
Research Article
Universal Keyword Classifier on Public Key Based Encrypted
Multikeyword Fuzzy Search in Public Cloud

Shyamala Devi Munisamy1 and Arun Chokkalingam2

1R.M.D Engineering College, R.S.M Nagar, Kavaraipettai, Chennai, Tamil Nadu 601206, India
2R.M.K College of Engineering and Technology, R.S.M Nagar, Puduvoyal, Chennai, Tamil Nadu 601206, India

Correspondence should be addressed to Shyamala Devi Munisamy; shyamalapmr@gmail.com

Received 20 May 2015; Revised 17 July 2015; Accepted 29 July 2015

Academic Editor: Juan M. Corchado

Copyright © 2015 S. D. Munisamy and A. Chokkalingam. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Cloud computing has pioneered the emerging world by manifesting itself as a service through internet and facilitates third party
infrastructure and applications. While customers have no visibility on how their data is stored on service provider’s premises, it
offers greater benefits in lowering infrastructure costs and delivering more flexibility and simplicity in managing private data. The
opportunity to use cloud services on pay-per-use basis provides comfort for private data owners in managing costs and data. With
the pervasive usage of internet, the focus has now shifted towards effective data utilization on the cloud without compromising
security concerns. In the pursuit of increasing data utilization on public cloud storage, the key is to make effective data access
through several fuzzy searching techniques. In this paper, we have discussed the existing fuzzy searching techniques and focused
on reducing the searching time on the cloud storage server for effective data utilization. Our proposed Asymmetric Classifier
Multikeyword Fuzzy Search method provides classifier search server that creates universal keyword classifier for the multiple
keyword request which greatly reduces the searching time by learning the search path pattern for all the keywords in the fuzzy
keyword set. The objective of using BTree fuzzy searchable index is to resolve typos and representation inconsistencies and also to
facilitate effective data utilization.

1. Introduction

Cloud computing [1, 2] makes the infrastructure, platform,
and software as a service for the worldwide users. The cloud
paradigmmakes the user outsource their personal data to the
cloud storage [3] server which facilitates the users’ access to
their data anywhere at any time. The data users of the cloud
storage have to pay only for the actual storage they use. Some
companies will use the cloud storage for their data backup.

Problem Formulation. We highlight here that the cloud stor-
age server has the responsibility to keep their customer data
to be available and accessible all the time. The cloud storage
must facilitate their customers to access their wide range
of resources, application, and data through internet service
interface immediately and fast. The number of customers
utilizing the cloud storage increases significantly every day.
The data on the cloud storage increases dynamically due to
the increasing demands of existing customer and addition

of new customers. This means the cloud storage is under a
state to respond to increasing customer data and effective
access to their data. To retain their customers, the cloud
storage must optimize its computational time for searching
the requested data. It must have some efficient searching
method or additional provisions to serve their customers
to provide the requested data immediately. So with this
observation, we propose a new searching method named
Asymmetric Classifier Multikeyword Fuzzy Search which
utilizes the universal keyword classifier to store the search
path pattern of all the keywords of their customers data. This
allows the cloud storage server to use its time effectively to
perform multiprocessing of their growing customers. Our
scheme also resolves typos and representation inconsistencies
since the searching is done on BTree fuzzy searchable index.

Our Contributions. In this paper, we propose new Scheme
Asymmetric Classifier Multikeyword Fuzzy Search (ACMFS)
which greatly reduces the time spent for searching the data

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 706102, 17 pages
http://dx.doi.org/10.1155/2015/706102

2 The Scientific World Journal

and delivers the requested file immediately to the users. It also
utilizes the data effectively from the cloud storage through
fuzzy search on BTree fuzzy searchable index. Experimen-
tal results shows effective data utilization and the search
efficiency of the proposed scheme. Our contributions are
summarized as follows:

(i) Asymmetric Searchable Encryption allows the server
to search over encrypted BTree fuzzy searchable index
thereby providing effective data utilization.

(ii) The cloud storage server would not disclose the files
to illegal access as they do not have the information
about the multiple keywords𝑀𝐾𝑊 and files.

(iii) As the BTree fuzzy searchable index is created from
wild card fuzzy keyword set, it tolerates typos and
representation inconsistencies of authorized users.

(iv) Classifier search server uses universal keyword clas-
sifier for traversing the storage efficient BTree wild
card fuzzy searchable indexwhich stores all the search
path pattern of the multiple keywords of the entire
encrypted files.

Paper Organization. The rest of the paper is organized as
follows.The related modules are discussed in Section 2 along
with the limitations of the existing searching methods. In
Section 3, we formulate our problem by designing the system
model and goals of the proposed solution. Then we provide
the detailed description of Asymmetric Classifier Multikey-
word Fuzzy Search scheme in Section 4 followed by Section 5,
which discusses the detailed design and implementation
of algorithms of our proposed method. The Experimental
results and performance analysis with output are shown in
Section 6. We conclude our paper in Section 7.

2. Background

2.1. Related Work. Although Cloud Service Provider (CSP)
hosts several third party data, Liu et al. [4] pointed out
that managing sensitive data leads to security and privacy
concerns. Cryptographic methods can be used to disclose
the key only to authorized users to protect the data from
untrusted CSP.

Ren et al. [5] state that users have several types of typing
behaviour for keywords which are commonly termed as
typos, representation inconsistencies, and typing habits.They
suggested fuzzy keyword search to overcome these incon-
sistencies. Though the fuzzy keyword search is prevalent
in popular search engines like Google, Bing, and so forth,
it still poses risk in cloud storage due to inherent security
and privacy obstacles. The searchable encryption [6–8] is
recommended which takes encrypted data as files labeled
with keywords and lets user securely search over the files
through predefined keywords for retrieving them.

Zhou et al. [9] created k-grambased fuzzy keyword set for
keywords W of the encrypted files C and Jaccard coefficient
to calculate the keywords similarity.

Wang et al. [10] pointed out that keyword holds sensitive
information of the files and thus keyword privacy must be

protected for effective data utilization. Xu et al. [11] identified
that third party could access the files by knowing the keyword
search trapdoor. Xu proposed public key encryption with
fuzzy keyword search (PEFKS) in which each keyword
corresponds to exact keyword search trapdoor and fuzzy
keyword search trapdoor.

Wang et al. [12] discusses that the search over encrypted
data not only involves information retrieval techniques such
as data structures for representing the searchable index but
also depends on efficient search algorithms that run on the
index.

2.2. Limitation of the Existing Methods

(1) Secured and privacy preserving keyword search [4]:

(i) The encryption and decryption process incurs
high communication and computational cost.

(2) Secured fuzzy keyword search [5]:

(i) It does not support fuzzy search with public key
based searchable encryption.

(ii) It could not carry outmultiple keywords seman-
tic search.

(iii) The update operation on fuzzy searchable index
is not much efficient.

(3) K-gram based fuzzy keyword Ranked search [9]:

(i) The k-gram based fuzzy keyword set size de-
pends on the jaccard coefficient value.

(4) Verifiable fuzzy keyword search (VFKS) [10]:

(i) The symbol tree fuzzy searchable index occupies
more space in this search.

(5) Public key encryption with fuzzy keyword search:

(i) Creating fuzzy keyword index and exact
keyword index is not compatible with large
database.

(6) Privacy-preserving multikeyword fuzzy search [12]:

(i) It demands files with relatively high score to
reduce the false negative rate.

3. Methodology of Our Scheme

3.1. CloudData Utilization Service Architecture. In this paper,
we consider our cloud data utilization service architecture
which consists of four entities as data owner, cloud storage
server, classifier search server, and data users and is shown
in Figure 1. Here we assume that the authorization is suitably
done between the data owner and data users.

Initially, the data owner generates user’s public and
private key pair as (𝑃𝑈𝐵

𝐾𝐸𝑌
, 𝑃𝑅𝐼𝑉

𝐾𝐸𝑌
). Data owner has

a set of 𝐾 data files 𝐷𝐹 = {𝐷𝐹
1
, 𝐷𝐹
2
, . . . , 𝐷𝐹

𝐾
} that

The Scientific World Journal 3

Search path pattern

Encrypted BTree
index keyword

trapdoor

Classifier
search
server

Search
request

keyword
trapdoor

Set of
encrypted

files
Data owner

Private secret
key

Data users

Files and
BTree index

encrypted with
user public key

Cloud
storage
server

Figure 1: Cloud data utilization service architecture for Asymmetric Classifier Multikeyword Fuzzy Search.

are encrypted with user’s public key 𝑃𝑈𝐵
𝐾𝐸𝑌

and are
outsourced to the cloud storage server. Data owner predefine
multiple keywords for each file. Data owner has a set of
multiple keywords𝑀𝐾𝑊 = {(𝑚𝑘

11
, 𝑚𝑘
12
, . . . , 𝑚𝑘

1𝑛
), (𝑚𝑘

21
,

𝑚𝑘
22
, . . . , 𝑚𝑘

2𝑛
), . . . , (𝑚𝑘

𝑘1
, 𝑚𝑘
𝑘2
, . . . , 𝑚𝑘

𝑘𝑛
)} of 𝐾 data

files. Data owner creates storage efficient wild card based
fuzzy multikeyword set as 𝐹𝑀𝐾𝑆 = {(𝑓𝑚𝑘

11
[], 𝑓𝑚𝑘

12
[],

. . . , 𝑓𝑚𝑘
1𝑛
[]), (𝑓𝑚𝑘

21
[], 𝑓𝑚𝑘

22
[], . . . ,𝑓𝑚𝑘

2𝑛
[]), . . ., (𝑓𝑚𝑘

𝑘1
[],

𝑓𝑚𝑘
𝑘2
[], . . . , 𝑓𝑚𝑘

𝑘𝑛
[])} using wild card based technique

with the predefined edit distance value. Data owner creates
BTree wild card fuzzy searchable index 𝐵𝑆𝐼

𝑊𝐶
from fuzzy

multikeyword set. Data owner encrypts the files and index
𝐵𝑆𝐼
𝑊𝐶

using user public key and is outsourced to the cloud
storage server. Data owner sends the user private key as
private secret key which is used by the data users for creating
keyword trapdoor and for decrypting the file. Now the
cloud storage server has the encrypted 𝐾 data files DF and
encrypted BTree wild card fuzzy searchable index 𝐵𝑆𝐼

𝐸
.

The cloud storage server shares the encrypted BTree wild
card fuzzy searchable index 𝐵𝑆𝐼

𝐸
to the classifier search

server. The data user requests the multiple search keywords
which are encrypted using the private secret key to create
multikeyword trapdoor 𝑀𝐾𝑇

𝑊
which is sent to the cloud

storage server. The server sends the request 𝑀𝐾𝑇
𝑊

to the
classifier search server. The universal keyword classifier
receives the request 𝑀𝐾𝑇

𝑊
to check whether the request

is coming for the first time. If the request is arriving for the
first time; then the keyword classifier captures and stores the

path of the 𝑀𝐾𝑇
𝑊

by searching over the encrypted BTree
wild card fuzzy searchable index 𝐵𝑆𝐼

𝐸
and sends the search

path to the cloud storage server. If the request given by the
user matches a previous request then it is a repeated multiple
keyword. Then the classifier search server extracts the stored
search path patterns of the repeated multikeyword from the
universal keyword classifier and the search path is sent to the
cloud storage server. After receiving the search path pattern
of the multiple keywords from the classifier search server,
the cloud storage server extracts the set of encrypted files
from 𝐷𝐹 and is sent to the data users. After receiving the
encrypted files, the data user decrypts the files using private
secret key.

3.2. Design Goals. To effectively optimize the searching time
for the multiple keywords in the cloud storage server and
for tolerating the typos and representation inconsistencies of
authorized users, our searching method seeks to achieve the
following design goals.

Search efficiency goals are
(i) to construct the universal keyword classifier for

BTree wild card fuzzy searchable index for optimizing
search time and for tolerating typos and representa-
tion inconsistencies of authorized users.

Security goals are
(i) to avoid the cloud storage server from getting the

knowledge of data files and keyword set. This is

4 The Scientific World Journal

achieved by outsourcing the encrypted files and index
to the cloud storage server.

Privacy goals are

(i) to provide user privacy by abstracting the details of
data files, keyword, and index to the cloud storage
server;

(ii) to support data privacy by encrypting the files and
index with user public key before outsourcing to the
cloud storage server;

(iii) to attain keyword privacy by forming BTree wild card
fuzzy searchable index from the fuzzy multikeyword
set for the predefined set of multiple keywords;

(iv) to achieve query privacy by sending k-gram keyword
trapdoor encrypted with the private secret key;

(v) to accomplish index privacy by creating encrypted
BTree wild card fuzzy searchable index.

4. Asymmetric Classifier Multikeyword Fuzzy
Search (ACMFS)

4.1. Notations and Preliminaries. They are as follows.

(i) PSK: private secret key;
(ii) edit: edit distance;
(iii) DF = {DF1,DF2, . . . ,DFK}: set of 𝐾 encrypted data

files𝐷𝐹;
(iv) PUBKEY: user public key;
(v) OPKPUB: owner public key;
(vi) PRIVKEY: user private key;
(vii) MKW = {(mk11,mk12, . . . ,mk1n), (mk21,mk22, . . . ,

mk2n), . . . ,(mkk1,mkk2, . . . ,mkkn)}: predefinedmul-
tiple keywords set of DF;

(viii) FMKS = {(fmk11[], fmk12[], . . . , fmk1n[]), . . . ,
(fmkk1[],fmkk2[], . . ., fmkkn[])}: fuzzymultikeyword
set;

(ix) BSIWC: BTree wild card fuzzy searchable index;
(x) BSIE: encrypted BTree wild card fuzzy searchable

index of 𝐵𝑆𝐼
𝑊𝐶

;
(xi) SPP: search path pattern of multiple keywords;
(xii) MKTW: encrypted multikeyword trapdoor search

request;
(xiii) MFILEENC: set of encrypted multiple files matching

search request;
(xiv) MFILE[]: decrypted multiple files of MFILEENC;
(xv) MSR: multikeyword search request.

4.2. Searchable Encryption. Searchable encryption [13] is a
cryptographic technique where the data users search the
encrypted searchable index by the following steps.

(i) The encrypted tokens in the searchable index have
the pointers to encrypted files. Token symbols are the
encrypted keyword.

(ii) If the requested token found amatch in the searchable
index, then it extracts the file pointer without decryp-
tion.

(iii) If the token is not found in the searchable index, then
it returns the null file pointer.

The two types of searchable encryption are symmetric and
asymmetric (public key based) searchable encryption [14, 15].
In Symmetric Searchable Encryption, the data owner who
outsources the encrypted index and data and the server that
searches the data share the same secret keys.The efficiency of
SSE is high since it uses symmetric cryptographic methods
such as block ciphers, pseudorandom functions, and hash
functions.The disadvantage of SSE is that the server has high
probability to learn about the owner data and keywords. In
Asymmetric Searchable Encryption [16, 17], the data owner
outsources the index that is encrypted by the user’s public
key.The keyword trapdoor is created by the user’s private key.
So only the authorized users can request the search from the
server. The advantage of ASE is that it supports conjunctive
or disjunctive keywords searches. The disadvantage of SSE is
that it suffers from KGA.

4.3. Edit Distance. Edit distance is the method of quantifying
the similarity of the two strings. The edit distance (𝑆

1
, 𝑆
2
)

between two strings 𝑆
1
and 𝑆

2
is the smallest number of

operations necessary to change one string to another. The
three primitive operations are as follows:

(i) insertion: inserting one character into the string;
(ii) deletion: deleting one character from the string;
(iii) substitution: changing one character to another in the

string.

The edit distance of the two strings in our system is analysed
by dynamic programming. By dynamic programming strat-
egy, the edit distance ed(𝑥, 𝑦) of any two strings “𝑥” and “𝑦”
is defined as follows and refer to Algorithm 1.

Assume the strings are 𝑥[0, 1, . . . , 𝑖−1] and 𝑦[0, 1, . . . ,
𝑗 − 1].
If 𝑥, 𝑦 = 0, then ed(𝑥, 𝑦) = 0.
If 𝑦 = 0, then ed(𝑥, 0) = 𝑖.
If 𝑥 = 0, then ed(0, 𝑦) = 𝑗.
If 𝑥 ̸= 𝑦, then ed(𝑥, 𝑦) = min{ed(𝑖 − 1, 𝑗) + 1, ed(𝑖, 𝑗 −
1) + 1, ed(𝑖 − 1, 𝑗 − 1) + diff(𝑥[𝑖 − 1], 𝑦[𝑗 − 1])}.
Note that if 𝑥 = 𝑦 then diff(𝑥, 𝑦) = 0 else diff(𝑥, 𝑦) =
1.

Examples for ed(𝑆
1
, 𝑆
2
) = 1 are as follows:

insertion: 𝑆
1
= “SAMI” and 𝑆

2
= “SAMIY”;

deletion: 𝑆
1
= “SAMI” and 𝑆

2
= “SAM”;

substitution: 𝑆
1
= “SAMI” and 𝑆

2
= “SAME”.

The Scientific World Journal 5

Input: Two strings 𝑥, 𝑦 where 𝑥 = 𝑥[0, . . . , 𝑖 − 1], 𝑦 = 𝑦[0, . . . , 𝑗 − 1]
Output: Minimum edit distance
(1) Declare the integer variables length1, length2, ed[][], 𝑖, 𝑗;
(2) Declare the character variables char1, char2;
(3) Declare the integer variables substitution, insertion, deletion, minimum;
(4) length1 = size of 𝑥;
(5) length2 = size of 𝑦;
(6) ed[][]= new int[length1 + 1][length2 + 1];
(7) for (𝑖 = 0 to length1)
(8) ed[𝑖][0] = 𝑖;
(9) end for // loop 𝑖
(10) for (𝑗 = 0 to length2)
(11) ed[0][𝑗] = 𝑗;
(12) end for // loop 𝑗
(13) for (𝑖 = 0 to length1)
(14) char1 = 𝑥.charAt(𝑖);
(15) for (𝑗 = 0 to length2)
(16) char2 = 𝑦.charAt(𝑗);
(17) if (char1 = = char2) then
(18) ed[𝑖 + 1][𝑗 + 1] = ed[𝑖][𝑗];
(19) else
(20) {

(21) substitution = ed[𝑖][𝑗] + 1;
(22) insertion = ed[𝑖][𝑗 + 1] + 1;
(23) deletion = ed[𝑖 + 1][𝑗] + 1;
(24) minimum = (substitution > insertion ? insertion: substitution);
(25) minimum = (deletion >minimum ? minimum: deletion);
(26) ed[𝑖 + 1][𝑗 + 1] = minimum;
(27) }

(28) end if;
(29) end for // loop 𝑗
(30) end for // loop 𝑖
(31) return ed[length1, length2]

Algorithm 1: EditDistance(𝑥[0, . . . , 𝑖 − 1], 𝑦[0, . . . , 𝑗 − 1]).

Input: Search keyword key
Output: OUTFILE

𝑤
matching the keyword 𝑤

(1) if key = FKS
𝑖
then

(2) return OUTFILE
𝑖

(3) else if edit(key, FuzzyKS
𝑖
) ≤ edit) // edit is the user defined edit distance value

(4) return OUTFILE
𝑖

(5) else
(6) print “File Not Found”
(7) end if
(8) return OUTFILE

𝑤

Algorithm 2: Fuzzy(key, FuzzyKSed=1).

4.4. Fuzzy Keyword Set. Since different users have various
typing behaviors, they may misspell the keywords. So the
fuzzy keyword set is formed to effectively utilize the data.
Fuzzy keyword set can be created by wild card based
technique, k-gram based technique, and symbol tree based
technique. For example, fuzzy keyword set for “W = HEN”
with edit distance = 1 is as follows:

FKSed=1 = {(A ⋅ ⋅ ⋅Z)HEN,H(A ⋅ ⋅ ⋅Z)EN,HE(A ⋅ ⋅ ⋅Z)N,
HEN(A ⋅ ⋅ ⋅Z),EN,HN,HE, (A ⋅ ⋅ ⋅Z)EN,H(A ⋅ ⋅ ⋅Z)N,
HE(A ⋅ ⋅ ⋅Z),HEN}.

Total number of keywords = 186.

4.5. Fuzzy Keyword Search. For the set of 𝑀 data files
𝐷 = {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑀
} with the predefined set of 𝐾𝑊 =

{𝑘𝑤
1
, 𝑘𝑤
2
, . . . , 𝐾𝑤

𝑛
}, the fuzzy keyword search fuzzy (w,

FKSed=1) is as shown in Algorithm 2.

4.6. Wild Card Based Technique. Wild card based technique
is used to create storage efficient wild card based fuzzy
keyword set. We use the wild card “#” character to represent
the positions of three edit distance operations such as inser-
tion, deletion, and substitution thereby creating tiny fuzzy
keyword set. For example, the wild card based fuzzy keyword

6 The Scientific World Journal

set for w = “HEN” with edit distance ed = 1 is FKSHEN,1 as
follows:

FKSHEN,1 = {#HEN,H#EN,HE#N,HEN#,EN,HN,
HE, #EN,H#N,HE#,HEN}.

Total number of keywords = 11.
The length of fuzzy keyword set isL = ((2n+1)∗26)+n+1.

The length of wild card based fuzzy keyword set is L = (2n +
1) + n + 1.

4.7. K-Gram Based Technique. K-gram based technique is
used to create k-gram based fuzzy keyword set for the
predefined gramvalue k.Thekeywords of k-grambased fuzzy
keyword set is the subset of keyword set. For example, the k-
grambased fuzzy keyword set forw= “HEN”with gramvalue
k = 1 is FKSK=1 as follows:

FKSK=1 = {KY, SY,KY}.

Total number of keywords = 3.

4.8. Assumptions of ADKEFS. Before we start our framework
design, we have the following assumptions on our proposed
scheme Asymmetric Classifier Multikeyword Fuzzy Search
ACMFS.

(i) We assume that the cloud storage server concentrates
on servicing more customers and not to leave part-
nership of their customers from the business.

(ii) Here we assume that the authorization is suitably
done between the data owner and data users.

(iii) Data owner creates users private and public key pair.
(iv) We assume the wild card based fuzzy multikeyword

set FMKS of multikeyword set MKW contains the
original keyword as the first component.

(v) We assume that each file has multiple keywords and it
is possible for a keyword to be the same for multiple
files.

5. Implementation of Asymmetric Classifier
Multikeyword Fuzzy Search (ACMFS)

Here we discuss our proposed scheme in detail with algo-
rithm for all the functions involved.

5.1. FunctionDefinitions of ADKEFS. The following functions
are implemented to optimize the searching on the cloud
storage server and to achieve the effective data utilization.

Functions on data owner are

(i) CreateKeyPairsForUser(SECRET
1
, SECRET

2
),

(ii) EncryptMultiKeywordDataFile(𝑃𝑈𝐵
𝐾𝐸𝑌
[]),

(iii) CreateWildCardFuzzyMultiKeywordSet(MKW[][],
edit),

(iv) CreateBTreeWildcardFuzzySearchableIndex(FMKS
[][][]),

(v) EncryptBTreeWildcardFuzzySearchableIndex
(BSIWC, PUBKEY[]).

Functions on cloud storage server are

(i) ExtractMultipleFileUsingPattern(SPP[]).

Functions on classifier search server are

(i) SearchBTreeWildCardFuzzySearchableIndex(BSIE,
MKT
𝑊
[][]).

Functions on data user are

(i) ViewDecryptedMultiKeywordFile(𝑃𝑅𝐼𝑉
𝐾𝐸𝑌
[],

MFILEENC).

5.2. Overall Framework of Asymmetric Classifier Multikey-
word Fuzzy Search (ACMFS). Our proposed method Asym-
metric Classifier Multikeyword Fuzzy Search has classifier
search server that creates the search path pattern for all
the keywords of the encrypted set of 𝐾 data files. Data
owner creates encrypted BTree wild card fuzzy searchable
index for the fuzzy multikeyword set and is outsourced to
the cloud storage server. This overcomes the problem of
typos and representation inconsistencies behaviour of the
data users.The overall conceptual description of Asymmetric
Classifier Multikeyword Fuzzy Search is shown in Figure 2
as an activity diagram. Please refer to Algorithm 3 for the
pseudo-code.

5.3. Key Generation Algorithm. Here we use RSA public
key algorithm for generating public and private key. Here
this takes two secret keys SECRET

1
and SECRET

2
which

is predefined by the data owner where both secret keys
SECRET

1
, SECRET

2
= {0, 1}∗. Algorithm 4 is executed by

the data owner to generate public and private key pair. Data
owner sends the user private key as private secret key which
is used by the data users to create keyword trapdoor and for
decrypting the file.

5.4. File Encryption Algorithm. Data owner executes
Algorithm 5 to form encrypted set of 𝐾 data files 𝐷𝐹 =
{𝐷𝐹
1
, 𝐷𝐹
2
, . . . , 𝐷𝐹

𝐾
} that are encrypted with user’s public

key PUBKEY and are outsourced to the cloud storage server.

5.5. File Decryption Algorithm. After receiving the search
path pattern of the multiple keywords from the classifier
search server, the cloud storage server extracts the set of
encrypted files from DF and is sent to the data users. After
receiving the encrypted files, the data user decrypts the files
using private secret key by executing Algorithm 6.

The Scientific World Journal 7

Data owner Data users Cloud storage server Classifier search server

Create multiple
keywords for all files

Find edit distance by
dynamic programming

Generate public and
private key pair

Create wild card based
multikeyword set

Create BTree wild
card searchable index

Encrypt the files with
user public key

Encrypt BTree wild
card searchable index
with user public key

Receive the encrypted
files, BTree index

Send encrypted BTree
index to classifier

search server
Query the multikeyword

search request

Encrypt multikeyword
search request with
private secret key

Receive the user private
secret key from owner

Send the encrypted
multikeyword trapdoor
to cloud storage server Send the encrypted

multikeyword trapdoor to
classifier search server

Receive encrypted
BTree searchable index

A

(a)

Figure 2: Continued.

8 The Scientific World Journal

Data owner Data users Classifier search server

Decrypting the files with
private secret key

Receiving the matching
encrypted set of files

Receiving the encrypted
multikeyword trapdoor to

classifier search server

Storing the search path
pattern of that keyword

AA

Evaluating if the multikeyword
request matches the

existing keyword in the
stored search path pattern

[New keyword]

Searching encrypted
BTree searchable index

Sending the search path of
the multikeyword request

Cloud storage server

[Existing keyword]

Searching the stored
search path pattern

Sending the search path of
the multikeyword request

Receiving the
search path

pattern

Extracting the set of
matching

encrypted files

Sending the set of
matching

encrypted files

(b)

Figure 2: Activity diagram for Asymmetric Classifier Multikeyword Fuzzy Search.

5.6. Wild Card Based Fuzzy Multikeyword Set Algorithm.
Data owner has MKW = {(mk11,mk12, . . . ,mk1n), (mk21,
mk22, . . . ,mk2n), . . . , (mkn1,mkn2, . . . ,mkkn)} a set of
multiple keywords of 𝐾 data files. Data owner creates
storage efficient fuzzy multikeyword set FMKS = {(fmk11[],
fmk12[], . . . , fmk1n[]), (fmk21[], fmk22[], . . . , fmk2n[]),
. . . , (fmkk1[], fmkk2[], . . . , fmkkn[])} using wild card based

technique with the predefined edit distance value. Data
owner executes Algorithm 7 to form fuzzy multikeyword
Set.

5.7. BTree Wild Card Fuzzy Searchable Index Algorithm.
Data owner creates BTree wild card fuzzy searchable index
BSIWC from fuzzy multikeyword set. Data owner executes

The Scientific World Journal 9

/∗ Variables Initialization ∗/
(1) Initialize Secret Keys SECRET1 and SECRET2
(2) Predefine the edit distance “edit” value for Wildcard based Fuzzy Mulikeyword Set Creation
(3) Predefine Multiple Keywords for a single file and a keyword can be shared by multiple files.

/∗ KeyGeneration ∗/
(4) DataOwner Creates User Public key and User Private Key pairs
(5) Call CreateKeyPairsForUser(SECRET1, SECRET2)
// User Public key and User Private Key

(6) Receive (PUBKEY[],PRIVKEY[])
(7) Encrypt the Kdata files using PUBKEY[] User’s Public key asDF = {DF1,DF2, . . .,DFK}
(8) Call EncryptMultiKeywordDataFile(PUBKEY[])
(9) Receive the Encrypted fileDF[] = {DF1,DF2, . . .,DFK}
(10) Send the Encrypted fileDF[] = {DF1,DF2, . . .,DFK} to the Cloud storage server
(11) Send the User’s Private Key as Private Secret Key to the data users
(12) Data owner creates Wildcard basedFuzzy Multikeyword set forMKW[][]
(13) Call CreateWildCardFuzzyMultiKeywordSet(MKW[][],edit)
(14) Receive FMKS = {(fmk11[], fmk12[], . . . , fmk1n[]), . . . , (fmkn1[], fmkn2[], . . . , fmkkn[])}
(15) Data ownerCreates B Ttree Wildcard searchable index BSIWC for FMKS
(16) call CreateBTreeWildcardFuzzySearchableIndex(FMKS[][][])
(17) Receive B Ttree Wildcard searchable index BSIE
(18) Encrypts the B+ tree wildcard searchable index BIWC
(19) call EncryptBTreeWildcardFuzzySearchableIndex(BSIWC,PUBKEY[])
(20) Receive Encrypted BTree wildcard searchable index BSIE
(21) Send the Encrypted BTree wildcard searchable index BSIE to the cloud storage server
(22) Cloud Storage server shares the BTree wildcard searchable index BSIE to the Classifier Search Server
(23) Data User request Multikeyword search requestMSR, and is encrypted using Private Secret Key to

create MultiKeyword TrapdoorMKTW
(24) MultiKeyword TrapdoorMKTW is sent to the cloud storage server
(25) Cloud Storage server send theMKTW to the Classifier Search Server
(26) Classifier Search Server searches BTree wildcard searchable index BSIE
(27) If the KeywordMKTW is the new keyword then
(28) call SearchBTreeWildCardFuzzySearchableIndex(BSIE,MKTW[][])
(29) Keyword Classifier learn and Store the Search path pattern ofMKTW
(30) Receive the Search path pattern of that keywordMKTW
(31) Send the Search path pattern of that keywordMKTW to the cloud storage server
(32) else ifMKTW is already present in the Keyword Classifier then
(33) Classifier Search Server send the stored Search path pattern ofMKTW to cloud storage server
(34) End if
(35) Cloud Storage Server receives the Search path pattern ofMKTW
(36) Cloud Storage Server extractsMFILEENC the encrypted multiple files ofMKTW
(37) Call ExtractMultipleFileUsingPattern(SPP[])
(38) Receive the set of Matching Encrypted filesMFILEENC
(39)MFILEENC is sent to theData user
(40) Data User receives theMFILEENC and decrypt the file using Private Secret Key PSK
(41) call ViewDecryptedMultiKeywordFile(PRIVKEY[],MFILEENC)
(42) Receive the Superset of matching Decrypted file Decrypted FileMFILE[]
(43) Now the user can view the file needed and large number of files viewed by the user

represents the effective data utilization.

Algorithm 3: ACMFS() (Asymmetric Classifier Multikeyword Fuzzy Search).

Algorithm 8 in Appendix to create BTree wild card fuzzy
searchable index BSIWC for the wild card based fuzzy
keyword set FKS.

5.8. Encrypting BTree Fuzzy Searchable Index Algorithm.
Data owner encrypts the BTree wild card fuzzy searchable
index BSIWC using user public key and is outsourced
to the cloud storage by executing Algorithm 9 to
create encrypted BTree wild card fuzzy searchable

index BSIE and is outsourced to the cloud storage
server.

5.9. Searching Encrypted BTree Fuzzy Searchable Index Algo-
rithm. The data user encrypts the multiple search keywords
using the private secret key to create multikeyword trapdoor
MKTW to the cloud storage server. The server sends the
request MKTW to the classifier search server. The universal
keyword classifier receives the request MKTW to check

10 The Scientific World Journal

Input: Two Secret keys SECRET
1
, SECRET

2
// Predefined SECRET

1
, SECRET

2
= {0, 1}∗

Output: User Public and Private key pair PUBKEY[],PRIVKEY[]
(1) Declare the integer variables S1, S2, S3, S4, private, public and key
(2) Assign S1 = SECRET

1
, S2 = SECRET

2

(3) Find key = S1 ∗ S2
(4) Compute S3 = (S1 − 1) ∗ (S2 − 1), S4 = S3 − (S1 + S2 − 1)
(5) Pick random integer “public”.Check gcd(public, S4) = 1

// gcd is Greatest Common Denominator
(6) Compute private = e−1 mod S4
(7) PUBKEY[]= {key, public} // Public key pair
(8) PRIVKEY[] = {key, public} // Private key pair
(9) return (PUBKEY[],PRIVKEY[])

Algorithm 4: CreateKeyPairsForUser(SECRET
1
, SECRET

2
) // Key Generation Algorithm.

Input: PUBKEY[]User Public key
Output: Encrypted File DF[]
(1) Declare integer variables key and public, 𝑖
(2) Assign key = PUBKEY[1], public = PUBKEY[2]
(3) For 𝑖 = 1 to 𝑘//𝐾 Data files
(4) Encrypt the file by computing DF[𝑖] = Filespublic mod key
(5) end for // 𝑖 loop
(6) return Encrypted file DF[] // Encrypted set of𝐾 data files𝐷𝐹 = {𝐷𝐹

1
, 𝐷𝐹
2
, . . . , 𝐷𝐹

𝐾
}

Algorithm 5: EncryptMultiKeywordDataFile(𝑃𝑈𝐵
𝐾𝐸𝑌
[])//File Encryption Algorithm.

Table 1: Analysis of time taken for creating thewild card based fuzzy
multikeyword set.

Number of
users

Number of
files

Time taken for creating wild card
based fuzzy multikeyword set (ms)

10 300 420
12 350 450
14 400 453
16 450 530
18 500 650
20 550 655
22 600 710
24 650 730
26 700 810
28 750 980
30 800 1173

whether the request is coming for the first time. If the request
is arriving for the first time, then the keyword classifier
captures and stores the path of the MKTW by searching over
the encrypted BTree wild card fuzzy searchable index BSIE
by executing Algorithm 10 and sends the search path to the
cloud storage server. If the request given by the user matches
a previous request stored then it is a repeated multiple
keyword. Then the classifier search server extracts the stored
search path patterns of the repeated multikeyword from the

universal keyword classifier and the search path is sent to the
cloud storage server.

6. Implementation Results

6.1. Implementation Setup. The implementation of the
proposed work was accomplished through Asymmetric
Classifier Multikeyword Fuzzy Search (ACMFS) cloud
data utilization service architecture using Jelastic PaaS
LayerShift cloud storage provider which offers infrastructure,
platform, and application as a service for the customers. The
experimentation was carried out with the code programmed
in JAVA for data owner, users, classifier search server, and
cloud storage server. Microsoft SQL MYSQL 5.5.42 was
enabled to act as the database for the proposed system. The
simulation was performed with the setup of data owner,
data users from our side, and classifier search server, cloud
storage server on the Jelastic cloud storage. The data owner
authenticates 100 users and defines the multikeyword set for
each data files. Prior to evaluating the results, the data owner
outsourced 1000 encrypted files to the Jelastic cloud storage.
The data owner creates the wild card fuzzy multikeyword set
FMKS for edit distance 1, 2 and BTree fuzzy searchable index
BSIWC. The data owner outsources the encrypted BSIWC and
1000 encrypted files to Jelastic cloud storage server.The cloud
storage now contains the encrypted 1000 files and encrypted
BSIWC. With this simulated setup, the authorized users are
allowed to access the files in the cloud storage using their
individual identity. The users are now allowed to access the

The Scientific World Journal 11

Input: PRIVKEY[] Private Secret key,MFILEENC - Encrypted files
Output: Decrypted FileMFile[]
(1) Assign PSK[1] = PRIVKEY[1]
(2) Assign PSK[2] = PRIVKEY[2]

// PSK − Private Secret Key
(3) For 𝑖 = 1 to 𝐾

// 𝐾 Data files
(4) MFILE[𝑖] =MFILEENC

PSK[2] mod PSK[1]
// Decrypting the file

(5) end for // 𝑖 loop
(6) return Decrypted file MFILE[]

Algorithm 6: ViewDecryptedMultiKeywordFile(𝑃𝑅𝐼𝑉
𝐾𝐸𝑌

[], MFILEENC) // File Decryption Algorithm.

Input: Multikeyword set MKW ={(𝑚𝑘
11
, 𝑚𝑘
12
, . . . , 𝑚𝑘

1𝑛
), (𝑚𝑘

21
, 𝑚𝑘
22
, . . . , 𝑚𝑘

2𝑛
), . . . , (𝑚𝑘

𝑛1
, 𝑚𝑘
𝑛2
, . . . , 𝑚𝑘

𝑛𝑛
)}

edit – Edit Distance
Output: FMKS={(𝑓𝑚𝑘

11
[], 𝑓𝑚𝑘

12
[], . . . , 𝑓𝑚𝑘

1𝑛
[]), (𝑓𝑚𝑘

21
[], 𝑓𝑚𝑘

22
[], . . . , 𝑓𝑚𝑘

2𝑛
[]), . . . , (𝑓𝑚𝑘

𝑘1
[], 𝑓𝑚𝑘

𝑘2
[], . . . , 𝑓𝑚𝑘

𝑘𝑛
[])}

(1) Declare integer variable 𝑖1, 𝑝1, 𝑞1, edit
(2) Char ∗MultiKeywordFuzzy; Initialize FMKS[][] to be empty;
(3) if edit > 1 then
(4) call CreateWildCardFuzzyMultiKeywordSet(MKW[][],ed-1)
(5) end if
(6) if edit = 0 then
(7) FMKS = MKW
(8) else
(9) For 𝑖1 = 1 to length(MKW) do
(10) For 𝑝1 = 1 to length(FMKS[𝑖][edit-1]) do
(11) For 𝑞1 = 1 to 2 ∗ length(FMKS[𝑖][edit-1][𝑝1]) + 1 do
(12) if 𝑞1 is odd value then
(13) MultiKeywordFuzzy = FMKS[𝑖][edit-1[𝑝1]]
(14) Insert “#” at (𝑞1 + 1/2) position
(15) else
(16) Assign MultiKeywordFuzzy = length(Mkw[𝑝1])
(17) Insert “#” at (𝑞1/2) position
(18) end if
(19) if MultiKeywordFuzzy is not in FMKS[𝑖1][edit-1] then
(20) Include MultiKeywordFuzzy in FMKS[𝑖1][edit]
(21) end if
(22) end for // 𝑞1 loop
(23) end for // 𝑝1 loop
(24) end for // 𝑖1 loop
(25) end if
(26) return FMKS[][][] // Fuzzy MultiKeyword Set

Algorithm 7: CreateWildCardFuzzyMultiKeywordSet(MKW[][],edit).

files in the cloud storage by entering the multiple keyword
search request.

6.2. Performance Analysis. The performance of the proposed
method was evaluated taking into account the search time
efficiency and data utilization from the Jelastic cloud storage
by giving the multiple keyword search request from the
data users with classifier search server. The experimental
results obtained by ACMFS cloud data utilization system
architecture are shown in Tables 1–5 and Figures 3–7. Table 1
shows the analysis of time taken for creating the wild card

based fuzzy multikeyword set with different number of users
and files and its analysis chart is shown in Figure 3. Here data
owner predefines five keywords for each file.

Table 2 shows the analysis of data utilization efficiency
for correct keyword in terms of number of files retrieved
from the cloud storage and its analysis chart is shown in
Figure 4.

Table 3 shows the analysis of data utilization efficiency
for misspelled keyword in terms of number of files retrieved
from the cloud storage and its analysis chart is shown in
Figure 5.

12 The Scientific World Journal

Input: FMKS = {(𝑓𝑚𝑘
11
[], 𝑓𝑚𝑘

12
[], . . . , 𝑓𝑚𝑘

1𝑛
[]), (𝑓𝑚𝑘

21
[], 𝑓𝑚𝑘

22
[], . . . , 𝑓𝑚𝑘

2𝑛
[]), . . . , (𝑓𝑚𝑘

𝑘1
[], 𝑓𝑚𝑘

𝑘2
[], . . . , 𝑓𝑚𝑘

𝑘𝑛
[])}

WildCard Fuzzy Multikeyword Set
Output: BSIWC: BTree Wildcard Fuzzy Searchable Index
(1) Start AddNodeBTree
(2) Declare the ChildLimit, NumberofChild, ChildrenValue inside the class BTreeNode
(3) Declare TreeHeight to denote height of the BTree, 𝑖, 𝑗;
(4) Declare the objects KeyNumber, KeyIndex, NodeValue, NextNode, RootNode for AddNode
(5) Declare KeyIndexNumber that denote the number of keyIndex and Nodevalue pairs in B Tree
(6) Declare the object ChildrenNodeValue for the class AddNode
(7) Define Constructor AddNode(KeyIndex, NodeValue, NextNode)
(8) this.KeyIndex = KeyIndex;
(9) this.NodeValue = NodeValue;
(10) this.NextNode =NextNode;
(11) End ConstrutorAddNode
(12) Initialize RootNode = new Node(0)
(13) for 𝑖 = 1 to Number of keywords in FMKS[𝑖] do
(14) for 𝑗 = 1 to Number of Fuzzy Keywords in FMKS[𝑖][𝑗]
(15) call InsertNodeIntoBTree(RootNode, FMKS[𝑖], FMKS[𝑖][𝑗], TreeHeight)
(16) Receive BTreeNode;
(17) KeyIndexnumber = KeyIndexnumber + 1;
(18) if (BTreeNode == NULL) then
(19) return NULL;
(20) end if
(21) Create two AddNode object as ChildNode
(22) ChildNode.childrenNodeValue [0] = new AddNode(RootNode.childrenNodeValue[0].KeyIndex,

Null, RootNode);
(23) ChildNode. childrenNodeValue [1] = new AddNode(u. childrenNodeValue[0].KeyIndex, null,

BTreeNode);
(24) RootNode = ChildNode;
(25) TreeHeight = TreeHeight + 1;
(26) End AddNodeBTree
(27) Function AddNodeInsertNodeIntoBTree (RootNode, WFKS, WFKS, TreeHeight)
(28) Declare the variable 𝑖, 𝑗, 𝑘, 𝑚, 𝑛 for processing loop
(29) for 𝑖 = 1 to Number of keywords in FMKS[𝑖] do
(30) for 𝑗 = 1 to Number of Fuzzy Keywords in FMKS[𝑖][𝑗]
(31) AddNodeCurrentNode = new AddNode(FMKS[𝑖], FMKS[𝑖][𝑗], TreeHeight);
(32) if (TreeHeight == 0) then
(33) For 𝑘 = 0 to RootNode. NumberofChild do
(34) if (WFKS[𝑖] <RootNode. childrenNodeValue [𝑘].FMKS[𝑖])

then
(35) break;
(36) end if
(37) end for // 𝑘 loop
(38) else
(39) for𝑚 = 0 to RootNode. NumberofChild do
(40) if ((𝑚 + 1 == RootNode. NumberofChild) || FMKS[𝑖] <RootNode.

childrenNodeValue [𝑚 + 1].FMKS[𝑖]) then
(41) AddNodeNewNode = InsertNodeIntoBTree (RootNode. childrenNodeValue[𝑚++].NextNode,

FMKS[𝑖], FMKS[𝑖][𝑗], TreeHeight -1);
(42) if (NewNode == NULL) then
(43) return null;
(44) end if
(45) CurrentNode. FMKS[𝑖] =NewNode.childrenNodeValue[0]. FMKS[𝑖];
(46) CurrentNode.NextNode = NewNode;
(47) break;
(48) end if
(49) end for //𝑚 loop
(50) for 𝑛 = 0 to RootNode. NumberofChild do
(51) RootNode. childrenNodeValue [𝑛] = RootNode. childrenNodeValue[𝑛 − 1];
(52) RootNode. childrenNodeValue [𝑗] = CurrentNode;

Algorithm 8: Continued.

The Scientific World Journal 13

(53) RootNode. NumberofChild = RootNode. NumberofChild + 1;
(54) if (RootNode. NumberofChild < ChildLimit) then return null;
(55) else return SplitNodeInBTree(RootNode);
(56) end if
(57) end for // 𝑛 loop
(58) end for // 𝑗 loop
(59) end for // 𝑖 loop
(60) End Function AddNodeInsertNodeIntoBTree
(61) Function SplitNodeInBTree(RootNode)
(62) Declare the variable 𝑖 for processing loop
(63) AddNodeSplitNode = new AddNode (ChildLimit/2);
(64) RootNode. NumberofChild = ChildLimit/2;
(65) for 𝑖 = 0 to ChildLimit/2 do
(66) SplitNode. childrenNodeValue [𝑖] = RootNode. childrenNodeValue[childLimit/2 + 𝑖];
(67) return SplitNode;
(68) end for // 𝑖 loop
(69) End Function SplitNodeInBTree

Algorithm 8: CreateBTreeWildCardFuzzySearchableIndex(FMKS[][][]).

Input: B+ tree fuzzy searchable index BSIWC
PUBKEY[] - user’s public key

Output: Encrypted BTree WildCard Fuzzy searchable Index BSI
𝐸

(1) Declare integer variables key1 and public1
(2) Assign key1 = PUBKEY[1]
(3) Assign public1 = PUBKEY[2]
(4) Find the number of elements “Enum” in BSIWC
(5) For 𝑖 = 1 to Enum do

/∗ Encrypt the fuzzy keyword present in each node ∗/
(6) BSI

𝐸
= BSIWC[𝑖]

public1 mod key1
(7) end for // 𝑖 loop
(8) return Encrypted BSI

𝐸

// Encrypted BTreeWildCard Fuzzy searchable Index

Algorithm 9: EncryptBTreeWildcardFuzzySearchableIndex(BSIWC, PUBKEY[]).

Input: BSIE – Encrypted BTree Wildcard Fuzzy Searchable Index
MKTW[]–Encrypted MultiKeyword Trapdoor

Output: Set of Matched Encrypted Files
(1) Declare the variable 𝑖, 𝑘 for processing loop
(2) Find the height of the B Tree index BSI

𝐸
and assign it to TreeHeight

(3) AddNode childrenNodeValue = BSI
𝐸
. childrenNodeValue;

(4) if (TreeHeight == 0) then
(5) for 𝑖 = 0 to NumberofChild do
(6) if (MKT

𝑊
[𝑖] = = childrenNodeValue [𝑖]. MKT

𝑊
[𝑖]) then

(7) return (NodeValue) childrenNodeValue [𝑖].NodeValue;
(8) end if
(9) end for // 𝑖 loop
(10) else
(11) for 𝑘 = 0 to BSI

𝐸
.NumberofChild do

(12) if ((𝑘 + 1 = = BSI
𝐸
. NumberofChild)||(MKT

𝑊
[𝑖] < childrenNodeValue [𝑘 + 1].KeyIndex)) then

(13) return SearchBTreeWildCardFuzzyIndex (childrenNodeValue[𝑘].NextNode,
MKT

𝑊
[𝑘], TreeHeight − 1);

(14) end if
(15) end for // 𝑘 loop
(16) return NULL
(17) end if
(18) End SearchBTreeWildCardFuzzyIndex

Algorithm 10: SearchBTreeWildCardFuzzySearchableIndex(BSIE, MKT
𝑊
[][]).

14 The Scientific World Journal

300

400

500

600

700

800

900

1000

1100

1200

250 300 350 400 450 500 550 600 650 700 750 800 850

Ti
m

e t
ak

en
 fo

r c
re

at
in

g
w

ild
 ca

rd

ba
se

d
fu

zz
y

m
ul

tik
ey

w
or

d
se

t (
m

s)

Number of files

Time taken for creating wild card based fuzzy
multikeyword set (ms)

Figure 3: Time taken for creating wild card fuzzy multikeyword set
for ACMFS.

0
5

10
15
20
25
30
35
40
45
50
55
60

N
um

be
r o

f fi
le

s r
et

rie
ve

d

Sample of correct multikeyword search request
Number of files retrieved with edit = 1

Number of files retrieved with edit = 2

Cl
ou

d
co

m
pu

tin
g

D
at

a u
se

rs

In
te

r c
ol

le
ge

 m
ee

t

Ca
us

e o
f c

on
ce

rn

W
eb

 cr
im

e i
ss

ue
s

O
pe

n
ac

ce
ss

 jo
ur

na
l

Th
e s

et
 o

f fi
le

s

St
or

ag
e s

er
ve

r

Re
m

ot
e c

ar
 ac

ce
ss

W
rit

e m
od

e

Ta
x

be
ne

fit

Figure 4: Data utilization efficiency for correct keywords in
ACMFS.

Table 4 shows the analysis of search time efficiency for
correct multikeywords with and without classifier search
server for edit 1, 2 and its analysis chart is shown in Figure 6.

Table 5 shows the analysis of search time efficiency for
misspelled multikeywords with and without classifier search
server for edit 1, 2 and its analysis chart is shown in Figure 7.

7. Conclusion

ThisworkAsymmetric ClassifierMultikeyword Fuzzy Search
presented a method that can be successfully used to enhance

0
5

10
15
20
25
30
35
40
45
50
55
60

N
um

be
r o

f fi
le

s r
et

rie
ve

d

Sample of misspelled multikeyword search request
Number of files retrieved with edit = 1

Number of files retrieved with edit = 2

Cl
au

d
co

m
pu

te
ng

D
at

aa
 u

sa
rs

In
to

r c
ol

la
ge

 m
ea

t

Ca
as

e o
f c

on
ca

rn

W
ae

b
kr

im
e i

ss
ue

sh

O
pa

n
ac

ce
as

s j
oa

rn
al

Th
ee

 se
et

 o
f fi

lle
s

St
ar

ag
e s

er
vo

r

Re
m

oo
te

 ca
re

 m
od

ee

W
rit

e m
od

e

Ta
xe

 b
en

ee
fit

Figure 5: Data utilization efficiency for misspelled keywords in
ACMFS.

0
10
20
30
40
50
60
70
80
90

100
110

Ti
m

e t
ak

en
 to

 se
ar

ch
 (m

s)

Cl
ou

d
co

m
pu

tin
g

D
at

a u
se

rs

In
te

r c
ol

le
ge

 m
ee

t

Ca
us

e o
f c

on
ce

rn

W
eb

 cr
im

e i
ss

ue
s

O
pe

n
ac

ce
ss

 jo
ur

na
l

Th
e s

et
 o

f fi
le

s

St
or

ag
e s

er
ve

r

Re
m

ot
e c

ar
 ac

ce
ss

W
rit

e m
od

e

Ta
x

be
ne

fit

Search time with classifier search server for edit = 1

Search time with classifier search server for edit = 2

Search time without classifier search server for edit = 1

Search time without classifier search server for edit = 2

Sample of correct multikeyword search request

Figure 6: Search efficiency for correct keywords in ACMFS.

data utilization and improved search efficiency for public
cloud storage. Provided that the data owner stores the set
of encrypted files in cloud storage, we showed that the user
experience improved search time due to the presence of
classifier search server which searches the BTree wild card
fuzzy searchable index. The proposed system extracts the
wild card fuzzy multikeyword set for the multiple keyword

The Scientific World Journal 15

Table 2: Analysis of data utilization efficiency for correct keywords.

Number of
users

Number of
files

Sample of correct
multikeyword search request

Number of files retrieved
with edit = 1

Number of files retrieved
with edit = 2

10 300 Cloud computing 25 32
12 350 Data users 17 28
14 400 Inter college meet 19 26
16 450 Cause of concern 22 34
18 500 Web crime issues 12 17
20 550 Open access journal 29 43
22 600 The set of files 35 47
24 650 Storage server 11 19
26 700 Remote car access 45 52
28 750 Write mode 15 23
30 800 Tax benefit 8 18

Table 3: Analysis of data utilization efficiency for misspelled keywords.

Number of
users

Number of
files

Sample of misspelled
multikeyword search request

Number of files retrieved
with edit = 1

Number of files retrieved
with edit = 2

10 300 Claud computeng 29 35
12 350 Dataa usars 21 31
14 400 Intor collage meat 22 27
16 450 Caase of concarn 25 27
18 500 Waeb krime issuesh 14 19
20 550 Opan acceass joarnal 31 46
22 600 Thee seet of filles 38 49
24 650 Starage servor 13 23
26 700 Remoote care accesh 49 57
28 750 Writee modee 18 27
30 800 Taxe beneefit 13 24

Table 4: Analysis of search efficiency for correct keywords with and without classifier search server.

Number of
users

Number of
files

Sample of correct
multikeyword
search request

Search time
with classifier

search server for
edit = 1 (ms)

Search time
with classifier

search server for
edit = 2 (ms)

Search time
without classifier
search server for
edit = 1 (ms)

Search time
without classifier
search server for
edit = 2 (ms)

10 300 Cloud computing 10 7 15 43
12 350 Data users 11 7 16 24
14 400 Inter college meet 28 7 35 23
16 450 Cause of concern 13 2 16 20
18 500 Web crime issues 29 6 35 24
20 550 Open access journal 20 10 25 87
22 600 The set of files 25 6 30 29
24 650 Storage server 24 18 35 25
26 700 Remote car access 9 5 16 25
28 750 Write mode 11 6 16 22
30 800 Tax benefit 9 12 15 16

16 The Scientific World Journal

Table 5: Analysis of search efficiency for misspelled keywords with and without classifier search server.

Number of
users

Number of
files

Sample of misspelled
multikeyword search

request

Search time
with classifier

search server for
edit = 1

Search time
with classifier

search server for
edit = 2

Search time
without classifier
search server for

edit = 1

Search time
without classifier
search server for

edit = 2
10 300 Claud computeng 17 17 158 47
12 350 Dataa usars 28 13 98 32
14 400 Intor collage meat 9 29 39 32
16 450 Caase of concarn 21 29 50 16
18 500 Waeb krime issuesh 11 30 78 47
20 550 Opan acceass joarnal 25 31 34 46
22 600 Thee seet of filles 20 26 38 32
24 650 Starage servor 23 25 49 32
26 700 Remoote care accesh 13 15 20 31
28 750 Writee modee 11 10 28 47
30 800 Taxe beneefit 8 9 17 31

Ti
m

e t
ak

en
 to

 se
ar

ch
 (m

s)

Search time with classifier search server for edit = 1

Search time with classifier search server for edit = 2

Search time without classifier search server for edit = 1

Search time without classifier search server for edit = 2

Cl
au

d
co

m
pu

te
ng

D
at

aa
 u

sa
rs

In
to

r c
ol

la
ge

 m
ea

t

Ca
as

e o
f c

on
ca

rn

W
ae

b
kr

im
e i

ss
ue

sh

O
pa

n
ac

ce
as

s j
oa

rn
al

Th
ee

 se
et

 o
f fi

lle
s

St
ar

ag
e s

er
vo

r

Re
m

oo
te

 ca
re

 m
od

ee

W
rit

e m
od

e

Ta
xe

 b
en

ee
fit

−5
5

15
25
35
45
55
65
75
85
95

105
115
125
135
145
155
165

Sample of misspelled multikeyword search request

Figure 7: Search efficiency for misspelled keywords in ACMFS.

search request resulting in increased data utilization in terms
of number of files retrieved for the corresponding users.
The proposed system’s performance is demonstrated with the
advent of classifier search server which stores the pattern
of search and helps reducing the search time for repeated
multiple keyword search request. The classifier search server
concept adds a new paradigm to cloud storage server serving
several thousands of data owners and their users.

Appendix

See Algorithms 1 and 3–10.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. Geelan, “Twenty one experts define cloud computing,” Virtu-
alization, 2008, http://virtualization.sys-con.com/node/612375.

[2] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Proceedings of the Grid
Computing EnvironmentsWorkshop (GCE ’08), pp. 1–10, Austin,
Tex, USA, November 2009.

[3] http://searchsmbstorage.techtarget.com/feature/Understanding
-cloud-storage-services-A-guide-for-beginners.

[4] Q. Liu, G.Wang, and J.Wu, “Secure and privacy preserving key-
word searching for cloud storage services,” Journal of Network
and Computer Applications, vol. 35, no. 3, pp. 927–933, 2012.

[5] K. Ren, C. Wang, and Q. Wang, “Towards secure and effective
data utilization in public cloud,” IEEE Transactions on Network,
vol. 26, no. 6, pp. 69–74, 2012.

[6] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Search-
able symmetric encryption: improved definitions and efficient
constructions,” in Proceedings of the 13th ACM Conference on
Computer andCommunications Security, pp. 79–88, Alexandria,
Va, USA, 2006.

[7] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy
keyword search over encrypted data in cloud computing,” in
Proceedings of the IEEE Conference on Computer Communi-
cations (INFOCOM ’10), pp. 441–445, IEEE, San Diego, Calif,
USA, March 2010.

[8] L. Sarga, “Cloud computing: an overview,” Journal of Systems
Integration, 2012, http://si-journal.org/index.php/JSI/article/
viewFile/131/101.

[9] W. Zhou, L. Liu, H. Jing, C. Zhang, and S. Yao, “K-gram based
fuzzy keyword search over encrypted cloud computing,” Journal
of Software Engineering and Applications, Scientific Research, no.
6, pp. 29–32, 2013.

[10] J. Wang, H. Ma, Q. Tang et al., “Efficient verifiable fuzzy
keyword search over encrypted data in cloud computing,”

The Scientific World Journal 17

Computer Science and Information Systems, vol. 10, no. 2, pp.
667–684, 2013.

[11] P. Xu, H. Jin, Q.Wu, andW.Wang, “Public-key encryption with
fuzzy keyword search: a provably secure scheme under keyword
guessing attack,” IEEETransactions onComputers, vol. 62, no. 11,
pp. 2266–2277, 2013.

[12] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving
multi-keyword fuzzy search over encrypted data in the cloud,”
in Proceedings of the 33rd Annual IEEE International Conference
on Computer Communications (INFOCOM ’14), pp. 2112–2120,
IEEE, Toronto, Canada, April-May 2014.

[13] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in
Financial Cryptography and Data Security, vol. 6054 of Lecture
Notes in Computer Science, pp. 136–149, Springer, Berlin, Ger-
many, 2010.

[14] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano,
“Public key encryption with keyword search,” in Advances in
Cryptology—EUROCRYPT 2004, vol. 3027 of Lecture Notes
in Computer Science, pp. 506–522, Springer, Berlin, Germany,
2004.

[15] J. Baek, R. Safavi-Naini, and W. Susilo, “Public key encryption
with keyword search revisited,” in Computational Science and
Its Applications—ICCSA 2008, vol. 5072 of Lecture Notes in
Computer Science, pp. 1249–1259, Springer, Berlin, Germany,
2008.

[16] S.-T. Hsu, C.-C. Yang, and M.-S. Hwang, “A study of public
key encryption with keyword search,” International Journal of
Network Security, vol. 15, no. 2, pp. 71–79, 2013, http://ijns.jalaxy
.com.tw/contents/ijns-v15-n2/ijns-2013-v15-n2-p71-79.pdf.

[17] Y. Zhao,H.Ma, X. Chen,Q. Tang, andH. Zhu, “A new trapdoor-
indistinguishable public key encryption with keyword search,”
Journal ofWirelessMobile Networks, Ubiquitous Computing, and
Dependable Applications, vol. 3, no. 1-2, pp. 72–81, 2012.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

