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We introduce an informative labeling algorithm for the vertices of a family of Koch networks. Each label consists of two parts: the
precise position and the time adding to Koch networks. The shortest path routing between any two vertices is determined only on
the basis of their labels, and the routing is calculated only by few computations. The rigorous solutions of betweenness centrality
for every node and edge are also derived by the help of their labels. Furthermore, the community structure in Koch networks is
studied by the current and voltage characterizations of its resistor networks.

1. Introduction

The WS small-world models [1] and BA scale-free networks
[2] are two famous random networks which stimulated an
in-depth understanding of various physical mechanisms in
empirical complex networks.The twomain shortcomings are
the uncertain creatingmechanism and the huge computation
in analysis. Deterministic models always have important
properties similar to random models, such as being scale-
free, having small-world behavior, and being highly clustered,
and thus they could be used to imitate empirical networks
appropriately. Hence, the study of the deterministic models
of a complex network is increasing recently.

Inspired by the simple recursive operation and techniques
of plane filling and generating processes of fractals, several
deterministic models [3–18] have been created imaginatively
and studied carefully. The lines in the famous Koch fractals
[19] are mapped into vertices, and there is an edge between
two vertices if two lines are connected; the generated novel
networks were namedKoch networks [20].This novel class of
networks incorporates some key properties which character-
ize the majority of real-life networked systems: a power-law

distribution with exponent in the range between 2 and 3, a
high clustering coefficient, a small diameter, and average path
length and degree correlations. Besides, the exact numbers
of spanning trees, spanning forests, and connected spanning
subgraphs in the networks are enumerated by Zhang et al. in
[20]. All these features are obtained exactly according to the
proposed generation algorithm of the networks considered
[21–29]. The deterministic models of the complex network
have a fixed shortest path, but how to mark it only by their
labels is rarely researched [30–34].

However, some important properties in Koch networks,
such as vertex labeling, the shortest path routing algorithm,
the length of the shortest path between arbitrary two vertices,
the betweenness centrality, and the current and voltage prop-
erties of Koch resistor networks have not yet been researched.
In this paper, we introduce an informative labeling and rout-
ing algorithm for Koch networks. By the intrinsic advantages
of the labels, we calculate the shortest path distances between
two arbitrary vertices in a couple of computations. We derive
the rigorous solutions of betweenness centrality of every
node and edge, and we also research the current and voltage
characteristics of Koch resistor networks.
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2. Koch Networks

The Koch networks are constructed in an iterative way. Let
𝐾𝑚,𝑡 be the Koch networks after 𝑡 ∈ 𝑁 iterations, where 𝑚 is
a structural parameter.

Definition 1. The Koch networks 𝐾𝑚,𝑡 are generated as fol-
lows: initially (𝑡 = 0), 𝐾𝑚,0 is a triangle. For 𝑡 ≥ 1, 𝐾𝑚,𝑡 is
obtained from 𝐾𝑚,𝑡−1 by adding 𝑚 groups of vertices to each
of the three vertices of every existing triangle in 𝐾𝑚,𝑡−1.

Remark 2. Each group consists of twonewvertices, called son
vertices. Both sons are connected to one another and to their
father vertices; thus, the three vertices shape a new triangle.

That is to say, we can get𝐾𝑚,𝑡 from𝐾𝑚,𝑡−1 just by replacing
each existing triangle in𝐾𝑚,𝑡−1 with the connected clusters on
the right-hand side of Figure 1.

For the integrity of the article, we firstly introduce
some important properties of Koch networks from [20]. The
numbers of vertices and edges in networks 𝐾𝑚,𝑡 are

𝑁𝑡 = 2 (3𝑚 + 1)𝑡 + 1, (1)

𝐸𝑡 = 3 (3𝑚 + 1)𝑡 . (2)

By denotingΔ V(𝑡) as the numbers of nodes created at step
𝑡, we obtain Δ V(𝑡) = 6𝑚(3𝑚 + 1)𝑡−1; then, we also get that
the degree distribution is 𝑃(𝑘 = 2(𝑚 + 1)𝑡−𝑖) = 6𝑚(3𝑚 +
1)𝑖−1/(2(3𝑚+1)𝑡+1); by substituting 𝑖 = 𝑡− ln(𝑘/2)/ln(𝑚+1),
for 𝑎−ln𝑏/ln𝑐 = 𝑏−ln𝑎/ln𝑐, and then (3𝑚 + 1)−ln(𝑘/2)/ln(𝑚+1) =
2ln(3𝑚+1)/ln(𝑚+1)𝑘−ln(3𝑚+1)/ln(𝑚+1) and 𝑃(𝑘) = [6𝑚(3𝑚 +
1)𝑡−1/2(3𝑚 + 1)𝑡 + 1]2ln(3𝑚+1)/ln(𝑚+1)𝑘−ln(3𝑚+1)/ln(𝑚+1), in the
infinite 𝑡 limit, one can get

𝑃 (𝑘) = 3𝑚
3𝑚 + 1

2ln(3𝑚+1)/ln(𝑚+1)𝑘−ln(3𝑚+1)/ln(𝑚+1). (3)

Then, the exponent of degree distribution is 𝛾 = ln(3𝑚 +
1)/ln(𝑚+1), which belongs to the interval (1, 2]. The average
clustering coefficient 𝐶 of the whole network is given by
𝐶 = (1/𝑁𝑡) ∑

𝑡
𝑟=0(1/(𝑘𝑖(𝑟) − 1))𝐿𝑢(𝑟). When𝑚 increases from

1 to infinity, 𝐶 increases from 0.82008 to 1. So, the Koch
networks are highly clustered.The average path length (APL)
approximates 4𝑚𝑡/(3𝑚 + 1) in the infinite 𝑡, for APL is

𝑑𝑡 =
3𝑚 + 5 + (24𝑚𝑡 + 24𝑚 + 4) (3𝑚 + 1𝑡)

3 (3𝑚 + 1) [2 (3𝑚 + 1)𝑡 + 1]

∼ 4𝑚𝑡
3𝑚 + 1

.

(4)

This formula shows that Koch networks exhibit small-
world behavior.These properties indicate that Koch networks
incorporate some key properties characterizing a majority of
empirical networks: simultaneously scale-free, small-world,
and highly clustered [20].
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Figure 1: Iterative construction method for the Koch networks
when 𝑚 = 1, 2, . . . , 𝑘.

3. Vertex Labeling and Routing Algorithm by
the Shortest Path

Definition 3. All the vertices are located in three different
subnetworks of the Koch network; the label 𝑛 (𝑛 = 1, 2, or
3) is used to denote the subnetworks.

Remark 4. Denote the three symmetrical subnetworks in
Koch networks 𝐾𝑚,𝑡 as 𝐾1𝑚,𝑡, 𝐾2𝑚,𝑡, and 𝐾3𝑚,𝑡. Then, 𝐾𝑚,𝑡 is
obtained just by linking the hub of three subnetworks directly.
Therefore, the label 𝑛 (𝑛 = 1, 2, or 3) is used to differentiate
the vertices in the three different subnetworks 𝐾𝑛𝑚,𝑡.

A binary digits code is used to identify the precise
position of a vertex in𝐾𝑛𝑚,𝑡 and the exact time which is linked
to 𝐾𝑛𝑚,𝑡. The method is shown as follows.

Definition 5. Any vertex in 𝐾𝑛𝑚,𝑡 is marked with binary digits
𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑗, where 𝑏1 = 0 when 𝑗 = 1. 𝑏𝑗 = 0 or 1 when 𝑗 =
2, 3, . . . , 𝑡. The 0 (or 1) in binary digits represents the notion
that the new𝑚 vertices are grown from a son vertex (or father
vertex) in a triangle. The length of the binary digit is the time
at which the vertex is linked to Koch networks.

Remark 6. Because the initial network 𝐾𝑚,0 is a triangle,
all the three initial vertices in it have no father vertices, so
that the new vertices adding to the initial vertices should be
marked with 0 at time 𝑗 = 1; that is, 𝑏1 must be 0.

Then, we obtain the set 𝑆, by processing the binary digit
codes of each vertex in 𝐾𝑚,𝑡.

𝑆 = {Φ, 𝑏1, 𝑏1𝑏2, 𝑏1𝑏2𝑏3, . . . , 𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑡} . (5)
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Remark 7. The element Φ in 𝑆 implies that when 𝑡 = 0, the
length of Φ is zero in 𝐾𝑚,0.

Definition 5 implies that all the vertices, added to an exist-
ing vertex at step 𝑗, have the same binary codes 𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑗.
Consequently, the number of vertices which are added to an
existing father vertex at step 𝑗 is given by

𝑙max (𝑗) = (2𝑚)𝑗−∑
𝑗
𝑖=1 𝑏𝑖 (𝑚 + 1)∑

𝑗
𝑖=1 𝑏𝑖 . (6)

Sowe need tomark the vertices of this groupwith an extra
integer 𝑙(𝑗) ∈ [1, 𝑙max(𝑗)] for they all have the same binary
codes 𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑗 and the same group indicator 𝑛.

Definition 8. An integer 𝑙(𝑗) is used to identify the precise
position, increasing by clockwise direction, of a vertex in the
group which is added to a father vertex at the iteration 𝑗.

Remark 9. Because 𝑙(𝑗) increases from 1 and is positioned
after the binary blue code, a dot is needed between 𝑙(𝑗) and
the binary code to avoid confusion.

In sum, the arbitrary vertex which is added to 𝐾𝑚,𝑡 at
step 𝑗 is labeled with 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑗 ⋅ 𝑙(𝑗). The code 𝑛 denotes
which subnetwork of 𝐾𝑛𝑚,𝑡 the vertex belongs to; the binary
digit 𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑗 indicates the father vertex which is linked
to this new vertex; the positive integer 𝑙, which increases
in a clockwise manner, is used to mark the precise position
around a father vertex.

Define the set 𝑀(𝑗) as the label set of the vertices added
to networks 𝐾𝑚,𝑡 at step 𝑗. It is apparent that 𝑀(0) = {1, 2, 3}
and𝑀(𝑗) = {𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑗 ⋅ 𝑙(𝑗)}. Let the set 𝐿𝑚,𝑡 represent the
labels of all the vertices in 𝐾𝑚,𝑡; we obtain

𝐿𝑚,𝑡 =
𝑡

⋃
𝑗=1

𝑀(𝑗) . (7)

For example, Figure 2 demonstrates the vertex labeling
of all the vertices in Koch network 𝐾2,2. In the following
sections, we deduced some important properties of Koch
networks just on the basis of the labels of their vertices.

Property 1. Each vertex has a unique label.

Suppose an arbitrary vertex is labeled with 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑗 ⋅
𝑙(𝑗). Firstly, from the labeling algorithm, the labels of any pair
of vertices are different from each other. Secondly, the size of
𝐿𝑚,𝑡 equals the size of Koch networks. So, we deduced that
any vertex has a unique label.

Assume that 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 ⋅ 𝑙V(𝑖) is the label of arbitrary
vertex V which is added to 𝐾𝑚,𝑡 at step 𝑖, and let the set 𝐴(V)
denote the labels of all neighbor vertices of V. By comparing
the vertex’s degree between V and its neighbors, 𝐴(V) can
be divided into three subsets: 𝐴𝑒(V), 𝐴 𝑙(V), and 𝐴ℎ(V), the
vertices in which sets have a degree equal to, lower than,
and higher than the degree of V, respectively. That is to say,
𝐴(V) = 𝐴𝑒(V) ∪ 𝐴 𝑙(V) ∪ 𝐴ℎ(V).

Property 2. 𝐴𝑒(V) = {𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 ⋅ 𝑙𝑒(𝑖)}, where vertex degree
𝑙𝑒(𝑖) = 𝑙V(𝑖) + 1 if mod(𝑙V(𝑖), 2) = 1, or 𝑙𝑒(𝑖) = 𝑙V(𝑖) − 1 if
mod(𝑙V(𝑖), 2) = 0.

According to the proposed algorithm, at each step, any
father vertex adds 𝑚 groups of vertices, with each group
consisting of two vertices. Thus, these latter, together with
the father, are linked to each other and form a new triangle.
Therefore, the two vertices in the same group are neighbors
which are linking directly and have the same degrees. By the
labeling method, the 𝑚 group vertices are labeled with the
integers 𝑙(𝑖) which increase from 1 to 𝑙max(𝑖) in a clockwise
manner. So, 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 ⋅ (𝑙V(𝑖) + 1) is the neighbor of
𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 ⋅ 𝑙V(𝑖) with the same degrees if mod(𝑙V(𝑖), 2) = 1,
or 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 ⋅ (𝑙V(𝑖) − 1) is the neighbor if mod(𝑙V(𝑖), 2) = 0.

Property 3. 𝐴 𝑙(V) = {𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖0 ⋅ 𝑙V(𝑖 + 1), 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖0 ⋅
𝑙V(𝑖 + 2), . . . , 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖0 ⋅ 𝑙V(𝑡)}.

From the labeling algorithm, the vertices with longer
binary codes have lower degrees than the verticeswith shorter
binary codes. In addition, the 0 or 1 in binary codes indicates
that the new vertex is growing from the two son vertices
or father vertex in each triangle. Hence, we can understand
that the vertices, adding to V at steps 𝑖 + 1, 𝑖 + 2, . . . , 𝑡, are
labeled with 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖0 ⋅ 𝑙V(𝑖 + 1), 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖0 ⋅ 𝑙V(𝑖 +
2), . . . , 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖0 ⋅ 𝑙V(𝑡).

Let ⌈𝑥⌉ be the function returning the biggest integer just
smaller than real number 𝑥.

Property 4. 𝐴ℎ(V) = {𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑗−1 ⋅ ⌈𝑙V(𝑖)/2𝑚(𝑚 +
1)∑
𝑖
𝑘=𝑗+1 𝑏𝑘⌉}.

We remark that 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 ⋅ 𝑙V(𝑖) is the label of an
arbitrary vertex V. From construction, we obtain that the label
of the only father vertex of V depends on the composition
in binary codes 𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 of vertex V. Suppose the first 0
in 𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖, from the right to the left side, is 𝑏𝑗. By the
construction method, it is clear that V is linked to a vertex
with higher degree which is labeled with 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑗−1 ⋅
⌈𝑙V(𝑖)/2𝑚(𝑚 + 1)∑

𝑖
𝑘=𝑗+1 𝑏𝑘⌉. In particular, if the first 0 of

𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 is 𝑏1, the vertex with a higher degree is exactly a
hub of Koch networks which is labeled with 𝑛 = 1, 2 or 3.

The deterministic models of the complex network have a
fixed shortest path, but how to mark it only by their labels
is rarely researched [15]. The following rules are used to
determine the shortest path routing between any two vertices
by the help of their labels. Let 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖⋅𝑙 and 𝑛󸀠𝑏󸀠1𝑏

󸀠
2𝑏
󸀠
3 ⋅ ⋅ ⋅ 𝑏
󸀠
𝑗 ⋅

𝑙󸀠 be the labels of arbitrary pair of vertices in 𝐾𝑚,𝑡.

Algorithm 10. The shortest path routing algorithm in Koch
networks is discussed.

If 𝑛 ̸= 𝑛󸀠, find out, by Property 4, all the higher degree
neighbors of the two vertices, until the hubs 𝑛 and 𝑛󸀠. Thus,
by linking all vertices of them, we obtained the shortest path.

If 𝑛 = 𝑛󸀠, the first step is to mark higher degree neighbors
until the common highest degree vertex by Property 4 and
then judge whether the two second highest degree vertices



4 Complexity

1

23

10.2
10.1

10.3
10.4

100.1
100.2
100.3
100.4

100.5

100.6 100.7 100.8 100.9 100.10 100.11
100.12

100.13
100.14

100.16
100.15

101.2
101.1

101.3
101.4

101.6
101.5

101.7
101.8

101.9
101.10
101.11
101.12

30.2
30.1

30.3

30.4

300.1
300.2

300.3
300.4300.5

300.6
300.7
300.8

300.9
300.10
300.11

300.12

300.13
300.14

300.16300.15

301.3

301.1
301.2

301.4
301.6

301.5

301.7
301.8

301.9
301.10 301.11 301.12

20.2

20.1

20.320.4

200.1
200.2

200.3
200.4

200.5
200.6
200.7

200.8

200.9
200.10
200.11

200.12
200.13

200.14

200.16
200.15

201.2201.1 201.3
201.4

201.6
201.5

201.7
201.8

201.9
201.10
201.11
201.12

Figure 2: The labeling of Koch network 𝐾2,2 when 𝑚 = 2 and 𝑡 = 0, 1, 2. The blue dots are initial vertices; the green squares are vertices
adding at 𝑡 = 1; the red dots denote vertices adding to the network at 𝑡 = 2.

are neighbors or not by Property 3; if not, the shortest path
is connected to all higher degree neighbors until the highest
degree vertex; if so, the shortest path is just the same as above,
only eliminating the highest degree vertex.

If 𝑛 ̸= 𝑛󸀠, the two vertices are located in different
subnetworks𝐾𝑛𝑚,𝑛 and𝐾𝑛

󸀠

𝑚,𝑛. The routing by the shortest path
between two vertices in different subsets is ascertained as
follows. First, we obtain the neighbors which have higher
degrees recursively by Property 4, until the hubs 𝑛 and 𝑛󸀠.
Then, we connect all of them in turn; this is the only shortest
path between two vertices.

If 𝑛 = 𝑛󸀠, it is clear that the shortest path is located
in the same subnetworks 𝐾𝑛𝑚,𝑡. We find out the neighbors
with higher degree by using Property 4 repeatedly, until
the common highest degree vertex. Then, we judge whether
the two second highest degree vertices are neighbors or not
by Property 3. If they are not neighbors, we determine the
shortest path as above by linking all the higher degree vertices
until the highest vertex, by the help of the construction
method of Koch networks. Else, if they are neighbors, the
shortest path is the same as above by excluding the highest
degree vertex.

The shortest path between any pair of vertices in 𝐾𝑚,𝑡 is
obtained after nomore than 2𝑡 times of integral computations
and modulo operations by the help of the labeling method

and routing algorithm proposed in this research. That is
to say, the shortest path routing and the shortest distance
between an arbitrary pair of vertices in Koch networks can
be dealt with in few computations.

4. Betweenness Centrality

Betweenness centrality is originated from the analysis of the
importance of the individual in social networks, including
the betweenness of any vertex and edge in networks. If the
betweenness of a node/edge is bigger, then the node/edge in
the social network is more important [2].The betweenness of
a vertex for undirected networks is given by the expression

𝑔 (V) =
∑𝑠 ̸=V ̸=𝑡 𝜎𝑠𝑡 (V)

(𝑁𝑡 − 1) (𝑁𝑡 − 2) /2
, (8)

where 𝜎𝑠𝑡(V) is the number of the shortest paths passing
through V. The computation of betweenness is very difficult
in most networks. Fortunately, the betweenness of Koch
networks can be derived qualitatively and quantitatively by
the help of their labels in Koch networks, which is shown as
follows.

Suppose that an arbitrary vertex V, which is adding to𝐾𝑚,𝑡
at time 𝑖, is labeled with 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 ⋅ 𝑙V(𝑖). The vertices in
𝐾𝑚,𝑡 can be divided into three parts: the vertex V, the offspring
vertices which are connected to V directly and indirectly after
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step 𝑖 (they all have lower degrees than V), and the other
vertices in 𝐾𝑚,𝑡. Assume that the number of the second part
vertices is 𝑁𝑙, and it can be worked out that 𝑁𝑙 = (2(3𝑚 +
1)𝑡−𝑖 − 2)/3 by (1). Apparently, the number of the third parts
is𝑁𝑡 −𝑁𝑙 − 1. For the shortest path routing between any two
vertices is unique, we get that∑𝑠 ̸=V ̸=𝑙 𝜎𝑠𝑡(V) = 𝑁𝑙(𝑁𝑡−𝑁𝑙−1)/2.
Substitute this equation and (1) into (8); the betweenness of a
vertex which is labeled with 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 ⋅ 𝑙V(𝑖) is given by

𝑔 (V)

=
2 [(3𝑚 + 1)𝑡−𝑖 − 1] [3 (3𝑚 + 1)𝑡 − (3𝑚 + 1)𝑡−𝑖 − 1]

3 (3𝑚 + 1)𝑡 [2 (3𝑚 + 1)𝑡 − 1]
.
(9)

For 𝑖 = 𝑡 − ln(𝑘/2)/ln(𝑚+ 1) and 𝑎−ln(𝑏)/ln(𝑐) = 𝑏−ln(𝑎)/ln(𝑐),
we obtain the formula 𝑔(V) ∼ 𝑐1𝑘ln(3𝑚+1)/ln(𝑚+1) which holds
with 𝑐1 > 0. Therefore, the vertex betweenness in Koch
networks is exponentially proportional to the vertex’s degree
with an exponent 𝛾 = ln(3𝑚 + 1)/ln(𝑚 + 1) belonging to the
interval (1, 2].

The betweenness of edges can also be deduced in a
similar way. Note 𝑒 as the edge between any two neighbor
vertices V and 𝑢 which are labeled with 𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 ⋅ 𝑙V(𝑖)
and 𝑛󸀠𝑏󸀠1𝑏

󸀠
2 ⋅ ⋅ ⋅ 𝑏
󸀠
𝑗 ⋅ 𝑙
󸀠
𝑢(𝑗). Without loss of generality, assume that

vertex 𝑢 has higher degree than V. So the label of 𝑢 belongs
to the set 𝐴ℎ(V) by Property 4. Suppose a triangle is shaped
by three vertices: V, 𝑢, and 𝑤. Therefore, 𝑤 has the same
degree as V. Then, Koch network 𝐾𝑚,𝑡 can be divided into
three parts: the lower degree vertices linking to V directly or
indirectly, the vertices connected to 𝑢 directly or indirectly,
and the lower degree vertices adding directly or indirectly,
respectively. Correspondingly, the label set 𝐿𝑚,𝑡 falls into
three subsets: 𝐴𝑒𝑙(V), 𝐴other(𝑢), and 𝐴𝑒𝑙(𝑤). The relationship
of these four label sets is shown as follows:

𝐿𝑚,𝑡 = 𝐴𝑒𝑙 (V) ∪ 𝐴other (𝑢) ∪ 𝐴𝑒𝑙 (𝑤) . (10)

The size of 𝐴𝑒𝑙(V) is derived as 𝑁𝑒𝑙(V) = (2(3𝑚 + 1)𝑡−𝑖 +
1)/3. From the symmetry of vertices V and 𝑤, we obtain
𝑁𝑒𝑙(V) = 𝑁𝑒𝑙(𝑤). Then, we get that

𝑁other (𝑢) = 𝑁𝑡 − 𝑁𝑒𝑙 (V) − 𝑁𝑒𝑙 (𝑤)

= 2 (3𝑚 + 1)𝑡−𝑖 + 1 − 2 (3𝑚 + 1)𝑡−𝑖 + 1
3

(11)

from the construction of Koch networks. For the shortest
path between any two vertices is unique, then the between-
ness of the edge 𝑒 is defined as follows:

𝑔 (𝑒) = 𝑁e𝑙 (V)𝑁other (𝑢) /2
(𝑁𝑡 − 1) (𝑁𝑡 − 2) /2

. (12)

Therefore, the betweenness centrality of the edge 𝑒 is
given by

𝑔 (𝑒)

=
[2 (3𝑚 + 1)𝑡−𝑖 + 1] [6 (3𝑚 + 1)𝑡 − 4 (3𝑚 + 1)𝑡−𝑖 + 1]

18 (3𝑚 + 1)𝑡 [2 (3𝑚 + 1)𝑡 − 1]
.
(13)

Therefore, the edge betweenness holds 𝑔(𝑒) ∼
𝑐2𝑘ln(3𝑚+1)/ln(𝑚+1), where 𝑐2 > 0. The edge betweenness
is also exponentially proportional to the degree of the lower
degree vertex V, and the exponent is 𝛾 = ln(3𝑚+1)/ln(𝑚+1)
belonging to the interval (1, 2]. In a word, the betweenness of
an edge is exponentially proportional to the time of adding
to Koch networks.

5. Resistor Networks

The communities in networks are the groups of vertices
within which the connections are dense but between which
the connections are sparser. A community detection algo-
rithm which is based on voltage differences in resistor net-
works is described in [35, 36]. The electrical circuit is formed
by placing a unit resistor on each edge of the network and
then applying a unit potential difference (voltage) between
two vertices chosen arbitrarily. If the network is divided
strongly into two communities and the vertices in question
happen to fall in different communities, then the spectrum
of voltages on the rest of the vertices should show a large gap
corresponding to the border between the communities. For
more work on resistance distance and resistor networks, the
readers are referred to the recent papers [37, 38].

Moreover, the information in complex networks not
always flows in the shortest path, so that the evaluation of the
betweenness of nodes can also have other principles, such as
the current-flow betweenness. Consider an electrical circuit
created by placing a unit resistor on every edge of the network.
One unit of current is injected into the network at a source
vertex and one unit is extracted at a target vertex, so that the
current in the network as a whole is conserved. Then, the
current-flow betweenness of a vertex is defined as the amount
of current that flows through in this setup; the average of
the current flow over all source-target pairs is shown as
follows:

𝑔V =
∑𝑠<𝑡 𝐼𝑠𝑡 (V)

𝑁𝑡 (𝑁𝑡 − 1) /2
, (14)

where 𝐼𝑠𝑡(V) is the current over vertex V.
After placing a unit resistor on every edge in 𝐾𝑚,𝑡, insert

one unit of current or voltage at source vertex V0 labeled with
𝑛𝑏1𝑏2𝑏3 ⋅ ⋅ ⋅ 𝑏𝑖 ⋅ 𝑙, and further choose the target vertex V𝑚+1 with
labels 𝑛󸀠𝑏󸀠1𝑏

󸀠
2 ⋅ ⋅ ⋅ 𝑏
󸀠
𝑗 ⋅ 𝑙
󸀠. Assume the shortest path is from V0 to

vertices V1, . . . , V𝑚 until V𝑚+1. Therefore, the shortest distance
is 𝑚 + 1. The property of Koch resister networks is described
as follows.

Property 5. The voltages of vertices {V𝑖} shape an arithmetic
progression from 1 to 0, and the step length is 1/(𝑚 + 1). The
voltage of vertices {V𝑘}decreases from 1−1/(2𝑚+2) to 1/(2𝑚+
2), but the step length is also 1/(𝑚 + 1).

If 𝑛 ̸= 𝑛󸀠, from Algorithm 10, there are two hubs V𝑗 = 𝑛
and V𝑗+1 = 𝑛󸀠 with the highest degree in the shortest path.
Hence, the vertices which are affected by unit voltage are {V𝑖}∪
{V𝑘}, where 𝑖 = 0, 1, 2, . . . , 𝑚 + 1, 𝑘 = 0, 1, 2, . . . , 𝑗 − 1, 𝑗 +
1, . . . , 𝑚+1, V𝑖 is the neighbor of V𝑖 with the same degree, and



6 Complexity

apparently V𝑗+1 is the other hub. The edges between vertices
{V𝑖} ∪ {V𝑘} formed𝑚 + 1 triangles which are in series and the
common vertices are {V𝑖}, so that the unit current only passes
through these edges in whole Koch networks 𝐾𝑚,𝑡.

If 𝑛 = 𝑛󸀠 and there are two highest degree vertices, noting
V𝑗 and V𝑗+1, in the shortest path, hence the unit voltage can
only affect vertices {V𝑖}∪{V𝑘} in𝐾𝑚,𝑡, where 𝑖 = 0, 1, 2, . . . , 𝑚+
1, 𝑘 = 0, 1, 2, . . . , 𝑗 − 1, 𝑗 + 1, . . . , 𝑚 + 1, and V𝑖 is the neighbor
of V𝑖 with the same degree too, but V𝑗+1 is a higher degree
neighbor which is linked with V𝑗 and V𝑗+1 directly; the unit
current also flows through the edges in𝑚+1 triangles which
are in series.

If 𝑛 = 𝑛󸀠 but there are the only highest degree vertices,
denoting V𝑗, in the shortest path, the unit voltage impacts
vertices {V𝑖} ∪ {V𝑘}, where 𝑖 = 0, 1, 2, . . . , 𝑚 + 1, 𝑘 =
0, 1, 2, . . . , 𝑗 − 1, 𝑗 + 1, . . . , 𝑚 + 1, and V𝑖 is the neighbor of
V𝑖 with the same degree; the behavior of unit current is the
same as the two conditions above.

Property 6. The current stream from the edges which are
linked to the vertices {V𝑖} is 2/3, while the current passing
though the edges linking to {V𝑘} is the remaining 1/3.

The property can be proved similarly as the proof of
Property 5 by the help of the forming mechanism of Koch
resistor networks.

In brief, the spectrum of voltages on the vertices shows
that Koch networks have no significant community structure
in spite of having massive triangles between nodes. Also,
the current flow can gauge well the importance of edges
betweenness in Koch networks in information flowing which
is not flowing only by the shortest path.

6. Conclusions

The family of Koch networks, with high clustering coefficient,
scale-free, small diameter and average path length, and small-
world properties, successfully reproduces some remarkable
characteristics in many nature and man-made networks and
has special advantages in the research of some physical
mechanisms such as random walk in complex networks.

We provided an informative vertex labeling method
and produced a routing algorithm for Koch networks. The
labels include full information about any vertices precise
position and the time adding to the networks. By the help of
labels, we marked the shortest path routing and the shortest
distance between any pair of vertices in Koch networks.
The needed computation is just no more than 2𝑡 times of
integral computations and modulo operations. Moreover,
we derived the rigorous solution of betweenness centrality
of every vertex and edge in Koch networks, and we also
researched the current and voltage characteristics in Koch
networks on the basis of their labels.

By the help of our results, in contrast with more usually
probabilistic approaches, the deterministic Koch models will
have unique virtues in understanding the underlying mech-
anisms between dynamical processes (random walk, con-
sensus, stabilization, synchronization, etc.) to the structure

of complex networks by the new method of rigorous deriva-
tion.
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