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We improve and generalize the result of Stout (1974, Theorem 4.1.3). In particular, the sharp moment conditions are obtained and
some well-known results can be obtained as special cases of the main result. The method of the proof is completely different from
that in Stout. We also improve and generalize Li et al. (1995) strong law for weighted sums of i.i.d. random variables.

1. Introduction and the Main Result

Stout [1] obtained the following celebrated result.

Theorem A (see Theorem 4.1.3 in [1] or p. 1556 in Stout [2]).
Let {𝑋,𝑋

𝑛
≥ 1} be a sequence of independent and identically

distributed random variables with 𝐸𝑋 = 0 and 𝐸|𝑋|2/𝛼 < ∞

for some 0 < 𝛼 ≤ 1. Suppose that {𝑎
𝑛𝑘
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1} is a

sequence of constants with

max
1≤𝑘≤𝑛

󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘

󵄨󵄨󵄨󵄨
≤ 𝐾𝑛
−𝛼

(1)

for some constant 0 < 𝐾 < ∞ and

lim
𝑛→∞

log 𝑛
𝑛

∑

𝑘=1

𝑎
2

𝑛𝑘
= 0. (2)

Then
∞

∑

𝑛=1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀} < ∞, ∀𝜀 > 0. (3)

Formula (3) is called complete convergence and this
concept was introduced by Hsu and Robbins [3]. Sung
[4] and Cheng and Wang [5] extended Theorem A to
random elements taking values in a Banach space. Wu [6]
and Sung [7] extended Theorem A to negatively dependent

random variables. It should be pointed out that they all used
some exponential inequalities to prove their result and hence
the proofs are similar to that of Theorem A except for more
computational complexity.

When 1/2 < 𝛼 ≤ 1, (1) clearly implies (2). Set 𝑎
𝑛𝑘

= 𝑛
−𝛼

for 1 ≤ 𝑘 ≤ 𝑛 and 𝑛 ≥ 1. Then (3) reduces to

∞

∑

𝑛=1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑛
𝛼

} < ∞, ∀𝜀 > 0, (4)

which is equivalent to 𝐸|𝑋|
2/𝛼

< ∞ and 𝐸𝑋 = 0 by Katz
[8] and Baum and Katz [9]. Hence, the moment conditions of
Theorem A are sharp when 1/2 < 𝛼 ≤ 1.

Next, we consider the case of 0 < 𝛼 ≤ 1/2. Lai [10] showed
that

∞

∑

𝑛=1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀√𝑛 log 𝑛} < ∞ (5)

for 𝜀 > √2 provided 𝐸𝑋 = 0, 𝐸𝑋2 = 1, and 𝐸𝑋4/log2|𝑋| <
∞. Hence, for any 𝜀 > 0,

∞

∑

𝑛=1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑐
𝑛
√𝑛 log 𝑛} < ∞ (6)
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if 𝑐
𝑛
→ ∞. Set 𝑎

𝑛𝑘
= (𝑐
𝑛
√𝑛 log 𝑛)−1 for 1 ≤ 𝑘 ≤ 𝑛 and 𝑛 ≥ 1.

Then (1) and (2) hold for 𝛼 = 1/2. Note that the moment
conditions are weaker than those of Theorem A when 𝛼 =

1/2. Hence, the moment conditions of Theorem A may not
be optimal for a special case of weighted sums. But it is not
knownwhether themoment conditions ofTheoremA are not
optimal when 0 < 𝛼 ≤ 1/2.

In this paper, we will discuss the optimized moment
conditions of Theorem A when 0 < 𝛼 ≤ 1/2. We obtain a
more generalized complete convergence result for weighted
sums which includes the result of Lai [10]. Our method used
is completely different from those in Lai [10] and Stout [1].

Li et al. [11] obtained the following celebrated result.

Theorem B (see Theorem 3.1 in [11]). Let {𝑋,𝑋
𝑛
≥ 1} be

a sequence of independent and identically distributed random
variables with 𝐸𝑋 = 0 and 𝐸|𝑋|1/𝛼 < ∞ for some 0 < 𝛼 ≤ 1.
Suppose that {𝑎

𝑛𝑘
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1} is a sequence of constants

with (1) for some constant 0 < 𝐾 < ∞ and

lim
𝑛→∞

𝑛
𝛾

𝑛

∑

𝑘=1

𝑎
2

𝑛𝑘
= 0, (7)

where 𝛾 > 2𝛼 − 1 if 1/2 ≤ 𝛼 ≤ 1 and 𝛾 > 0 if 0 < 𝛼 < 1/2.
Then

lim
𝑛→∞

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
𝑘
= 0 a.s. (8)

Theorem B has been extended and improved by many
authors. Jing and Liang [12] extended and improved to
negatively associated (NA) random variables, Budsaba et al.
[13] to certain types of 𝑈-statistics bases on this kind of
weighted sums of NA random variables, and Thanh and Yin
[14] to the random weighted sums. In particular, under the
condition

lim sup
𝑛→∞

log 𝑛
𝑛

∑

𝑘=1

𝑎
2

𝑛𝑘
< ∞, (9)

Jing and Liang [12] showed that

lim sup
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< ∞ a.s. (10)

when 0 < 𝛼 < 1/2.
Is it possible to find the sharp bound of (10)? In this paper,

we will give a definite answer to the question under more
general case.

Throughout this paper, 𝑐 represents a positive constant
which may vary in different places, [𝑥] denotes the integer
part of 𝑥, and 𝑓(𝑥) ∼ 𝑔(𝑥) means 𝑓(𝑥)/𝑔(𝑥) → 1 as
𝑥 → ∞. It proves convenient to define log 𝑥 = max{1, ln𝑥},
where ln𝑥 denotes the natural logarithm.

Now, we are ready to state themain results, and the proofs
will be given in the next section.

Theorem 1. Let 𝑟 > 0, 0 < 𝛼 ≤ 1/2, 𝑔(𝑥) be an increasing and
regular varying function at infinity with index 𝛼 and let ℎ(𝑥) be

the inverse function of 𝑔(𝑥). Let {𝑋,𝑋
𝑛
≥ 1} be a sequence of

independent and identically distributed random variables with
𝐸𝑋 = 0,𝐸𝑋2 = 1, and𝐸ℎ𝑟(|𝑋|)|𝑋|2/ log ℎ(|𝑋|) < ∞. Suppose
that {𝑎

𝑛𝑘
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1} is a sequence of constants such that

max
1≤𝑘≤𝑛

󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘

󵄨󵄨󵄨󵄨
≤ 𝐾𝑔
−1

(𝑛) (11)

for some constant 𝐾 > 0 and

lim
𝑛→∞

log 𝑛
𝑛

∑

𝑘=1

𝑎
2

𝑛𝑘
= 𝜌 (12)

for some constant 0 ≤ 𝜌 < ∞. Then
∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀}{
< ∞ if 𝜀 > √2r𝜌,
= ∞ if 0 < 𝜀 < √2r𝜌.

(13)

Remark 2. Recall that a measurable function 𝑓(𝑥) is said to
be regularly varying at infinity with index 𝛽 if it is positive on
[0,∞) and

lim
𝑥→∞

𝑓 (𝜆𝑥)

𝑓 (𝑥)
= 𝜆
𝛽

, ∀𝜆 > 0. (14)

We refer to Bingham et al. [15] for other equivalent definitions
and for detailed and comprehensive study of properties of
regularly varying functions. For example, if 𝛽 > −1,

𝑛

∑

𝑘=1

𝑓 (𝑘) ≤ 𝑐
𝛽
𝑛𝑓 (𝑛) , (15)

and if 𝛽 < −1,
∞

∑

𝑘=𝑛

𝑓 (𝑘) ≤ 𝐶
𝛽
𝑛𝑓 (𝑛) , (16)

where 𝑐
𝛽
> 0 and 𝐶

𝛽
> 0 are constants depending only on 𝛽.

Remark 3. When 𝑟 = 1 and 𝑔(𝑥) = 𝑥
𝛼, the last moment

condition ofTheorem 1 is reduced to 𝐸|𝑋|1/𝛼+2/ log |𝑋| < ∞.
When 0 < 𝛼 ≤ 1/2, 1/𝛼 + 2 ≤ 2/𝛼 and so the moment
conditions in Theorem 1 are strictly weaker than those in
Theorem A.

Remark 4. Let 𝑎
𝑛𝑘

= 𝑔
−1

(𝑛) if 1 ≤ 𝑘 ≤ [𝑔
2

(𝑛)/ log 𝑛] and
𝑎
𝑛𝑘
= 0 if 𝑘 > [𝑔

2

(𝑛)/ log 𝑛]. Then, it is easy to show that

lim
𝑛→∞

log 𝑛
𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘

󵄨󵄨󵄨󵄨

2

= 1. (17)

Hence, (11) and (12) hold. Under the moment conditions of
Theorem 1,

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃

{

{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[𝑔
2
(𝑛)/ log 𝑛]

∑

𝑘=1

𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀𝑔 (𝑛)

}

}

}

< ∞ (18)

for all 𝜀 > √2𝑟. On the other hand, it is easy to show
that if the above formula holds for some 𝜀 > 0, then
𝐸ℎ
𝑟

(|𝑋|)|𝑋|
2

/ log ℎ(|𝑋|) < ∞ by the similar argument as
in Lai [10]. Thus, the moment conditions of Theorem 1 are
sharp in the sense that the moment conditions on 𝑋 cannot
be weakened.
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Remark 5. Let 𝑔(𝑥) = √𝑥 log𝑥 and 𝑎
𝑛𝑘

= 𝑔
−1

(𝑛) for 1 ≤

𝑘 ≤ 𝑛 and 𝑛 ≥ 1. Then, byTheorem 1, the moment conditions
𝐸𝑋 = 0, 𝐸𝑋2 = 1, and 𝐸(𝑋2/ log |𝑋|)𝑟+1 < ∞ imply that
∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀√𝑛 log 𝑛}{
< ∞ if 𝜀 > √2𝑟,

= ∞ if 0 < 𝜀 < √2𝑟.

(19)

So, the sufficient part ofTheorem 3 in Lai [10] is a special case
of Theorem 1.

By Theorem 1 and Borel-Cantelli lemma, we have the
following corollary.

Corollary 6. Under the conditions of Theorem 1, let 𝑟 = 1,
{𝑋
𝑛𝑘
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1} be an array of independent random

variables with the same distribution as𝑋. Then

lim sup
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= √2𝜌 a.s. (20)

In particular, the moment conditions 𝐸𝑋 = 0, 𝐸𝑋2 = 1, and
𝐸𝑋
4

/log2|𝑋| < ∞ imply that

lim sup
𝑛→∞

󵄨󵄨󵄨󵄨
∑
𝑛

𝑘=1
𝑋
𝑛𝑘

󵄨󵄨󵄨󵄨

√2𝑛 log 𝑛
= 1 a.s. (21)

Remark 7. Formula (21) is called the law of single logarithm
which is due to Hu andWeber [16]. They proved it under the
strong moment condition 𝐸𝑋4 < ∞. Qi [17] and Li et al. [18]
independently proved that (21) is equivalent to conditions
𝐸𝑋 = 0, 𝐸𝑋2 = 1, and 𝐸𝑋

4

/log2|𝑋| < ∞. In particular, Li
et al. [18] gave a version of random elements taking values in
a Banach space.

Theorem 8. Let 0 < 𝛼 < 1/2, 𝑔(𝑥) be an increasing and
regular varying function at infinity with index 𝛼 and let ℎ(𝑥)
be the inverse function of 𝑔(𝑥). Let {𝑋,𝑋

𝑛
≥ 1} be a sequence

of independent and identically distributed random variables
with 𝐸𝑋 = 0, 𝐸𝑋2 = 1, and 𝐸ℎ(|𝑋|) < ∞. Suppose that
{𝑎
𝑛𝑘
, 1 ≤ 𝑘 ≤ 𝑛 , 𝑛 ≥ 1} is a sequence of constants such that

(11) holds for some constant 𝐾 > 0 and

lim sup
𝑛→∞

log 𝑛
𝑛

∑

𝑘=1

𝑎
2

𝑛𝑘
= 𝜌 (22)

for some constant 0 ≤ 𝜌 < ∞. Then

lim sup
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ √2𝜌 a.s. (23)

Remark 9. For any 𝑝 ∈ (0, 1), set

𝑎
𝑛𝑘
= (4𝑛𝜋)

1/4

(log 𝑛)−1/2 (𝑛
𝑘
)𝑝
𝑘

(1 − 𝑝)
𝑛−𝑘

. (24)

Then, by Embrechts and Maejima [19],

max
1≤𝑘≤𝑛

𝑎
𝑛𝑘
∼

1

𝜋
1/4
(𝑝(1 − 𝑝))

1/2

⋅
1

𝑛
1/4
(log 𝑛)1/2

,

log 𝑛
𝑛

∑

𝑘=1

𝑎
2

𝑛𝑘
∼ 2
−1

(𝑝(1 − 𝑝))
−1/2

(25)

as 𝑛 → ∞. Hence, from Theorem 8, 𝐸𝑋 = 0, 𝐸𝑋
2

=

1, 𝐸(|𝑋|
2

/ log |𝑋|)2 < ∞ imply that

lim sup
𝑛→∞

(4𝑛𝜋)
1/4

(log 𝑛)−1/2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

(
𝑛

𝑘
)𝑝
𝑘

(1 − 𝑝)
𝑛−𝑘

𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (𝑝 (1 − 𝑝))
−1/4 a.s.

(26)

In fact, Lai [20] has proved that

lim sup
𝑛→∞

(4𝑛𝜋)
1/4

(log 𝑛)−1/2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

(
𝑛

𝑘
)𝑝
𝑘

(1 − 𝑝)
𝑛−𝑘

𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (𝑝 (1 − 𝑝))
−1/4 a.s.

(27)

if and only if 𝐸𝑋 = 0, 𝐸𝑋
2

= 1, 𝐸(|𝑋|
2

/ log |𝑋|)2 < ∞.
Therefore, both the upper bound and the moment condition
of Theorem 8 are sharp.

Remark 10. Let 𝛼, 𝛽 > 0 and 1/𝛼 + 1/𝛽 = 1/2. Let
{𝑏
𝑛𝑘
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1} be a sequence of constants with

lim sup
𝑛→∞

𝑛
−1

∑
𝑛

𝑘=1
|𝑏
𝑛𝑘
|
𝛼

< ∞. Set 𝑎
𝑛𝑘

= (√𝑛 log 𝑛)−1𝑏
𝑛𝑘
.

Then, it is easy to show that

max
1≤𝑘≤𝑛

󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘

󵄨󵄨󵄨󵄨
≤ 𝐾(𝑛

1/𝛽

√log 𝑛)
−1

(28)

for some 𝐾 > 0 and

𝜌 = lim sup
𝑛→∞

log 𝑛
𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘

󵄨󵄨󵄨󵄨

2

= lim sup
𝑛→∞

𝑛
−1

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨
𝑏
𝑛𝑘

󵄨󵄨󵄨󵄨

2

≤ lim sup
𝑛→∞

(𝑛
−1

𝑛

∑

𝑘=1

|𝑏
𝑛𝑘
|
𝛼

)

2/𝛼

< ∞

(29)

by Hölder’s inequality. Hence, from Theorem 8, 𝐸𝑋 =

0, 𝐸𝑋
2

= 1, and 𝐸(|𝑋|𝛽/(log |𝑋|)𝛽/2) < ∞ imply that

lim sup
𝑛→∞

󵄨󵄨󵄨󵄨
∑
𝑛

𝑘=1
𝑏
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨

√𝑛 log 𝑛
= lim sup
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ √2𝜌 a.s. (30)

So, Theorem 1.4 in Chen and Gan [21] is a corollary of
Theorem 8.

Remark 11. When 𝛼 = 1/2, Theorem 8 also holds, but the
proof is completely different. So, we will discuss it in the other
paper.

2. Proofs of the Main Results

The main idea in the proofs of the main results is to use
the following invariance principle (see Sakhanenko [22–24]),
which is a powerful tool in the field of limit theory (e.g., see
Csörgő et al. [25], Jiang and Zhang [26], Chen and Gan [21],
and Chen and Wang [27]).

Lemma 12. Let {𝜉
𝑘
, 1 ≤ 𝑘 ≤ 𝑛} be a sequence of independent

random variables with 𝐸𝜉
𝑘
= 0 and 𝐸𝜉2

𝑘
< ∞ for 1 ≤ 𝑘 ≤ 𝑛.
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Then, there exists a sequence of independent normal random
variables {𝜂

𝑘
, 1 ≤ 𝑘 ≤ 𝑛} with 𝐸𝜂

𝑘
= 0 and 𝐸𝜂2

𝑘
= 𝐸𝜉
2

𝑘
such

that, for all 𝑞 > 2 and 𝑦 > 0,

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝜉
𝑘
−

𝑛

∑

𝑘=1

𝜂
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝑦} ≤ 𝐵𝑦
−𝑞

𝑛

∑

𝑘=1

𝐸
󵄨󵄨󵄨󵄨
𝜉
𝑘

󵄨󵄨󵄨󵄨

𝑞

, (31)

where 𝐵 is a positive constant depending only on 𝑞.

Proof of Theorem 1. For 1 ≤ 𝑘 ≤ 𝑛 and 𝑛 ≥ 1, we let

𝑌
𝑛𝑘
= 𝑋
𝑘
𝐼 (
󵄨󵄨󵄨󵄨
𝑋
𝑘

󵄨󵄨󵄨󵄨
> 𝑔 (𝑛)) − 𝐸𝑋

𝑘
𝐼 (
󵄨󵄨󵄨󵄨
𝑋
𝑘

󵄨󵄨󵄨󵄨
> 𝑔 (𝑛)) ,

𝑍
𝑛𝑘
= 𝑋
𝑘
− 𝑌
𝑛𝑘
.

(32)

We first prove that

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀} < ∞, ∀𝜀 > √2𝑟𝜌. (33)

For 𝜀 > √2𝑟𝜌, let 𝜀 = 𝜀
1
+ 𝜀
2
, where 𝜀

1
> 0 and 𝜀

2
> √2𝑟𝜌.

Then

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀}

≤

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑌
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀
1
}

+

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑍
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀
2
} := 𝐼

1
+ 𝐼
2
.

(34)

For 𝐼
1
, we have, by Markov’s inequality, (12), (15), and a

standard computation, that

𝐼
1
≤ 𝑐

∞

∑

𝑛=1

𝑛
𝑟−1

𝑛

∑

𝑘=1

𝑎
2

𝑛𝑘
𝐸𝑋
2

𝐼 (|𝑋| > 𝑔 (𝑛))

≤ 𝑐

∞

∑

𝑛=1

𝑛
𝑟−1

log 𝑛
𝐸𝑋
2

𝐼 (|𝑋| > 𝑔 (𝑛)) ≤ 𝑐𝐸
ℎ
𝑟

(|𝑋|) |𝑋|
2

log ℎ (|𝑋|)
< ∞.

(35)

For 𝐼
2
, we will use Lemma 12. By Lemma 12, there exists an

array {𝜂
𝑛𝑘
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1} of rowwise independent normal

random variables with 𝐸𝜂
𝑛𝑘

= 0, 𝐸𝜂2
𝑛𝑘

= 𝐸|𝑎
𝑛𝑘
𝑍
𝑛𝑘
|
2 such

that, for all 𝑞 > 2 and 𝑦 > 0,

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑍
𝑛𝑘
−

𝑛

∑

𝑘=1

𝜂
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝑦}

≤ 𝐵𝑦
−𝑞

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘

󵄨󵄨󵄨󵄨

𝑞

𝐸|𝑋|
𝑞

𝐼 (|𝑋| ≤ 𝑔 (𝑛)) .

(36)

For 𝜀
2
> √2𝑟𝜌, let 𝜀

2
= 𝜀
3
+ 𝜀
4
, where 𝜀

3
> 0 and 𝜀

4
> √2𝑟𝜌.

Then

𝐼
2
≤

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑍
𝑛𝑘
−

𝑛

∑

𝑘=1

𝜂
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀
3
}

+

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝜂
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀
4
}

:= 𝐼
21
+ 𝐼
22
.

(37)

Take 𝑞 > 2 such that 𝑟 − 1 − 𝛼(𝑞 − 2) < −1. Then, we have, by
(36), (11), (12), (16), and a standard computation, that

𝐼
21
≤ 𝑐

∞

∑

𝑛=1

𝑛
𝑟−1

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘

󵄨󵄨󵄨󵄨

𝑞

𝐸|𝑋|
𝑞

𝐼 (|𝑋| ≤ 𝑔 (𝑛))

≤ 𝑐

∞

∑

𝑛=1

𝑛
𝑟−1

𝑔
−(𝑞−2)

(𝑛)

log 𝑛
𝐸|𝑋|
𝑞

𝐼 (|𝑋| ≤ 𝑔 (𝑛))

≤ 𝑐𝐸
ℎ
𝑟

(|𝑋|) |𝑋|
2

log ℎ (|𝑋|)
< ∞.

(38)

We finally prove that 𝐼
22

< ∞. To do this, let 𝛿 > 1

be sufficiently close to 1 such that 𝜀
4

> 𝛿√2𝑟𝜌. Then
∑
𝑛

𝑘=1
𝑎
2

𝑛𝑘
≤ 𝜀
2

4
/(2𝑟𝛿 log 𝑛) for all large enough 𝑛. Let 𝑁 be

a standard normal random variable. It is well known that
𝑃{|𝑁| > 𝑥} ∼ √2/𝜋𝑥

−1

𝑒
−𝑥
2
/2. Since 𝐸𝑋

2

= 1, 𝐸𝑍2
𝑛𝑘

=

𝐸{𝑋𝐼(|𝑋| ≤ 𝑔(𝑛)) − 𝐸𝑋𝐼(|𝑋| ≤ 𝑔(𝑛))}
2

≤ 1 for all 1 ≤ 𝑘 ≤ 𝑛

and 𝑛 ≥ 1. Hence, for all large enough 𝑛,

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝜂
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀
4
} ≤ 𝑃

{{

{{

{

|𝑁| >
𝜀
4

√∑
𝑛

𝑘=1
𝑎
2

𝑛𝑘

}}

}}

}

≤ 𝑐√

𝑛

∑

𝑘=1

𝑎
2

𝑛𝑘
exp{−

𝜀
2

4

2∑
𝑛

𝑘=1
𝑎
2

𝑛𝑘

}

≤ 𝑐 (log 𝑛)−1/2𝑛−𝑟𝛿,

(39)

which gives 𝐼
22
< ∞.

Next, we prove that

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀} = ∞, ∀0 < 𝜀 < √2𝑟𝜌. (40)
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For 0 < 𝜀 < √2𝑟𝜌, let 𝜀 = −𝜀
5
− 𝜀
6
+ 𝜀
7
, where 𝜀

5
> 0, 𝜀
6
> 0

and 0 < 𝜀
7
< √2𝑟𝜌. Then

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝜂
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀
7
}

≤

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑖
𝑌
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀
5
}

+

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑍
𝑛𝑘
−

𝑛

∑

𝑘=1

𝜂
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀
6
}

+

∞

∑

𝑛=1

𝑛
𝑟−1

𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀} .

(41)

The first series on the right hand side converges by 𝐼
1
< ∞.

The second series converges by 𝐼
21
< ∞. But by using𝑃{|𝑁| >

𝑥} ∼ √2/𝜋𝑥
−1

𝑒
−𝑥
2
/2, it is easy to show that the series on the

left-hand side diverges. Hence, the last series on the right-
hand side also diverges. That is, (40) holds.

Proof of Theorem 8. Let 𝛿 > 0 be given. Let

𝑋
󸀠

𝑛𝑘
= 𝑋
𝑘
𝐼 (
󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨
≤ 𝑛
−Δ

) (42)

for Δ > 0 to be specified below and let

𝑇
󸀠

𝑛
=

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
󸀠

𝑛𝑘
. (43)

Let

𝑋
󸀠󸀠

𝑛𝑘
= 𝑋
𝑘
𝐼 (

󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨
>

𝛿

𝑁
) (44)

for an integer𝑁 to be specified below and let

𝑇
󸀠󸀠

𝑛
=

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
󸀠󸀠

𝑛𝑘
. (45)

Let

𝑋
󸀠󸀠󸀠

𝑛𝑘
= 𝑋
𝑘
− 𝑋
󸀠

𝑛𝑘
− 𝑋
󸀠󸀠

𝑛𝑘
= 𝑋
𝑘
𝐼 (𝑛
−Δ

<
󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨
≤

𝛿

𝑁
) (46)

and let

𝑇
󸀠󸀠󸀠

𝑛
=

𝑛

∑

𝑘=1

𝑎
𝑛𝑘
𝑋
󸀠󸀠󸀠

𝑛𝑘
. (47)

Since 𝛿 > 0 is arbitrary, to prove (22), it is enough to show
that

lim sup
𝑛→∞

󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠

𝑛
− 𝐸𝑇
󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
≤ √2𝜌 a.s.

𝐸𝑇
󸀠

𝑛
󳨀→ 0

𝑇
󸀠󸀠

𝑛
󳨀→ 0 a.s.

lim sup
𝑛→∞

󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠󸀠󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
≤ 𝛿 a.s.

(48)

Using the same argument as in the proof of Theorem 1, we
have that, for any 𝜀 > √2𝜌 with 𝜀 = 𝜀

1
+ 𝜀
2
, where 𝜀

1
> √2𝜌

and 𝜀
2
> 0,
∞

∑

𝑛=1

𝑃 {
󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠

𝑛
− 𝐸𝑇
󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
> 𝜀}

≤

∞

∑

𝑛=1

(𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑘=1

𝜂
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀
1
}

+ 𝑃{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇
󸀠

𝑛
− 𝐸𝑇
󸀠

𝑛
−

𝑘

∑

𝑘=1

𝜂
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀
2
})

≤ 𝑐

∞

∑

𝑛=1

√

𝑛

∑

𝑘=1

𝑎
2

𝑛𝑘
exp{−

𝜀
2

1

2∑
𝑛

𝑘=1
𝑎
2

𝑛𝑘

}

+ 𝑐

∞

∑

𝑛=1

𝑛

∑

𝑘=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘
𝑋
󸀠

𝑛𝑘

󵄨󵄨󵄨󵄨󵄨

𝑞

≤ 𝑐

∞

∑

𝑛=1

exp{−
𝜀
2

1

2∑
𝑛

𝑘=1
𝑎
2

𝑛𝑘

}

+ 𝑐

∞

∑

𝑛=1

𝑛
1−𝑞Δ

< ∞

(49)

when 𝑞 > 2 is large enough. Hence, by Borel-Cantelli lemma,
lim sup

𝑛→∞
|𝑇
󸀠

𝑛
− 𝐸𝑇
󸀠

𝑛
| ≤ √2𝜌 a.s. Taking 𝑟 ∈ (2, 1/𝛼), we

get, by 𝐸𝑋 = 0, (11), and (22), that

󵄨󵄨󵄨󵄨󵄨
𝐸𝑇
󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
≤

𝑛

∑

𝑘=1

𝐸
󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨
𝐼 (
󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨
> 𝑛
−Δ

)

≤ 𝑛
(𝑟−1)Δ

𝑛

∑

𝑘=1

𝐸
󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨

𝑟

𝐼 (
󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨
> 𝑛
−Δ

)

≤ 𝑐𝑛
(𝑟−1)Δ

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘

󵄨󵄨󵄨󵄨

𝑟

≤ 𝑐𝑛
(𝑟−1)Δ

(𝑔 (𝑛))
−(𝑟−2)

;

(50)

Hence, 𝐸𝑇󸀠
𝑛
→ 0 when Δ is small enough. By 𝐸ℎ(|𝑋|) < ∞,
∞

∑

𝑘=1

𝑃{|𝑋| > (
𝛿

𝑁𝐾
)𝑔 (𝑘)} < ∞ (51)

which implies that the series∑∞
𝑘=1

|𝑋
𝑘
|𝐼(|𝑋
𝑘
| > (𝛿/𝑁𝐾)𝑔(𝑘))

converges almost surely by Borel-Cantelli lemma. Hence,

󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
≤ 𝐾𝑔
−1

(𝑛)

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨
𝑋
𝑘

󵄨󵄨󵄨󵄨
𝐼 (

󵄨󵄨󵄨󵄨
𝑋
𝑘

󵄨󵄨󵄨󵄨
> (

𝛿

𝑁𝐾
)𝑔 (𝑛))

≤ 𝐾𝑔
−1

(𝑛)

∞

∑

𝑘=1

󵄨󵄨󵄨󵄨
𝑋
𝑘

󵄨󵄨󵄨󵄨
𝐼 (

󵄨󵄨󵄨󵄨
𝑋
𝑘

󵄨󵄨󵄨󵄨
> (

𝛿

𝑁𝐾
)𝑔 (𝑘)) 󳨀→ 0 a.s.

(52)

To prove lim sup
𝑛→∞

|𝑇
󸀠󸀠󸀠

𝑛
| ≤ 𝛿 a.s., by Borel-Cantelli lemma,

it is enough to show that
∞

∑

𝑛=1

𝑃 {
󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠󸀠󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
> 𝛿} < ∞. (53)
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Since 𝑋
󸀠󸀠󸀠

𝑛𝑘
= 𝑋

𝑘
𝐼(𝑛
−Δ

< |𝑎
𝑛𝑘
𝑋
𝑘
| ≤ 𝛿/𝑁), |𝑇󸀠󸀠󸀠

𝑛
| =

|∑
𝑛

𝑘=1
𝑎
𝑛𝑘
𝑋
󸀠󸀠󸀠

𝑛𝑘
| > 𝛿 implies that there must exist at least 𝑁

indices 𝑘 such that𝑋󸀠󸀠󸀠
𝑛𝑘

̸= 0. Hence, by Bonferroni’s inequality
(see, e.g., Lemma 4.1.2 in [1]) and Markov’s inequality,

𝑃 {
󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠󸀠󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
> 𝛿} ≤ 𝑃 {there exist at least 𝑁

indices 𝑘 such that 𝑋󸀠󸀠󸀠
𝑛𝑘

̸= 0}

≤ ∑

1≤𝑘
1
<𝑘
2
<⋅⋅⋅<𝑘

𝑁
≤𝑛

𝑁

∏

𝑗=1

𝑃 {
󵄨󵄨󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘
𝑗

𝑋
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
> 𝑛
−Δ

}

≤ (

𝑛

∑

𝑘=1

𝑃 {
󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘
𝑋
𝑘

󵄨󵄨󵄨󵄨
> 𝑛
−Δ

})

𝑁

≤ (𝑛
𝑝Δ

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨
𝑎
𝑛𝑘

󵄨󵄨󵄨󵄨

𝑝

𝐸|𝑋|
𝑝

)

𝑁

≤ 𝑐𝑛
𝑝Δ𝑁

(𝑔(𝑛))
−𝑁(𝑝−2)

,

(54)

where 𝑝 ∈ (2, 1/𝛼). Thus, choosing Δ sufficiently small and
𝑁 sufficiently large such that𝑁[𝛼(𝑝 − 2) − 𝑝Δ] > 1, we have

∞

∑

𝑛=1

𝑃 {
󵄨󵄨󵄨󵄨󵄨
𝑇
󸀠󸀠󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
> 𝛿} ≤ 𝑐

∞

∑

𝑛=1

𝑛
𝑝Δ𝑁

[𝑔(𝑛)]
−𝑁(𝑝−2)

< ∞, (55)

since the function 𝑥
𝑝Δ𝑁

[𝑔(𝑥)]
−𝑁(𝑝−2) is regularly varying at

infinity with index −𝑁[𝛼(𝑝 − 2) − 𝑝Δ] < −1. This completes
the proof.
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