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The paper mainly investigates the H
∞

fuzzy control problem for a class of nonlinear discrete-time stochastic systems with
Markovian jump and parametric uncertainties. The class of systems is modeled by a state space Takagi-Sugeno (T-S) fuzzy model
that has linear nominal parts and norm-bounded parameter uncertainties in the state and output equations. AnH

∞
control design

method is developed by using the Lyapunov function. The decoupling technique makes the Lyapunov matrices and the system
matrices separated, which makes the control design feasible. Then, some strict linear matrix inequalities are derived on robustH

∞

norm conditions in which both robust stability and H
∞

performance are required to be achieved. Finally, a computer-simulated
truck-trailer example is given to verify the feasibility and effectiveness of the proposed design method.

1. Introduction

Over the past decade, there has been a rapidly growing
interest in control and filtering of nonlinear systems, and
there have been many successful applications [1–4]. In [1],
based on the sum of squares approach, sufficient conditions
for the existence of a nonlinear state feedback controller
for polynomial discrete-time systems are given in terms of
solvability of polynomial matrix inequalities. Reference [3]
presents a stochastic distribution control algorithm; an opti-
mal control law is then obtained using the penalty function
method. Despite the success, it has become evident thatmany
basic issues remain to be addressed. In particular, the control
technique based on the so-called Takagi-Sugeno (T-S) fuzzy
model [5] has attracted a great deal of attention (see [6–
12]). This is because it is regarded as a powerful solution to
bridging the gap between the fruitful linear control and the
fuzzy logic control targeting complex nonlinear systems. The
common practice of the technique is as follows. First, the
nonlinear plant is represented by the T-S fuzzy model. This
fuzzy model is described by a set of fuzzy IF-THEN rules
which correspond to local linear input-output relations of

the system, respectively. The overall model of the system is
achieved by fuzzy “blending” of these fuzzy models. Then,
based on this fuzzy model, a control design is carried
out based on the fuzzy models via the so-called parallel
distributed compensation (PDC) scheme. The idea is that
a linear feedback control is designed for each local linear
model. The resulting overall controller, which is, in general,
nonlinear, is again a fuzzy blending of each individual linear
controller. Their works introduce the model-based analysis
methods into fuzzy logic control.

In recent years, the stability issue and robust performance
of T-S fuzzy control systems have been discussed in an
extensive literature. Since the pioneering work on the so-
called𝐻

∞
optimal control theory, there has been a dramatic

progress in the 𝐻
∞

control theory. Recently, the problem of
nonlinear 𝐻

∞
control was intensively studied (see [5, 7, 8,

13]). The design of𝐻
∞

controller for fuzzy dynamic systems
was presented in the paper [5]. Reference [4] introduces a
new class of discrete-time networked nonlinear systems with
mixed random delays and packet dropouts, and sufficient
conditions for the existence of an admissible filter are estab-
lished, which ensure the asymptotical stability as well as a
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prescribed 𝐻
∞

performance. The authors in [13] analyzed
the 𝐻

∞
control design problem systematically for a class of

nonlinear stochastic active fault-tolerant control systemswith
Markovian parameters.𝐻

∞
controller designwhichwas con-

sidered in [7] noted that most of the aforementioned research
efforts focused on the use of single quadratic Lyapunov
function, which tended to givemore conservative conditions.
This is because with the use of parameter-dependent or
basis-dependent Lyapunov function less conservative control
results can be obtained than with the use of single Lyapunov
quadratic function. More recently, there were many results
on stability analysis and control synthesis of discrete-time
uncertain systems based on parameter-dependent Lyapunov
functions [9] or basis-dependent Lyapunov function (see
[8, 14]). It is shown that with the use of Lyapunov function
well-pleasing control results can be obtained.

In practice, a lot of physical systems have variable
structures subject to random changes. These changes may
result from abrupt phenomena such as random failures and
repairs of the components, changes in the interconnections
of subsystems, and sudden environment changes. The so-
called Markovian jump systems (MJSS) are special class of
hybrid systems. As one of the most basic dynamics models,
Markov jump nonlinear system can be used to represent
these random failure processes in manufacturing and some
investment portfolio models. In theMJSS, the random jumps
in system parameters are governed by a Markov process
which takes values in a finite set. The class of systems may
represent a large variety of processes including those in the
production systems, fault-tolerant systems, communication
systems, and economic systems [15]. In the past two decades,
many important issues of MJSS were researched extensively,
such as the controllability and observability [16], stability and
stabilization (see [17–22]),𝐻

2
[23] and𝐻

∞
performance [24–

27], and robustness [28, 29]. To the best of our knowledge,
despite these efforts, very few results are available for the
control design for nonlinear MJSS. In this study, a mode-
dependent control design is proposed to achieve robust
stability of uncertain discrete-time nonlinear MJSS via fuzzy
control.

In the paper, robust 𝐻
∞

control is investigated for
nonlinear discrete-time stochastic MJSS with parametric
uncertainties. Under our proposed fuzzy rules, the nonlinear
discrete-time stochastic MJSS could be translated into a class
of equivalent T-S fuzzymodels with parametric uncertainties.
The uncertainty could be translated into a linear fractional
form, which includes the norm-bounded uncertainty as a
special case and can describe a kind of rational nonlinearities.
With the PDC scheme, the control law is designed tomake the
closed-loop system with 𝐻

∞
norm bound 𝛾 stable. Besides,

some matrix variables and the Lyapunov function for robust
stabilization with 𝑙

2
-norm bound for the fuzzy discrete-time

stochastic MJSS are given. It is shown that the solution of the
control design problem can be obtained by solving a class of
LMIs.

The paper is organized as follows. Section 2 discusses
the T-S fuzzy models. And definitions and preliminary
results are given for uncertain nonlinear discrete-time MJSS.
Section 3 gives the analysis results of robust stability with𝐻

∞

performance, and the results are employed in the following
to develop an 𝐻

∞
control design. In Section 4, a numerical

simulation example is proposed to illustrate the effectiveness
of the approach. Finally, the paper is concluded in Section 5.

For convenience, the following basic notations are
adopted throughout the paper.R𝑛 denotes the 𝑛-dimensional
real space, andR𝑛×𝑚 denotes the set of all real 𝑛×𝑚matrices.
𝑈
 indicates the transpose of matrix 𝑈 and 𝑈 ≥ 0 (𝑈 > 0)

represents a nonnegative definite (positive definite) matrix.
Similarly, 𝑈 ≤ 0 (𝑈 < 0) represents a nonpositive definite
matrix (negative definite). 𝑙

2
[0,∞) refers to the space of

square summable infinite vector sequences. ‖ ⋅ ‖
2
stands for

the usual 𝑙
2
[0,∞) norm. 𝐸(⋅) represents the mathematical

expectation.

2. Problem Formulation and Preliminaries

Consider the following nonlinear MJSS:

𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘) , 𝜃
𝑘
) + 𝑔 (𝑥 (𝑘) , 𝜃

𝑘
) 𝑢 (𝑘)

+ 𝑘 (𝑥 (𝑘) , 𝜃
𝑘
) V (𝑘) + 𝑙 (𝑥 (𝑘) , 𝜃

𝑘
) 𝑤 (𝑘) ,

𝑦 (𝑘) = 𝑚 (𝑥 (𝑘) , 𝜃
𝑘
) + 𝑡 (𝑥 (𝑘) , 𝜃

𝑘
) 𝑢 (𝑘)

+ 𝑛 (𝑥 (𝑘) , 𝜃
𝑘
) V (𝑘) .

(1)

Assume that 𝑓(𝑥(𝑘), 𝜃
𝑘
), 𝑔(𝑥(𝑘), 𝜃

𝑘
), 𝑘(𝑥(𝑘), 𝜃

𝑘
), 𝑙(𝑥(𝑘), 𝜃

𝑘
),

𝑚(𝑥(𝑘), 𝜃
𝑘
), 𝑡(𝑥(𝑘), 𝜃

𝑘
), and 𝑛(𝑥(𝑘), 𝜃

𝑘
) are Borel measurable

on R𝑛. And 𝑥(𝑘) ∈ R𝑛 is the system state, 𝑢(𝑘) ∈ R𝑚

and V(𝑘) ∈ R𝑝 represent the system control inputs and
disturbance signal, and 𝑦(𝑘) ∈ R𝑞 is system output. 𝑤(𝑘) is
a sequence of real random variables defined on a complete
probability space (Ω,F

𝑘
, 𝑃), which is wide sense stationary,

second-order processes with 𝐸[𝑤(𝑘)] = 0 and 𝐸[𝑤(𝑖)𝑤(𝑗)] =
𝛿
𝑖𝑗
, where 𝛿

𝑖𝑗
refers to a Kronecker function; that is, 𝛿

𝑖𝑗
= 1

if 𝑖 = 𝑗 and 𝛿
𝑖𝑗
= 0 if 𝑖 ̸= 𝑗. {𝜃

𝑘
; 𝑘 ≥ 0} is a measurable

Markov chain taking values in a finite set X = {1, 2, . . . , 𝑁},
with transition probability matrix P = [𝑝

𝛼𝛽
], where

𝑝
𝛼𝛽
:= 𝑃 (𝜃

𝑘+1
= 𝛽 | 𝜃

𝑘
= 𝛼) , ∀𝛼, 𝛽 ∈ X, 𝑘 ≥ 0. (2)

The paper considers the nonlinear discrete-time MJSS which
can be described by the following T-S fuzzy model with
uncertainties.

Rule i. If 𝑧
1
(𝑘) is 𝐹𝑖

1
, 𝑧
2
(𝑘) is 𝐹𝑖

2
, . . . , and 𝑧

𝑛
(𝑘) is 𝐹𝑖

𝑛
, then

𝑥 (𝑘 + 1) = AA
𝑖,𝜃𝑘
𝑥 (𝑘) +B

𝑖,𝜃𝑘
𝑢 (𝑘) +C

𝑖,𝜃𝑘
V (𝑘)

+D
𝑖,𝜃𝑘
𝑥 (𝑘)𝑤 (𝑘) ,

𝑦 (𝑘) =M
𝑖,𝜃𝑘
𝑥 (𝑘) +T

𝑖,𝜃𝑘
𝑢 (𝑘) +N

𝑖,𝜃𝑘
V (𝑘) .

(3)

The 𝐹𝑖
𝑗
are fuzzy sets; 𝑟 is the number of IF-THEN rules.

Moreover, A
𝑖,𝜃𝑘

, B
𝑖,𝜃𝑘

, C
𝑖,𝜃𝑘

, D
𝑖,𝜃𝑘

, M
𝑖,𝜃𝑘

, T
𝑖,𝜃𝑘

, and N
𝑖,𝜃𝑘

are system matrices with parametric uncertainties. Besides,
𝑧
1
(𝑘), 𝑧
2
(𝑘), . . . , 𝑧

𝑛
(𝑘) are the premise variables of the fuzzy

modes and they are the functions of state variables.



Mathematical Problems in Engineering 3

Following the PDC scheme, we consider a state feedback
fuzzy controller which shares the same structure of the above
T-S fuzzy system, as follows.

Rule j. IF 𝑧
1
(𝑘) is 𝐹𝑗

1
, 𝑧
2
(𝑘) is 𝐹𝑗

2
, . . . , and 𝑧

𝑛
(𝑘) is 𝐹𝑗

𝑛
, then

𝑢 (𝑘) = 𝐾
𝑗,𝜃𝑘
𝑥 (𝑘) , (4)

where𝐾
𝑗,𝜃𝑘

are the local feedback gain matrices.
And the fuzzy basis functions are given by

ℎ
𝑖
[𝑧 (𝑘)] =

∏
𝑛

𝑗=1
𝜇
𝑖𝑗
[𝑧
𝑗
(𝑘)]

∑
𝑟

𝑙=1
∏
𝑛

𝑗=1
𝜇
𝑖𝑗
[𝑧
𝑗
(𝑘)]

, 𝑖 = 1, 2, . . . , 𝑟, (5)

where 𝜇
𝑖𝑗
[𝑧
𝑗
(𝑘)] is the grade of membership of 𝑧

𝑗
(𝑘) in 𝐹𝑖

𝑗
. By

definition, the fuzzy basis functions satisfy

ℎ
𝑖
[𝑧 (𝑘)] ≥ 0, 𝑖 = 1, 2, . . . , 𝑟,

𝑟

∑

𝑖=1

ℎ
𝑖
[𝑧 (𝑘)] = 1.

(6)

A more compact presentation of the discrete-time T-S fuzzy
model is given by

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) (A

𝑖,𝜃𝑘
𝑥 (𝑘) +B

𝑖,𝜃𝑘
𝑢 (𝑘) +C

𝑖,𝜃𝑘
V (𝑘)

+D
𝑖,𝜃𝑘
𝑥 (𝑘)𝑤 (𝑘)) ,

(7)

𝑦 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘))

× (M
𝑖,𝜃𝑘
𝑥 (𝑘) +T

𝑖,𝜃𝑘
𝑢 (𝑘) +N

𝑖,𝜃𝑘
V (𝑘)) ,

(8)

where

A
𝑖,𝜃𝑘
= 𝐴
𝑖,𝜃𝑘
+ Δ𝐴
𝑖,𝜃𝑘
,

B
𝑖,𝜃𝑘
= 𝐵
𝑖,𝜃𝑘
+ Δ𝐵
𝑖,𝜃𝑘
,

C
𝑖,𝜃𝑘
= 𝐶
𝑖,𝜃𝑘
+ Δ𝐶
𝑖,𝜃𝑘
,

D
𝑖,𝜃𝑘
= 𝐷
𝑖,𝜃𝑘
,

M
𝑖,𝜃𝑘
= 𝑀
𝑖,𝜃𝑘
+ Δ𝑀

𝑖,𝜃𝑘
,

T
𝑖,𝜃𝑘
= 𝑇
𝑖,𝜃𝑘
+ Δ𝑇
𝑖,𝜃𝑘
,

N
𝑖,𝜃𝑘
= 𝑁
𝑖,𝜃𝑘
+ Δ𝑁
𝑖,𝜃𝑘
.

(9)

And 𝐴
𝑖,𝜃𝑘

, 𝐵
𝑖,𝜃𝑘

, 𝐶
𝑖,𝜃𝑘

, 𝐷
𝑖,𝜃𝑘

,𝑀
𝑖,𝜃𝑘

, 𝑇
𝑖,𝜃𝑘

, and𝑁
𝑖,𝜃𝑘

are assumed
to be deterministic matrices with appropriate dimension;
Δ𝐴
𝑖,𝜃𝑘
, Δ𝐵
𝑖,𝜃𝑘
, Δ𝐶
𝑖,𝜃𝑘
, Δ𝑀
𝑖,𝜃𝑘
, Δ𝑇
𝑖,𝜃𝑘

, and Δ𝑁
𝑖,𝜃𝑘

are unknown

matrices which represent the time-varying parameter uncer-
tainties and are assumed to be of the form

[

Δ𝐴
𝑖,𝜃𝑘

Δ𝐵
𝑖,𝜃𝑘

Δ𝐶
𝑖,𝜃𝑘

Δ𝑀
𝑖,𝜃𝑘

Δ𝑇
𝑖,𝜃𝑘
Δ𝑁
𝑖,𝜃𝑘

] = [

𝐸
1𝑖

𝐸
2𝑖

]Δ [𝐻
1𝑖
𝐻
2𝑖
𝐻
3𝑖
] ,

Δ = [𝐼 − 𝐹
𝑖,𝜃𝑘
𝐽]

−1

𝐹
𝑖,𝜃𝑘
,

(10)

where 𝐸
1𝑖
, 𝐻
1𝑖
, 𝐸
2𝑖
, 𝐻
2𝑖
, 𝐻
3𝑖
, and 𝐽 are known real constant

matrices with appropriate dimension and unknown nonlin-
ear time-varying matrix 𝐹

𝑖,𝜃𝑘
∈ R𝑚×𝑛 satisfying 𝐹

𝑖,𝜃𝑘
𝐹


𝑖,𝜃𝑘

≤ 𝐼.
To guarantee that the matrix 𝐼 − 𝐹

𝑖,𝜃𝑘
𝐽 is invertible for all

admissible 𝐹
𝑖,𝜃𝑘

, it is necessary that 𝐼 − 𝐽𝐽 > 0.
The following definition and lemmas will be used later.

Definition 1. The discrete-time unforced uncertain fuzzy
system is said to be robust stable with 𝐻

∞
norm bound 𝛾

if it is stable with 𝐻
∞

norm bound 𝛾 for all uncertainly
admissible 𝐹

𝑖,𝜃𝑘
. For a given control law (4) and a prescribed

level of disturbance attenuation 𝛾 > 0 to be achieved, the
discrete-time fuzzy system (3) is said to be stabilizable with
𝐻
∞

norm bound 𝛾 if for all V(𝑘) ∈ 𝑙
2
[0,∞), V(𝑘) ̸= 0, the

closed-loop system (7)-(8) is asymptotically stable and the
response {𝑦(𝑘)} of the system under the zero initial condition
(𝑥(0) = 𝑥

0
= 0) satisfies





𝑦 (𝑘)




2
< 𝛾‖V(𝑘)‖

2
. (11)

Lemma 2. It is supposed that 𝑢(𝑘) = 0, V(𝑘) = 0, and Δ = 0,
so the discrete-time MJSS becomes

𝑥 (𝑘 + 1) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) (𝐴

𝑖,𝜃𝑘
𝑥 (𝑘) + 𝐷

𝑖,𝜃𝑘
𝑥 (𝑘)𝑤 (𝑘)) . (12)

The system (12) is globally asymptotically stable if there exists a
symmetric piecewise matrix 𝑃

𝑖,𝜃𝑘
> 0 such that

𝐴


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖,𝜃𝑘
+ 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘
− 𝑃
𝑖,𝜃𝑘
< 0, (13)

where �̃�
𝑗,𝜃𝑘
= 𝑃
𝑗,𝜃𝑘+1

= ∑
𝑁

𝜃𝑘=1
𝑝
𝜃𝑘𝜃𝑘+1

𝑃
𝑖,𝜃𝑘

.

Lemma 3. Given a matrix 𝐴
𝑖,𝜃𝑘

, 𝐷
𝑖,𝜃𝑘

, suppose 𝑃
𝑖,𝜃𝑘

> 0,
�̃�
𝑗,𝜃𝑘
> 0, 𝑃

𝑙,𝜃𝑘
> 0. If

𝐴


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖,𝜃𝑘
+ 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘
− 𝑃
𝑖,𝜃𝑘
< 0,

𝐴


𝑙,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑙,𝜃𝑘
+ 𝐷


𝑙,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑙,𝜃𝑘
− 𝑃
𝑙,𝜃𝑘
< 0,

(14)

then

𝐴


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑙,𝜃𝑘
+ 𝐴


𝑙,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖,𝜃𝑘
+ 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑙,𝜃𝑘

+ 𝐷


𝑙,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘
− 𝑃
𝑖,𝜃𝑘
− 𝑃
𝑙,𝜃𝑘
< 0.

(15)

Proof. It is noted that

�̃�
𝑗,𝜃𝑘
> 0 ⇒ (𝐴

𝑖,𝜃𝑘
− 𝐴
𝑙,𝜃𝑘
)



�̃�
𝑗,𝜃𝑘
(𝐴
𝑖,𝜃𝑘
− 𝐴
𝑙,𝜃𝑘
)

+ (𝐷
𝑖,𝜃𝑘
− 𝐷
𝑙,𝜃𝑘
)



�̃�
𝑗,𝜃𝑘
(𝐷
𝑖,𝜃𝑘
− 𝐷
𝑙,𝜃𝑘
) ≥ 0,

(16)
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which gives

𝐴


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑙,𝜃𝑘
+ 𝐴


𝑙,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖,𝜃𝑘
+ 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑙,𝜃𝑘

+ 𝐷


𝑙,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘

≤ 𝐴


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖,𝜃𝑘
+ 𝐴


𝑙,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑙,𝜃𝑘

+ 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘
+ 𝐷


𝑙,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑙,𝜃𝑘
.

(17)

Therefore, the result of Lemma 3 can be easily proven.

Lemma 4 (see [14]). Suppose Δ is given by (10). With matrices
𝑀 = 𝑀

, 𝑆, and𝑁 with appropriate dimension, the inequality

𝑀+ 𝑆Δ𝑁 +𝑁


Δ


𝑆


< 0 (18)

holds for all 𝐹
𝑖,𝜃𝑘

such that 𝐹
𝑖,𝜃𝑘
𝐹


𝑖,𝜃𝑘

≤ 𝐼, if and only if, for some
𝛿 = 𝜖
2

> 0,

[

[

𝛿𝑀 𝑆 𝛿𝑁


𝑆


−𝐼 𝐽


𝛿𝑁 𝐽 −𝐼

]

]

< 0. (19)

3. Robust Stability and𝐻
∞

Performance Analysis

In this section, the stability and 𝐻
∞

performance for the
nominal fuzzy systemwill be analyzed. Under control law (4),
the closed-loop fuzzy system becomes

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) [(A

𝑖,𝜃𝑘
+B
𝑖,𝜃𝑘
𝐾
𝑗,𝜃𝑘
) 𝑥 (𝑘) +C

𝑖,𝜃𝑘
V (𝑘)

+D
𝑖,𝜃𝑘
𝑥 (𝑘)𝑤 (𝑘)] ,

(20)

𝑦 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘))

× [(M
𝑖,𝜃𝑘
+T
𝑖,𝜃𝑘
𝐾
𝑗,𝜃𝑘
) 𝑥 (𝑘) +N

𝑖,𝜃𝑘
V (𝑘)] .

(21)

When Δ = 0, the nominal closed-loop system becomes

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× (𝐴
𝑖𝑗,𝜃𝑘
𝑥 (𝑘) + 𝐶

𝑖,𝜃𝑘
V (𝑘) + 𝐷

𝑖,𝜃𝑘
𝑥 (𝑘)𝑤 (𝑘)) ,

(22)

𝑦 (𝑘) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× (𝑀
𝑖𝑗,𝜃𝑘
𝑥 (𝑘) + 𝑁

𝑖,𝜃𝑘
V (𝑘)) ,

(23)

where

𝐴
𝑖𝑗,𝜃𝑘
= 𝐴
𝑖,𝜃𝑘
+ 𝐵
𝑖,𝜃𝑘
𝐾
𝑗,𝜃𝑘
,

𝑀
𝑖𝑗,𝜃𝑘
= 𝑀
𝑖,𝜃𝑘
+ 𝑇
𝑖,𝜃𝑘
𝐾
𝑗,𝜃𝑘
.

(24)

Theorem 5. The nominal closed-loop fuzzy system (22) is
stable with𝐻

∞
norm bound 𝛾; that is, ‖𝑦(𝑘)‖

2
< 𝛾‖V(𝑘)‖

2
for

all nonzero V(𝑘) ∈ 𝑙
2
[0,∞) under the zero initial condition, if

there exists matrices {𝑃
𝑖,𝜃𝑘
> 0}
𝑟

𝑖=1
for all 𝑖, 𝑗, 𝑙 ∈ {1, 2, . . . , 𝑟}

such that

[

Φ Γ

Λ Ψ
] < 0, (25)

where

�̃�
𝑙,𝜃𝑘
=

𝑁

∑

𝜃𝑘=1

𝑝
𝜃𝑘𝜃𝑘+1

𝑃
𝑖,𝜃𝑘
,

Φ = 𝐴


𝑖𝑗,𝜃𝑘

�̃�
𝑙,𝜃𝑘
𝐴
𝑖𝑗,𝜃𝑘
+ 𝐷


𝑖,𝜃𝑘

�̃�
𝑙,𝜃𝑘
𝐷
𝑖,𝜃𝑘
+𝑀


𝑖𝑗,𝜃𝑘

𝑀
𝑖𝑗,𝜃𝑘
− 𝑃
𝑖,𝜃𝑘
,

Γ = 𝐴


𝑖𝑗,𝜃𝑘

�̃�
𝑙,𝜃𝑘
𝐶
𝑖,𝜃𝑘
+𝑀


𝑖𝑗,𝜃𝑘

𝑁
𝑖,𝜃𝑘
,

Λ = 𝐶


𝑖,𝜃𝑘

�̃�
𝑙,𝜃𝑘
𝐴
𝑖𝑗,𝜃𝑘
+ 𝑁


𝑖,𝜃𝑘

𝑀
𝑖𝑗,𝜃𝑘
,

Ψ = 𝐶


𝑖,𝜃𝑘

�̃�
𝑙,𝜃𝑘
𝐶
𝑖,𝜃𝑘
+ 𝑁


𝑖,𝜃𝑘

𝑁
𝑖,𝜃𝑘
− 𝛾
2

𝐼.

(26)

Proof. Obviously, inequality (25) implies the following
inequality:

𝐴


𝑖𝑗,𝜃𝑘

�̃�
𝑙,𝜃𝑘
𝐴
𝑖𝑗,𝜃𝑘
+ 𝐷


𝑖,𝜃𝑘

�̃�
𝑙,𝜃𝑘
𝐷
𝑖,𝜃𝑘
− 𝑃
𝑖,𝜃𝑘
< 0. (27)

It can be checked from the result of Lemma 3 that for all
𝑖, 𝑗, 𝑙, 𝑝, 𝑞 ∈ {1, 2, . . . , 𝑟},

𝐴


𝑖𝑝,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑙𝑞,𝜃𝑘
+ 𝐴


𝑙𝑞,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖𝑝,𝜃𝑘
+ 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑙,𝜃𝑘

+ 𝐷


𝑙,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘
− 𝑃
𝑖,𝜃𝑘
− 𝑃
𝑙,𝜃𝑘
< 0.

(28)

When 𝑖 = 𝑙, the inequality (28) becomes

𝐴


𝑖𝑝,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖𝑞,𝜃𝑘
+ 𝐴


𝑖𝑞,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖𝑝,𝜃𝑘

+ 2𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘
− 2𝑃
𝑖,𝜃𝑘
< 0.

(29)

Let

𝑉 (𝑥 (𝑘) , 𝜃
𝑘
) = 𝑥


(𝑘) [

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) 𝑃

𝑖,𝜃𝑘
]𝑥 (𝑘) . (30)

When V(𝑘) = 0, the system (22) becomes

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝑧 (𝑘)) ℎ

𝑗
(𝑧 (𝑘))

× (𝐴
𝑖𝑗,𝜃𝑘
𝑥 (𝑘) + 𝐷

𝑖,𝜃𝑘
𝑥 (𝑘)𝑤 (𝑘)) .

(31)
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In what follows, we will drop the argument of ℎ
𝑖
(𝑧(𝑘)) for

clarity. By some algebraic manipulation, with ℎ+
𝑗
= ℎ
𝑗
(𝑧(𝑘 +

1)), the difference of Lyapunov function 𝑉(𝑥(𝑘), 𝜃
𝑘
) given by

Δ𝑉(𝑥(𝑘), 𝜃
𝑘
) = 𝑉(𝑥(𝑘 + 1), 𝜃

𝑘+1
) − 𝑉(𝑥(𝑘), 𝜃

𝑘
) along the

solution of system (31) is

𝐸 [Δ𝑉 (𝑥 (𝑘) , 𝜃
𝑘
)



(31)
]

= 𝐸 [𝑉 (𝑥 (𝑘 + 1) , 𝜃
𝑘+1
) − 𝑉 (𝑥 (𝑘) , 𝜃

𝑘
)]

= 𝐸

{

{

{

𝑥


(𝑘 + 1)
[

[

𝑟

∑

𝑗=1

ℎ
𝑗
(𝑧 (𝑘)) 𝑃

𝑗,𝜃𝑘+1

]

]

𝑥 (𝑘 + 1)

−𝑥


(𝑘) [

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) 𝑃

𝑖,𝜃𝑘
]𝑥 (𝑘)

}

}

}

= 𝑥


(𝑘)
[

[

𝑟

∑

𝑗=1

ℎ
+

𝑗

𝑟

∑

𝑖=1

𝑟

∑

𝑙=1

𝑟

∑

𝑝=1

𝑟

∑

𝑞=1

ℎ
𝑖
ℎ
𝑙
ℎ
𝑝
ℎ
𝑞

× (𝐴


𝑖𝑝,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑙𝑞,𝜃𝑘

+𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑙,𝜃𝑘
− 𝑃
𝑖,𝜃𝑘
)
]

]

𝑥 (𝑘)

= 𝑥


(𝑘)

×

{

{

{

𝑟

∑

𝑗=1

ℎ
+

𝑗
[

𝑟

∑

𝑖=1

𝑟

∑

𝑝=1

ℎ
2

𝑖
ℎ
2

𝑝

× (𝐴


𝑖𝑝,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖𝑝,𝜃𝑘

+𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘
− 𝑃
𝑖,𝜃𝑘
)

+

𝑟

∑

𝑖=1

𝑟

∑

𝑙>𝑖

𝑟

∑

𝑝=1

𝑟

∑

𝑞=1

ℎ
𝑖
ℎ
𝑙
ℎ
𝑝
ℎ
𝑞

× (𝐴


𝑖𝑝,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑙𝑞,𝜃𝑘

+ 𝐴


𝑙𝑞,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖𝑝,𝜃𝑘
+ 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑙,𝜃𝑘

+𝐷


𝑙,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘
− 𝑃
𝑖,𝜃𝑘
− 𝑃
𝑙,𝜃𝑘
)

+

𝑟

∑

𝑖=1

𝑟

∑

𝑝=1

𝑟

∑

𝑞>𝑝

ℎ
2

𝑖
ℎ
𝑝
ℎ
𝑞

× (𝐴


𝑖𝑞,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖𝑞,𝜃𝑘

+ 𝐴


𝑖𝑞,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐴
𝑖𝑝,𝜃𝑘

+2𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘
− 2𝑃
𝑖,𝜃𝑘
) ]

}

}

}

𝑥 (𝑘) ,

(32)

where

�̃�
𝑗,𝜃𝑘
= 𝑃
𝑗,𝜃𝑘+1

=

𝑁

∑

𝜃𝑘=1

𝑝
𝜃𝑘𝜃𝑘+1

𝑃
𝑖,𝜃𝑘
. (33)

It follows from (13), (28), and (29) that

Δ𝑉 (𝑥 (𝑘) , 𝜃
𝑘
)



(31)

< 0, (34)

which proves the stability of system (31).
It follows from (25) that for all 𝑖, 𝑗, 𝑙 ∈ {1, 2, . . . , 𝑟} exists

[

𝐴
𝑖𝑗,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑗,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]



[
�̃�
𝑙,𝜃𝑘
0

0 𝐼

] [

𝐴
𝑖𝑗,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑗,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]

− [

𝑃
𝑖,𝜃𝑘
− 𝐷


𝑖,𝜃𝑘

�̃�
𝑙,𝜃𝑘
𝐷
𝑖,𝜃𝑘

0

0 𝛾
2

𝐼

] < 0.

(35)

Let

𝐽
𝑁
=

𝑁−1

∑

𝑘=0

𝐸 [𝑦


(𝑘) 𝑦 (𝑘) − 𝛾
2V (𝑘) V (𝑘)] . (36)

For zero initial condition 𝑥(0) = 𝑥
0
= 0, one has

𝑁−1

∑

𝑘=0

𝐸 [Δ𝑉 (𝑥 (𝑘) , 𝜃
𝑘
)



(22)
] = 𝑉 (𝑥 (𝑁) , 𝜃

𝑁
) − 𝑉 (𝑥 (0) , 𝜃

0
)

= 𝑉 (𝑥 (𝑁) , 𝜃
𝑁
) .

(37)

Therefore,

𝐽
𝑁
=

𝑁−1

∑

𝑘=0

𝐸 [𝑦


(𝑘) 𝑦 (𝑘) − 𝛾
2V (𝑘) V (𝑘)]

=

𝑁−1

∑

𝑘=0

𝐸 [𝑦(𝑘)


𝑦 (𝑘) − 𝛾
2V (𝑘) V (𝑘) + Δ𝑉 (𝑥 (𝑘) , 𝜃

𝑘
)



(22)
]

− 𝑉 (𝑥 (𝑁) , 𝜃
𝑁
) ,

(38)

where Δ𝑉(𝑥(𝑘), 𝜃
𝑘
)|
(22)

defines the difference of 𝑉(𝑥(𝑘), 𝜃
𝑘
)

along system (22). It is noted that, with 𝜁(𝑘) defined by

𝜁 (𝑘) = [

𝑥 (𝑘)

V (𝑘)] , (39)
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we have

𝐸 [𝑦


(𝑘) 𝑦 (𝑘) − 𝛾
2V (𝑘) V (𝑘)]

= 𝜁


(𝑘)

× {

𝑟

∑

𝑖=1

𝑟

∑

𝑝=1

𝑟

∑

𝑙=1

𝑟

∑

𝑞=1

ℎ
𝑖
ℎ
𝑝
ℎ
𝑙
ℎ
𝑞

×([

𝑀


𝑖𝑝,𝜃𝑘

𝑁


𝑖,𝜃𝑘

] [𝑀
𝑙𝑞,𝜃𝑘

𝑁
𝑙,𝜃𝑘
] − [

0 0

0 𝛾
2

𝐼

])

}

}

}

𝜁 (𝑘) ,

𝐸 [Δ𝑉 (𝑥 (𝑘) , 𝜃
𝑘
)



(22)
]

= 𝜁


(𝑘)

×

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑝=1

𝑟

∑

𝑗=1

𝑟

∑

𝑙=1

𝑟

∑

𝑞=1

ℎ
𝑖
ℎ
+

𝑗
ℎ
𝑝
ℎ
𝑙
ℎ
𝑞

× ([

𝐴


𝑖𝑝,𝜃𝑘

𝐶


𝑖,𝜃𝑘

] �̃�
𝑗,𝜃𝑘
[𝐴
𝑙𝑞,𝜃𝑘

𝐶
𝑙,𝜃𝑘
]

− [

𝑃
𝑖,𝜃𝑘
− 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑙,𝜃𝑘
0

0 0

])

}

}

}

𝜁 (𝑘) .

(40)

Then, it is obtained that

𝐽
𝑁
≤

𝑁−1

∑

𝑘=0

𝜁


(𝑘)

×

{

{

{

𝑟

∑

𝑗=1

ℎ
+

𝑗

𝑟

∑

𝑖=1

𝑟

∑

𝑝=1

𝑟

∑

𝑙=1

𝑟

∑

𝑞=1

ℎ
𝑖
ℎ
𝑝
ℎ
𝑙
ℎ
𝑞

× ([

𝑀


𝑖𝑝,𝜃𝑘

𝑁


𝑖,𝜃𝑘

] [𝑀
𝑙𝑞,𝜃𝑘

𝑁
𝑙,𝜃𝑘
]

+ [

𝐴


𝑖𝑝,𝜃𝑘

𝐶


𝑖,𝜃𝑘

] �̃�
𝑗,𝜃𝑘
[𝐴
𝑙𝑞,𝜃𝑘

𝐶
𝑙,𝜃𝑘
]

− [

𝑃
𝑖,𝜃𝑘
− 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑙,𝜃𝑘

0

0 𝛾
2

𝐼

])

}

}

}

𝜁 (𝑘)

=

𝑁−1

∑

𝑘=0

𝜁


(𝑘)

×

{

{

{

𝑟

∑

𝑗=1

ℎ
+

𝑗

𝑟

∑

𝑖=1

𝑟

∑

𝑝=1

𝑟

∑

𝑙=1

𝑟

∑

𝑞=1

ℎ
𝑖
ℎ
𝑝
ℎ
𝑙
ℎ
𝑞

× ([

𝐴
𝑖𝑝,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑝,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]



[

�̃�
𝑗,𝜃𝑘

0

0 𝐼

] [

𝐴
𝑙𝑞,𝜃𝑘

𝐶
𝑙,𝜃𝑘

𝑀
𝑙𝑞,𝜃𝑘

𝑁
𝑙,𝜃𝑘

]

−[

𝑃
𝑖,𝜃𝑘
− 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑙,𝜃𝑘

0

0 𝛾
2

𝐼

])

}

}

}

𝜁 (𝑘) ,

(41)

which can be rewritten as

𝐽
𝑁
≤

𝑁−1

∑

𝑘=0

𝜁


(𝑘)

×

{

{

{

𝑟

∑

𝑗=1

ℎ
+

𝑗

𝑟

∑

𝑖=1

𝑟

∑

𝑝=1

ℎ
2

𝑖
ℎ
2

𝑝

× ([

𝐴
𝑖𝑝,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑝,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]



× [

�̃�
𝑗,𝜃𝑘

0

0 𝐼

] [

𝐴
𝑖𝑝,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑝,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]

−[

𝑃
𝑖,𝜃𝑘
− 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘

0

0 𝛾
2

𝐼

])

}

}

}

𝜁 (𝑘)

+

𝑁−1

∑

𝑘=0

𝜁


(𝑘)

×

{

{

{

𝑟

∑

𝑗=1

ℎ
+

𝑗

𝑟

∑

𝑖=1

𝑟

∑

𝑝=1

𝑟

∑

𝑙>𝑖

𝑟

∑

𝑞=1

ℎ
𝑖
ℎ
𝑝
ℎ
𝑙
ℎ
𝑞

× ([

𝐴
𝑖𝑝,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑝,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]



[

�̃�
𝑗,𝜃𝑘

0

0 𝐼

]

× [

𝐴
𝑙𝑞,𝜃𝑘

𝐶
𝑙,𝜃𝑘

𝑀
𝑙𝑞,𝜃𝑘

𝑁
𝑙,𝜃𝑘

]

− [

𝑃
𝑖,𝜃𝑘
− 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑙,𝜃𝑘

0

0 𝛾
2

𝐼

]

+ [

𝐴
𝑙𝑞,𝜃𝑘

𝐶
𝑙,𝜃𝑘

𝑀
𝑙𝑞,𝜃𝑘

𝑁
𝑙,𝜃𝑘

]



× [

�̃�
𝑗,𝜃𝑘

0

0 𝐼

] [

𝐴
𝑖𝑝,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑝,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]

−[

𝑃
𝑙,𝜃𝑘
− 𝐷


𝑙,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘

0

0 𝛾
2

𝐼

])

}

}

}

𝜁 (𝑘)

+

𝑁−1

∑

𝑘=0

𝜁


(𝑘)

×

{

{

{

𝑟

∑

𝑗=1

ℎ
+

𝑗

𝑟

∑

𝑖=1

𝑟

∑

𝑝=1

𝑟

∑

𝑞>𝑝

ℎ
2

𝑖
ℎ
𝑝
ℎ
𝑞

× ([

𝐴
𝑖𝑝,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑝,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]



× [

�̃�
𝑗,𝜃𝑘

0

0 𝐼

] [

𝐴
𝑖𝑞,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑞,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]
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+ [

𝐴
𝑖𝑞,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑞,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]



× [

�̃�
𝑗,𝜃𝑘

0

0 𝐼

] [

𝐴
𝑖𝑝,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑝,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]

−2 [

𝑃
𝑖,𝜃𝑘
− 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘

0

0 𝛾
2

𝐼

])

}

}

}

𝜁 (𝑘) .

(42)

By following similar line as in the proof of (34) it can be
checked that, for any𝑁, 𝐽

𝑁
< 0, which gives for any nonzero

V(𝑘) ∈ 𝑙
2
[0,∞), 𝑦(𝑘) ∈ 𝑙

2
[0,∞), and ‖𝑦(𝑘)‖

2
< 𝛾‖V(𝑘)‖

2
.

Theorem 6. For the nominal fuzzy system (20), there exists a
state feedback fuzzy control law (4) such that the closed-loop
system is stable with𝐻

∞
norm bound 𝛾, if there exist matrices

{𝑋
𝑖,𝜃𝑘
> 0}
𝑟

𝑖=1
, {Ω
𝑖,𝜃𝑘
}
𝑟

𝑖=1
, and {𝑌

𝑖,𝜃𝑘
}
𝑟

𝑖=1
, 𝑖, 𝑗, 𝑙 ∈ {1, 2, . . . , 𝑟}

satisfying the following LMIs:

[

[

[

[

[

𝑋
𝑖,𝜃𝑘
− (Ω
𝑗,𝜃𝑘
+ Ω


𝑗,𝜃𝑘

) ∗ ∗ ∗

0 −𝛾
2

𝐼 ∗ ∗

𝐴
𝑖,𝜃𝑘
Ω
𝑗,𝜃𝑘
+ 𝐵
𝑖,𝜃𝑘
𝑌
𝑗,𝜃𝑘

𝐶
𝑖,𝜃𝑘

−𝑋
𝑙,𝜃𝑘

∗

𝑀
𝑖,𝜃𝑘
Ω
𝑗,𝜃𝑘
+ 𝑇
𝑖,𝜃𝑘
𝑌
𝑗,𝜃𝑘

𝑁
𝑖,𝜃𝑘

0 −𝐼

]

]

]

]

]

< 0, (43)

where ∗ represents the transposed matrices that are readily
inferred by symmetry for all 𝑖 and 𝑗 except the pairs (𝑖, 𝑗)
such that ℎ

𝑖
(𝑧(𝑘))ℎ

𝑗
(𝑧(𝑘)) = 0, for all 𝑘. A robust stabilizing

controller gain can be given by

𝐾
𝑗,𝜃𝑘
= 𝑌
𝑗,𝜃𝑘
Ω
−1

𝑗,𝜃𝑘

. (44)

Proof. By using (24) and (44), (43) becomes

[

[

[

[

[

𝑋
𝑖,𝜃𝑘
− (Ω
𝑗,𝜃𝑘
+ Ω


𝑗,𝜃𝑘

) ∗ ∗ ∗

0 −𝛾
2

𝐼 ∗ ∗

𝐴
𝑖𝑗,𝜃𝑘
Ω
𝑗,𝜃𝑘

𝐶
𝑖,𝜃𝑘

−𝑋
𝑙,𝜃𝑘

∗

𝑀
𝑖𝑗,𝜃𝑘
Ω
𝑗,𝜃𝑘

𝑁
𝑖,𝜃𝑘

0 −𝐼

]

]

]

]

]

< 0, (45)

which gives 0 < 𝑋
𝑖,𝜃𝑘

< Ω
𝑗,𝜃𝑘

+ Ω


𝑗,𝜃𝑘

. (𝑋
𝑖,𝜃𝑘

–
Ω
𝑗,𝜃𝑘
)


𝑋
−1

𝑖,𝜃𝑘

(𝑋
𝑖,𝜃𝑘
− Ω
𝑗,𝜃𝑘
) ≥ 0 implies that Ω

𝑗,𝜃𝑘

𝑋
−1

𝑖,𝜃𝑘

Ω
𝑗,𝜃𝑘
≥

Ω
𝑗,𝜃𝑘
+ Ω


𝑗,𝜃𝑘

− 𝑋
𝑖,𝜃𝑘

yielding

[

[

[

[

−Ω


𝑗,𝜃𝑘

𝑋
−1

𝑖,𝜃𝑘

Ω
𝑗,𝜃𝑘

∗ ∗ ∗

0 −𝛾
2

𝐼 ∗ ∗

𝐴
𝑖𝑗,𝜃𝑘
Ω
𝑗,𝜃𝑘

𝐶
𝑖,𝜃𝑘

−𝑋
𝑙,𝜃𝑘

∗

𝑀
𝑖𝑗,𝜃𝑘
Ω
𝑗,𝜃𝑘

𝑁
𝑖,𝜃𝑘

0 −𝐼

]

]

]

]

< 0. (46)

Note that Ω
𝑗,𝜃𝑘

is invertible. Premultiplying diag(Ω
𝑗,𝜃𝑘

, 𝐼, 𝐼,
𝐼)
−1 and postmultiplying diag(Ω−1

𝑗,𝜃𝑘

, 𝐼, 𝐼, 𝐼) to (46) give

[

[

[

[

−𝑋
−1

𝑖,𝜃𝑘

∗ ∗ ∗

0 −𝛾
2

𝐼 ∗ ∗

𝐴
𝑖𝑗,𝜃𝑘

𝐶
𝑖,𝜃𝑘

−𝑋
𝑙,𝜃𝑘

∗

𝑀
𝑖𝑗,𝜃𝑘

𝑁
𝑖,𝜃𝑘

0 −𝐼

]

]

]

]

< 0. (47)

Set𝑋−1
𝑖,𝜃𝑘

= 𝑃
𝑖,𝜃𝑘
− 𝐷


𝑖,𝜃𝑘

�̃�
𝑙,𝜃𝑘
𝐷
𝑖,𝜃𝑘

and𝑋−1
𝑙,𝜃𝑘

= �̃�
𝑙,𝜃𝑘

; there is

[

[

[

[

[

− (𝑃
𝑖,𝜃𝑘
− 𝐷


𝑖,𝜃𝑘

�̃�
𝑙,𝜃𝑘
𝐷
𝑖,𝜃𝑘
) ∗ ∗ ∗

0 −𝛾
2

𝐼 ∗ ∗

𝐴
𝑖𝑗,𝜃𝑘

𝐶
𝑖,𝜃𝑘

−�̃�
−1

𝑙,𝜃𝑘

∗

𝑀
𝑖𝑗,𝜃𝑘

𝑁
𝑖,𝜃𝑘

0 −𝐼

]

]

]

]

]

< 0. (48)

It follows from Schur complement equivalence that

[

𝐴
𝑖𝑗,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑗,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]



[
�̃�
𝑙,𝜃𝑘
0

0 𝐼

] [

𝐴
𝑖𝑗,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖𝑗,𝜃𝑘

𝑁
𝑖,𝜃𝑘

]

− [

𝑃
𝑖,𝜃𝑘
− 𝐷


𝑖,𝜃𝑘

�̃�
𝑙,𝜃𝑘
𝐷
𝑖,𝜃𝑘

0

0 𝛾
2

𝐼

] < 0.

(49)

The result then follows fromTheorem 5.

Theorem 7. For the uncertain discrete-time MJSS (7), there
exists a state feedback fuzzy control law (4) such that the
closed-loop system is stable with 𝐻

∞
norm bound 𝛾, if there

exist matrices {𝑋
𝑖,𝜃𝑘
> 0}
𝑟

𝑖=1
, {Ω
𝑖,𝜃𝑘
}
𝑟

𝑖=1
, and {𝑌

𝑖,𝜃𝑘
}
𝑟

𝑖=1
, 𝑖, 𝑗, 𝑙 ∈

{1, 2, . . . , 𝑟} satisfying the following LMIs:

[

[

[

[

[

[

[

[

[

𝑋
𝑖,𝜃𝑘
− (Ω
𝑗,𝜃𝑘
+ Ω


𝑗,𝜃𝑘

) ∗ ∗ ∗ ∗ ∗

0 −𝜖𝛾
2

𝐼 ∗ ∗ ∗ ∗

𝐴
𝑖,𝜃𝑘
Ω
𝑗,𝜃𝑘
+ 𝐵
𝑖,𝜃𝑘
𝑌
𝑗,𝜃𝑘

𝜖𝐶
𝑖,𝜃𝑘

−𝑋
𝑙,𝜃𝑘

∗ ∗ ∗

𝑀
𝑖,𝜃𝑘
Ω
𝑗,𝜃𝑘
+ 𝑇
𝑖,𝜃𝑘
𝑌
𝑗,𝜃𝑘

𝜖𝑁
𝑖,𝜃𝑘

0 −𝜖𝐼 ∗ ∗

0 0 𝐸


1𝑖
𝐸


2𝑖
−𝐼 ∗

𝐻


1𝑖
Ω
𝑗,𝜃𝑘
+ 𝐻


2𝑖
𝑌
𝑗,𝜃𝑘

𝜖𝐻
3𝑖

0 0 𝐽 −𝐼

]

]

]

]

]

]

]

]

]

< 0,

(50)

where ∗ represents the transposed matrices that are readily
inferred by symmetry for all 𝑖 and 𝑗 except the pairs (𝑖, 𝑗)
such that ℎ

𝑖
(𝑧(𝑘))ℎ

𝑗
(𝑧(𝑘)) = 0, for all 𝑘. A robust stabilizing

controller gain can be given by

𝐾
𝑗,𝜃𝑘
= 𝑌
𝑗,𝜃𝑘
Ω
−1

𝑗,𝜃𝑘

. (51)

Proof. By using Lemma 4, it can be checked that the feasibil-
ity of inequality (50) is equivalent to

[

[

[

[

[

𝑋
𝑖,𝜃𝑘
− (Ω̂
𝑗,𝜃𝑘
+ Ω̂


𝑗,𝜃𝑘

) ∗ ∗ ∗

0 −𝛾
2

𝐼 ∗ ∗

A
𝑖,𝜃𝑘
Ω̂
𝑗,𝜃𝑘
+B
𝑖,𝜃𝑘
�̂�
𝑗,𝜃𝑘

C
𝑖,𝜃𝑘

−𝑋
𝑙,𝜃𝑘

∗

M
𝑖,𝜃𝑘
Ω̂
𝑗,𝜃𝑘
+T
𝑖,𝜃𝑘
�̂�
𝑗,𝜃𝑘

N
𝑖,𝜃𝑘

0 −𝐼

]

]

]

]

]

< 0, (52)

where

𝑋
𝑖,𝜃𝑘
= 𝜖
−1

𝑋
𝑖,𝜃𝑘
, Ω̂

𝑗,𝜃𝑘
= 𝜖
−1

Ω
𝑗,𝜃𝑘
, �̂�

𝑗,𝜃𝑘
= 𝜖
−1

𝑌
𝑗,𝜃𝑘
.

(53)

It follows from (51)–(53) that

[

[

[

[

[

𝑋
𝑖,𝜃𝑘
− (Ω̂
𝑗,𝜃𝑘
+ Ω̂


𝑗,𝜃𝑘

) ∗ ∗ ∗

0 −𝛾
2

𝐼 ∗ ∗

(A
𝑖,𝜃𝑘
+B
𝑖,𝜃𝑘
𝐾
𝑗,𝜃𝑘
) Ω̂
𝑗,𝜃𝑘

C
𝑖,𝜃𝑘

−𝑋
𝑙,𝜃𝑘

∗

(M
𝑖,𝜃𝑘
+T
𝑖,𝜃𝑘
𝐾
𝑗,𝜃𝑘
) Ω̂
𝑗,𝜃𝑘

N
𝑖,𝜃𝑘

0 −𝐼

]

]

]

]

]

< 0, (54)

which implies that the closed-loop system (20) and (21) is
robustly stable with𝐻

∞
norm bound 𝛾 byTheorem 6.
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Corollary 8. Consider the nominal unforced system

𝑥 (𝑘 + 1) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘))

× (𝐴
𝑖,𝜃𝑘
𝑥 (𝑘) + 𝐶

𝑖,𝜃𝑘
V (𝑘) + 𝐷

𝑖,𝜃𝑘
𝑥 (𝑘)𝑤 (𝑘)) ,

𝑦 (𝑘) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑧 (𝑘)) (𝑀

𝑖,𝜃𝑘
𝑥 (𝑘) + 𝑁

𝑖,𝜃𝑘
V (𝑘)) .

(55)

The nominal unforced fuzzy system is stable with 𝐻
∞

norm
bound 𝛾; that is, ‖𝑦(𝑘)‖

2
< 𝛾‖V(𝑘)‖

2
for all nonzero V(𝑘) ∈

𝑙
2
[0,∞) under the zero initial condition, if there exist matrices
{𝑃
𝑖,𝜃𝑘
> 0}
𝑟

𝑖=1
, for all 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑟} such that

[

𝐴
𝑖,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖,𝜃𝑘
𝑁
𝑖,𝜃𝑘

]



[

�̃�
𝑗,𝜃𝑘

0

0 𝐼

] [

𝐴
𝑖,𝜃𝑘

𝐶
𝑖,𝜃𝑘

𝑀
𝑖,𝜃𝑘
𝑁
𝑖,𝜃𝑘

]

− [

𝑃
𝑖,𝜃𝑘
− 𝐷


𝑖,𝜃𝑘

�̃�
𝑗,𝜃𝑘
𝐷
𝑖,𝜃𝑘

0

0 𝛾
2

𝐼

] < 0,

(56)

where �̃�
𝑗,𝜃𝑘
= ∑
𝑁

𝜃𝑘=1
𝑝
𝜃𝑘𝜃𝑘+1

𝑃
𝑖,𝜃𝑘

.

Corollary 9. The nominal unforced fuzzy system (55) is stable
with 𝐻

∞
norm bound 𝛾, if there exist matrices {𝑋

𝑖,𝜃𝑘
> 0}
𝑟

𝑖=1
,

{Ω
𝑖,𝜃𝑘
}
𝑟

𝑖=1
, 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑟} satisfying the following LMIs:

[

[

[

[

[

𝑋
𝑖,𝜃𝑘
− (Ω
𝑗,𝜃𝑘
+ Ω


𝑗,𝜃𝑘

) ∗ ∗ ∗

0 −𝛾
2

𝐼 ∗ ∗

𝐴
𝑖,𝜃𝑘
Ω
𝑗,𝜃𝑘

𝐶
𝑖,𝜃𝑘

−𝑋
𝑗,𝜃𝑘

∗

𝑀
𝑖,𝜃𝑘
Ω
𝑗,𝜃𝑘

𝑁
𝑖,𝜃𝑘

0 −𝐼

]

]

]

]

]

< 0. (57)

Corollary 10. When 𝑢(𝑘) = 0, the unforced system (7) and (8)
is robustly stable with𝐻

∞
norm bound 𝛾, if there exist matrices

{𝑋
𝑖,𝜃𝑘
> 0}
𝑟

𝑖=1
and 𝜖 > 0, 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑟} satisfying the

following LMIs:

[

[

[

[

[

[

[

[

−𝑋
𝑖,𝜃𝑘

∗ ∗ ∗ ∗ ∗

0 −𝜖𝛾
2

𝐼 ∗ ∗ ∗ ∗

𝐴
𝑖,𝜃𝑘
𝑋
𝑖,𝜃𝑘

𝜖𝐶
𝑖,𝜃𝑘

−𝑋
𝑗,𝜃𝑘

∗ ∗ ∗

𝑀
𝑖,𝜃𝑘
𝑋
𝑖,𝜃𝑘

𝜖𝑁
𝑖,𝜃𝑘

0 −𝜖𝐼 ∗ ∗

0 0 𝐸


1𝑖
𝐸


2𝑖
−𝐼 ∗

𝐻


1𝑖
𝑋
𝑖,𝜃𝑘

𝜖𝐻
3𝑖

0 0 𝐽 −𝐼

]

]

]

]

]

]

]

]

< 0. (58)

4. Numerical Simulation Example

In this section, to illustrate the proposed new 𝐻
∞

fuzzy
control method, the backing-up control of a computer-
simulated truck-trailer is considered [30]. For example, the
truck-trailer model is given by

𝑥
1
(𝑘 + 1) = (1 −

V𝑡
𝐿

) 𝑥
1
(𝑘) + 𝛿

V𝑡
ℓ

𝑢 (𝑘) , (59)

𝑥
2
(𝑘 + 1) = 𝑥

2
(𝑘) +

V𝑡
𝐿

𝑥
1
(𝑘) , (60)

𝑥
3
(𝑘 + 1) = 𝑥

3
(𝑘) + V𝑡 sin(𝑥

2
(𝑘) +

V𝑡
2𝐿

𝑥
1
(𝑘)) , (61)

where 𝑥
1
(𝑘) is the angle difference between truck and trailer,

𝑥
2
(𝑘) is the angle of trailer, and 𝑥

3
(𝑘) is the vertical position

of rear end of trailer. The parameter 𝛿 ∈ [0, 1] is used to
describe the actuator failure, where 𝛿 = 1 implies no failure,
𝛿 = 0 implies a total failure, and 0 < 𝛿 < 1 implies a
partial failure. It is assumed that there is no actuator failure.
Equations (59) and (60) are linear, but (61) is nonlinear. The
model parameters are given as 𝐿 = 5.5, ℓ = 2.8, V = −1.0,
𝑡 = 2.0, and 𝛿 = 0.

The transition probability matrix that relates the three
operation modes is given as follows:

P = [

[

0.48 0.29 0.23

0.6 0.1 0.3

0.1 0.65 0.25

]

]

. (62)

As in [30], we set 𝜔 = 0.01/𝜋 and the nonlinear term
sin(𝑧(𝑘)) as

sin (𝑧 (𝑘)) = ℎ
1
(𝑧 (𝑘)) 𝑧 (𝑘) + ℎ

2
(𝑧 (𝑘)) 𝜔𝑧 (𝑘) , (63)

where ℎ
1
(𝑧(𝑘)), ℎ

2
(𝑧(𝑘)) ∈ [0, 1], and ℎ

1
(𝑧(𝑘))+ℎ

2
(𝑧(𝑘)) = 1.

By solving the equations, it can be seen that the membership
functions ℎ

1
(𝑧(𝑘)), ℎ

2
(𝑧(𝑘)) have the following relations.

When 𝑧(𝑘) is about 0 rad, ℎ
1
(𝑧(𝑘)) = 1, ℎ

2
(𝑧(𝑘)) = 0, and

when 𝑧(𝑘) is about ±𝜋 rad, ℎ
1
(𝑧(𝑘)) = 0, ℎ

2
(𝑧(𝑘)) = 1. Then

the following fuzzy models can be used to design the fuzzy
controller for the uncertain nonlinear MJSS.

Rule 1. If 𝑧(𝑘) = 𝑥
2
(𝑘) + (V𝑡/2𝐿)𝑥

1
(𝑘) is about 0 rad, then

𝑥 (𝑘 + 1) = (𝐴
1,𝜃𝑘
+ Δ𝐴
1,𝜃𝑘
) 𝑥 (𝑘) + (𝐵

1,𝜃𝑘
+ Δ𝐵
1,𝜃𝑘
) 𝑢 (𝑘)

+ (𝐶
1,𝜃𝑘
+ Δ𝐶
1,𝜃𝑘
) V (𝑘) + 𝐷

1,𝜃𝑘
𝑥
1
(𝑘) 𝑤 (𝑘) .

(64)

Rule 2. If 𝑧(𝑘) = 𝑥
2
(𝑘) + (V𝑡/2𝐿)𝑥

1
(𝑘) is about ±𝜋 rad, then

𝑥 (𝑘 + 1) = (𝐴
2,𝜃𝑘
+ Δ𝐴
2,𝜃𝑘
) 𝑥 (𝑘) + (𝐵

2,𝜃𝑘
+ Δ𝐵
2,𝜃𝑘
) 𝑢 (𝑘)

+ (𝐶
2,𝜃𝑘
+ Δ𝐶
2,𝜃𝑘
) V (𝑘) + 𝐷

2,𝜃𝑘
(𝑘) 𝑤 (𝑘) ,

(65)

where

𝐴
1,𝜃𝑘
=

[

[

[

[

[

[

[

[

[

1 −

V𝑡
𝐿

0 0

V𝑡
𝐿

1 0

V2𝑡2

2𝐿

V𝑡 1

]

]

]

]

]

]

]

]

]

,

𝐴
2,𝜃𝑘
=

[

[

[

[

[

[

[

[

[

1 −

V𝑡
𝐿

0 0

V𝑡
𝐿

1 0

𝜔V2𝑡2

2𝐿

𝜔V𝑡 1

]

]

]

]

]

]

]

]

]

,
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𝐵
1,𝜃𝑘
= 𝐵
2,𝜃𝑘
= [

V𝑡
𝐿

0 0]



,

𝐶
1,𝜃𝑘
= 𝐶
2,𝜃𝑘
= [−0.1 0.2 0.15]



,

𝐷
1,𝜃𝑘
= 𝐷
2,𝜃𝑘
=
[

[

0.1 0 0

0 0.01 0

0 0 0

]

]

.

(66)

In the above uncertain fuzzy models, the uncertainty to
describe the modeling error is assumed to be in the following
form:

Δ𝐴
1,𝜃𝑘
= 𝐸
11
Δ𝐻
11
, Δ𝐵

1,𝜃𝑘
= 𝐸
11
Δ𝐻
21
,

Δ𝐶
1,𝜃𝑘
= 𝐸
11
Δ𝐻
31
,

Δ𝐴
2,𝜃𝑘
= 𝐸
12
Δ𝐻
12
, Δ𝐵

2,𝜃𝑘
= 𝐸
12
Δ𝐻
22
,

Δ𝐶
2,𝜃𝑘
= 𝐸
12
Δ𝐻
32
,

(67)

where

𝐸
11
= 𝐸
12
=
[

[

0.06 0 0

0 0.06 0

0 0 0.06

]

]

,

𝐸
21
= 𝐸
22
=
[

[

0.1 0 0

0 0.1 0

0 0 0.1

]

]

,

𝐻
11
= 𝐻
12
=
[

[

0.3 0 0

0 0.3 0

0 0 0.3

]

]

,

𝐻
21
= 𝐻
22
= 0, 𝐻

31
= 𝐻
32
=
[

[

0

0

0

]

]

.

(68)

We choose the following matrices for the uncertain discrete-
time MJSS:

𝑀
1,𝜃𝑘
= 𝑀
2,𝜃𝑘
=
[

[

0.1 0 0

0 0.1 0

0 0 0.3

]

]

,

𝑁
1,𝜃𝑘
= 𝑁
2,𝜃𝑘
= [0.5 0 0]



,

𝑇
1,𝜃𝑘
= 𝑇
2,𝜃𝑘
= [0.5 0 0]



,

𝐽 =
[

[

0 0 0

0 0 0

0 0 0

]

]

.

(69)

We set 𝑖 = 1, 𝑗 = 1, 𝑙 = 1, 𝜃
𝑘
= 1 and 𝑖 = 2, 𝑗 = 2, 𝑙 =

2, 𝜃
𝑘
= 2, respectively. Based on Theorem 7 and using LMI

control toolbox in Matlab to solve LMIs (50), we can obtain
the feasible set of solutions as follows:

𝑋
1,1
=
[

[

0.2389 0.1410 0.1770

0.1410 0.1387 0.3577

0.1770 0.3577 1.9030

]

]

,

Ω
1,1
=
[

[

0.3259 0.1769 0.2347

0.1768 0.1730 0.4467

0.2286 0.4594 2.3108

]

]

,

𝑋
2,2
=
[

[

0.2725 0.2913 −0.0027

0.2913 0.8440 0.0210

−0.0027 0.0210 0.0402

]

]

,

Ω
2,2
=
[

[

0.3559 0.2937 −0.0047

0.2937 0.9264 0.0186

−0.0047 0.0186 0.0370

]

]

,

𝑌
1,1
= [0.8566 0.2418 0.0753] ,

𝑌
2,2
= [0.8592 0.2091 −0.0203] .

(70)

By (51), there are the local state feedback gains given by

𝐾
1,1
= [5.0451 −5.1128 0.5086] ,

𝐾
2,2
= [3.0255 −0.7375 0.2056] .

(71)

Then, we can get

𝑃
1,1
=
[

[

11.7492 −15.7505 2.0651

−15.7505 37.4327 −4.7133

2.0651 −4.7133 1.4101

]

]

,

𝑃
2,2
=
[

[

107.2937 −35.1096 10.0427

−35.1096 29.0490 −8.5669

10.0427 −8.5669 3.3892

]

]

.

(72)

It can be found that the LMIs ofTheorem 7 have some feasible
solution for the uncertain discrete-time MJSS. Setting 𝜖 = 1,
𝛾 = 2.6, the aforementioned simulation results are obtained.
Employing the feedback gains 𝐾, the fuzzy controller can be
obtained by (4). By using Theorem 7, with the fuzzy control
applied, if the LMIs in (50) and (25) have a positive-definite
solution for 𝐾

𝑗,𝜃𝑘
and 𝑃

𝑖,𝜃𝑘
, respectively, then the system (7)

and (8) driven by the designed fuzzy controller is stable with
satisfying the𝐻

∞
performance constraint.

5. Conclusions

In the paper, the robust 𝐻
∞

control has been discussed for
a class of nonlinear discrete-time stochastic MJSS. First, a
new LMI characterization of stability with 𝐻

∞
norm bound

for uncertain discrete-time stochastic MJSS has been given.
Moreover, sufficient conditions on robust stabilization and
𝐻
∞
performance analysis and control have been presented on

LMIs. Furthermore, there are some corollaries of the stability,
and the nominal unforced system has been given. Finally, a
numerical simulation example has been presented to show
the effectiveness.
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