (e) − 𝛽
∗

|𝑃e|) 𝑃 |e| − 𝛽 (e𝑇𝑃𝑃e − ̇𝛽)

= (Γ sign (e) − 𝛽
∗

|𝜅 (e)|) 𝑃 |e|

− e𝑇 [𝑃𝑅
−1

𝑃 + 𝑄] e, e ∉ 𝛿,

(30)

where the function sign(e) is defined as [sign(𝑒
𝑥
), sign(𝑒

𝑦
),

sign(𝑒
𝑧
)]
𝑇 and the function |𝜅| is defined as [|𝜅

𝑥
|, |𝜅
𝑦
|, |𝜅
𝑧
|]
𝑇.

As 𝑃, 𝑅, and 𝑄 are positive matrices, for all e ∉ 𝛿, �̇�
1

< 0.
According to the Lyapunov stability theorem, the nonlinear
system as (18) under the control as (22) is uniformly stable.
The bound of the steady state error depends on the adjustable
field 𝛿.

3.2. RLQR via the Sliding Mode Guidance. The proposed
RLQR could ensure the robust stability of the orbiting.
However, the proposed controller has the potential threat
from the actuator saturation. Firstly, depending on the error
state, the control output may have a high peak at the start.
Secondly, the gain of the adaptive compensator may be too
conservative, which is much larger than necessary. As the
adjustable continuous thrusters only could provide a small
thrust, the saturation of the thrust may threaten the safety
of the spacecraft. To avoid the initial actuator saturation
problem of the RLQR, the sliding mode guidance is applied
to arrange the transition process of the controller.

3.2.1. The Sliding Mode Guidance. Define the outputs of the
sliding mode guidance as 𝜀

1
and 𝜀
2
, and their initial values

are

𝜀
1 (0) = e (0) ,

𝜀
2 (0) = 0.

(31)

The sliding mode guidance is expressed as

̇𝜀
1

= 𝜀
2
,

̇𝜀
2

= −𝑘
1
𝜀
2

− 𝑘
2
sign (s) ,

(32)

where s is the sliding mode function as s = 𝜀
2

+ 𝑘
1
𝜀
1
and 𝑘

1

and 𝑘
2
are selected parameters of the SMG.

Define a Lyapunov function candidate as

𝑉
2

=
1

2
s𝑇s. (33)

Then, the time derivative of 𝑉
2
is expressed as

�̇�
2

=
1

2
̇s𝑇s +

1

2
s𝑇 ̇s = ( ̇𝜀

2
+ 𝑘
1

̇𝜀
1
)
𝑇 s = −𝑘

2
sign (s)𝑇 s

≤ 0.

(34)

Obviously, �̇�
2

= 0 only when s = 0. According to the
Lyapunov stability theorem, the SMG is globally asymptoti-
cally stable. When 𝑡 → +∞, 𝜀

1
→ 0 and 𝜀

2
→ 0.

3.2.2.The RLQRBased on the Virtual Error Vector. Define the
virtual error vector as

𝜐 = e − 𝜀
1
. (35)

The time derivative of the virtual error 𝜐 can be expressed
as

̇𝜐 = 𝐴 (𝑡) 𝜐 + g + f
𝑠
+ ũ + 𝐴 (𝑡) 𝜀

1
− 𝜀
2
. (36)

As the SMG is globally asymptotically stable and the
matrix 𝐴(𝑡) is bounded the constant Γ

󸀠 exists, which satisfy
the condition as

Γ
󸀠

= max 󵄩󵄩󵄩󵄩𝐴 (𝑡) 𝜀
1 (𝑡)

󵄩󵄩󵄩󵄩 . (37)

Then, design the RLQR based on the virtual error as

ũ = − (𝑅
−1

+ 𝛽𝐼) 𝑃𝜐 − g
0

− f
𝑠
+ 𝜀
2
, (38)

̇𝛽 =
{

{

{

𝜐
𝑇
𝑃𝑃𝜐, 𝜐 ∉ 𝛿

0, 𝜐 ∈ 𝛿,

𝛽 (0) = 0. (39)

Theorem 2. Considering the spacecraft orbiting problem
which is formulated as the stabilization of a nonlinear system
as (18), define the sliding mode guidance as (32) and the virtual
error vector as (17) and (35), and apply the robust LQRbased on
the virtual error as (38). If Hypothesis 1 is satisfied, the closed-
loop system is globally uniformly stable.

Proof. Define a Lyapunov function candidate as

𝑉
3

=
1

2
𝜐
𝑇
𝑃𝜐 +

1

2
(𝛽 − 𝛽

󸀠
)
2

+
1

2
s𝑇s, (40)

where 𝛽
󸀠 is a constant, which make all 𝜐 ∉ 𝛿 satisfy the

condition as

min {𝛽
󸀠 󵄨󵄨󵄨󵄨𝜅 (𝜐)𝑖

󵄨󵄨󵄨󵄨} ≥ Γ + Γ
󸀠
, 𝑖 = 𝑥, 𝑦, 𝑧,

𝜅 (𝜐) = 𝑃𝜐.

(41)
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Then, the time derivative of 𝑉
3
is represented as

�̇�
3

= ̇𝜐
𝑇
𝑃𝜐 + ̇𝛽 (𝛽 − 𝛽

󸀠
) + ̇s𝑇s

= −𝛽
󸀠
𝜐
𝑇
𝑃𝑃𝜐 + (Δg + 𝐴 (𝑡) 𝜀

1
)
𝑇

𝑃𝜐 − 𝑘
2
sign (s)𝑇 s

+ 𝜐
𝑇

(𝐴 (𝑡) 𝑃 − 2𝑃𝑅
−1

𝑃 + 𝑃𝐴 (𝑡)) 𝜐

− 𝛽 (𝜐
𝑇
𝑃𝑃𝜐 − ̇𝛽)

≤ ((Γ + Γ
󸀠
) sign (𝜐) − 𝛽

󸀠
|𝑃𝜐|) 𝑃 |𝜐|

− 𝑘
2
sign (s)𝑇 s − 𝜐

𝑇
(𝑃𝑅
−1

𝑃 + 𝑄) 𝜐

− 𝛽 (𝜐
𝑇
𝑃𝑃𝜐 − ̇𝛽)

= −𝑘
2
sign (s)𝑇 s

+ ((Γ + Γ
󸀠
) sign (𝜐) − 𝛽

󸀠
|𝑃𝜐|) 𝑃 |𝜐|

− 𝜐 (𝑃𝑅
−1

𝑃 + 𝑄) 𝜐, 𝜐 ∉ 𝛿.

(42)

As 𝑃, 𝑄, and 𝑅 are positive matrices, for all 𝜐 ∉ 𝛿, �̇�
3

< 0.
Hence, when 𝑡 → +∞, 𝜀

1
→ 0, for all e ∉ 𝛿, �̇�

3
< 0.

According to the Lyapunov stability theorem, the RLQR via
SMG could make the system as (18) uniformly stable. The
bound of the steady state error is 𝛿.

4. Simulations

We specifically use the numerical data of the asteroid Toutatis
4179 in the simulation. Tomake the simulationmore realistic,
the gravitational field of the asteroid is modeled by the
polyhedronmethod [23] based onHudson’s 33996-face shape
data [25], which can be expressed as (43). The second-order
SHEM is applied as the nominal model in the controller in
the same time:

𝑈 =
1

2
𝐺𝜎 ∑

𝑒∈edges
]
𝑒

⋅ E
𝑒

⋅ ]
𝑒

⋅ 𝐿
𝑒

−
1

2
𝐺𝜎 ∑

𝑓∈faces
]
𝑓
F
𝑓
]
𝑓

⋅ 𝜓
𝑓
,

(43)

where𝐺 is the gravitational constant,𝜎 is the constant density
of the asteroid, ]

𝑒
is a vector from the field point to an

arbitrary point on each edge, ]
𝑓
is a vector from the field

point to an arbitrary point on each face, E
𝑒
is a dyad defined

in terms of the face and edge normal vectors associated with
each edge, F

𝑓
is the outer product of face normal vectors, 𝐿

𝑒

is a logarithmic term expressing the potential of 1D straight
wire, and 𝜓

𝑓
is the solid angle subtended by a face when

viewed from the field point.
According to the shape data, themaximum, intermediate,

and minimum major axes of Toutatis 4179 are (𝑙
1
, 𝑙
2
, 𝑙
3
) =

(4.5, 2.4, 1.9) km. The rotation of Toutatis in two periods is
shown in Figure 2, which starts at Ω

𝑎
(0) = (4.81, 0, −12.53) ×

10
−6 rad/s. The initial attitude of the asteroid expressed by

3-2-1 Euler angle is (0, 𝜋/2, 𝜋/3). The initial transformation
matrix determined is by the initial attitude and the rotation

Table 1: The gravitational parameters of the Toutatis.

Parameter Value
𝑟
0
/m 4.500𝑒2

𝜇
𝑎
/(km3/s2) 1.279𝑒 − 6

𝜎/(g/cm3) 2.100𝑒0

𝜔
𝑠
/(rad/s) 4.937𝑒 − 8

𝜉/(km3/s2) 3.750𝑒6

‖r
𝑎
‖/m 3.806𝑒11

The rotation state of Toutatis

88 176 2640
Time (h) (176.4h per period)

wz

wy

wx

×10
−6

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

Th
e a

ng
ul

ar
 v

elo
ci

ty
 (r

ad
/s

)

Figure 2: The rotation of the Toutatis.

of the asteroid. The gravitational parameters of Toutatis are
shown in Table 1.

4.1. The Orbiting under the Control of the RLQR. The weight
matrixes of RLQR are 𝑅 = 10000I

3×3
and 𝑄 = 0.0001I

3×3
.

The adjustable field of the error state is 𝛿 : e𝑇e ≤ 1 ×

10
−6. The initial position of the spacecraft in the body-

fixed frame is r
0

= [8000, 12000, 11000]
𝑇m. The initial

velocity of the spacecraft in the body-fixed frame is ̇r
0

=

[15.036, −15.606, 3.8480]
𝑇m/s.

As illustrated in Figure 3, the error vector under RLQR
control converges to zero quickly. Then, the errors keep near
to the zero axes during the remaining times of the simulation
and the system becomes stable. The outputs of the RLQR are
shown in Figure 4. In the first several seconds, the control
acceleration has a high peak, and the adaptive gain 𝛽 grows
quickly (as shown in Figure 5).Then, the control acceleration
decreases and becomes very small that mainly restrains the
effect of the sun and the gravity of the asteroid. The adaptive
gain 𝛽 is almost stable at 0.2213. In the simulation, the control
cost of the steady-stable orbiting is about 0.0228m/s per
hour, which is acceptable for the deep space missions lasting
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Figure 3: The error under the control of RLQR.
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Figure 4: The control acceleration of RLQR.

months. Through these simulations, the effectiveness of the
RLQR has been verified.

4.2. The Orbiting under the RLQR via the SMG. The parame-
ters of the SMG are 𝑘

1
= 0.003 and 𝑘

2
= 0.005.The adjustable

field of the virtual error state is 𝛿 : 𝜐
𝑇
𝜐 ≤ 1 × 10

−6.
The error states under the control of the RLQR via SMG

are shown in Figure 6. The convergence of the error states
takes more time than the ones in Figure 3. The reduction of
convergence speed is the price of the decrease of the control
magnitude. As illustrated in Figure 7, the max value of the
control acceleration is 0.046m/s2, which is much less than

0.1

0.15

0.2

0.25

2 4 6 8 10 12 14 16 18 200
Time (h)

0

0.05

0.1

0.15

0.2

0.25

G
ai

n

20 40 60 80 1000
Time (s)

Y: 0.2212
X: 2074

Y: 0.2212
X: 7.2e + 004

Figure 5: The adaptive gain of the RLQR.
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Figure 6: The error under the control of the RLQR via SMG.

the one in Figure 4. What is more, the max magnitude of the
control acceleration can be adjusted by the parameters 𝑘

1
and

𝑘
2
. Hence, the risk of the initial actuator saturation problem

caused by the large initial error is mitigated. The gain of the
adaptive compensator with the SMG ismuch smaller than the
one without the SMG (see Figure 8). The control cost of the
steady-stable orbiting is similar to the one without the SMG.

Through the simulations in Figures 6–8, it was verified
that the RLQR via the SMG could stabilize the orbiting and
limit the magnitude of the control output. The threat of the
initial actuator saturation has been mitigated.

4.3. The Proposed Controller under Different Magnitudes of
Uncertainty. To analyze the effects of the gravity model’s
uncertainties on the proposed algorithm, we did more sim-
ulations which apply no gravity model, the second-order
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Figure 7: The control acceleration of the RLQR with SMG.
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SHEM, the fourth-order SHEM, and the polyhedron model
(no uncertainty), respectively. Adding the order of the SHEM
to the fourth, the gravitational potential of the asteroid can be
expressed as

𝑈
0

=
𝜇
𝑎

𝑟
(1 + (

𝑟
0

𝑟
)

2

[𝐶
20

(1 − 1.5cos2𝛿)

+ 3𝐶
22
cos2𝛿 cos (2𝛾)] + (

𝑟
0

𝑟
)

4

⋅ [0.125𝐶
40

(35sin4𝛿 − 30sin2𝛿 + 3)

+ 7.5𝐶
42
cos2𝛿 (7sin2𝛿 − 1) cos (2𝛾)

+ 105𝐶
44
cos2𝛿 cos (4𝛾)]) .

(44)
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Figure 9: The error curve in the 𝑥-axis.
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Figure 10: The error curve in the 𝑦-axis.

The spheric harmonic coefficient can be determined as

𝐶
40

=

9 (𝑙
4

1
+ 𝑙
4

2
) + 24𝑙

4

3
+ 6𝑙
2

1
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2
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− 24 (𝑙
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2

2
) 𝑙
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140𝑟
4
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𝐶
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2
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) (2𝑙
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2
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280𝑟
4
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𝐶
44
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(𝑙
2
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2

2
)
2

2240𝑟
4

0

.

(45)

In the simulation, the initial position of the spacecraft
is [8, 10, 11] km in the body-fixed frame. The initial velocity
of the spacecraft is [21.3, −8.67, 9.62]m/s in the body-fixed
frame. The simulation results are shown as Figures 9–14.
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Figure 11: The error curve in the 𝑧-axis.
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Figure 12: The control acceleration in the 𝑥-axis.

As shown in Figures 9–11, the errors in three axes are
converged near zero nomatterwhichmodel applied. Also, the
error curves controlled with different uncertainties have little
difference. As shown in Figures 12–14, the control outputs are
similar too.

The reason of these results may be shown in Figures 15–
17.The asteroid’s gravitational acceleration is too small, which
is in the magnitude of 10

−5
∼ 10
−6. Although we limited

the control output, it is still much larger than the asteroid’s
gravity.

As a conclusion, the uncertainty of the asteroid’s gravity
has little effect on the proposed control algorithm. The
proposed controller can be used in the orbiting around the
asteroids which are not well mapped in terms of gravity field.
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Figure 13: The control acceleration in the 𝑦-axis.
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Figure 14: The control acceleration in the 𝑧-axis.

5. Conclusion

In this paper, RLQR via SMG is proposed to ensure the
robust stability of the spacecraft orbiting a tumbling asteroid.
Based on the adaptive feedback linearization, the controller
is able to suppress the effects of the multiuncertainties in
the asteroids rotation and gravity model. Applying the SMG
to arrange the transition process, the max magnitude of
the control output is limited and threatening of the initial
actuator saturation of the controller is mitigated. Also, the
control cost of the steady-stable orbiting is acceptable for
the deep space missions lasting months. As a consequence,
the proposed control scheme can be properly selected to
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Figure 15: The gravitational acceleration in the 𝑥-axis.
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Figure 16: The gravitational acceleration in the 𝑦-axis.

maintain spacecraft orbiting a tumbling asteroid and does not
need to model the rotation of the asteroid.
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[12] P. Pravec, P. Scheirich, J. Ďurech et al., “The tumbling spin state
of (99942) Apophis,” Icarus, vol. 233, pp. 48–60, 2014.

[13] Z. Zhu, Y. Xia, and M. Fu, “Adaptive sliding mode control for
attitude stabilization with actuator saturation,” IEEE Transac-
tions on Industrial Electronics, vol. 58, no. 10, pp. 4898–4907,
2011.

[14] G. Feng, Y.-F. Liu, and L. P. Huang, “A new robust algorithm
to improve the dynamic performance on the speed control of
inductionmotor drive,” IEEE Transactions on Power Electronics,
vol. 19, no. 6, pp. 1614–1627, 2004.

[15] P. Dong, G.-J. Ye, J. Wu, J.-M. Yang, and Y.-R. Chen, “Auto-
disturbance rejection controller in the wind energy conversion
system,” in Proceedings of the 4th International Power Electronics
andMotion Control Conference (IPEMC ’04), vol. 2, pp. 878–881,
IEEE, Xi’an, China, August 2004.

[16] J. H. Ruan, Z. W. Li, F. Y. Zhou, and Y. B. Li, “ADRC based ship
tracking controller design and simulations,” in Proceedings of
the IEEE International Conference on Automation and Logistics
(ICAL ’08), pp. 1763–1768, Qingdao, China, September 2008.

[17] B.Gao, J. Shao, andX.Yang, “A compound control strategy com-
bining velocity compensation with ADRC of electro-hydraulic
position servo control system,” ISA Transactions, vol. 53, no. 6,
pp. 1910–1918, 2014.

[18] K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer’s
guide to sliding mode control,” IEEE Transactions on Control
Systems Technology, vol. 7, no. 3, pp. 328–342, 1999.

[19] Z. Zexu, W. Weidong, L. Litao et al., “Robust sliding mode
guidance and control for soft landing on small bodies,” Journal
of the Franklin Institute. Engineering and Applied Mathematics,
vol. 349, no. 2, pp. 493–509, 2012.

[20] D. J. Scheeres, “Orbit mechanics about asteroids and comets,”
Journal of Guidance, Control, and Dynamics, vol. 35, no. 3, pp.
987–997, 2012.

[21] J. W. McMahon and D. J. Scheeres, “New solar radiation
pressure force model for navigation,” Journal of Guidance,
Control, and Dynamics, vol. 33, no. 5, pp. 1418–1428, 2010.

[22] D. J. Scheeres, B. G.Williams, and J. K.Miller, “Evaluation of the
dynamic environment of an asteroid: applications to 433 Eros,”
Journal of Guidance, Control, and Dynamics, vol. 23, no. 3, pp.
466–475, 2000.

[23] R. A. Werner and D. J. Scheeres, “Exterior gravitation of a
polyhedron derived and compared with harmonic and mascon
gravitation representations of asteroid 4769 Castalia,” Celestial
Mechanics and Dynamical Astronomy, vol. 65, no. 3, pp. 313–
344, 1996.

[24] R. Garmier and J.-P. Barriot, “Ellipsoidal harmonic expansions
of the gravitational potential: theory and application,” Celestial
Mechanics and Dynamical Astronomy, vol. 79, no. 4, pp. 235–
275, 2001.

[25] R. S. Hudson, S. J. Ostro, and D. J. Scheeres, “High-resolution
model of asteroid 4179 Toutatis,” Icarus, vol. 161, no. 2, pp. 346–
355, 2003.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


