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Middle East Respiratory Syndrome (MERS), bursting in South Korea fromMay 2015 and mainly spreading within the hospitals at
the beginning, has caused a large scale of public panic. Aiming at this kind of epidemic spreading swiftly by intimate contact within
community structure, we first established a spreading model based on contact strength and SI model, and a weighted network
with community structure based on BBV network model. Meanwhile, the sufficient conditions were deduced to ensure the optimal
community division. Next, after the verification by the real data of MERS, it is found that the spreading rate is closely related to
the average weight of network but not the number of communities. Then, as the further study shows, the final infection proportion
declines with the decreases both in isolation delay and in average weight; however, this proportion can only be postponed rather
than decreased with respect to sole average weight reduction without isolation. Finally, the opportunities to take action can be
found to restrain the epidemic spreading to the most extent.

1. Introduction

Middle East Respiratory Syndrome (MERS), first identified
in Saudi Arabia in 2012, is a viral respiratory disease caused
by a novel coronavirus. According to the World Health
Organization (WHO), on May 14, 2013, there were 38 MERS
cases, which grew further to 1150 after two years (i.e., May 31,
2015). For human-to-human transmission, the virus does not
appear to pass easily from person to person unless they have
close contact, such as providing unprotected care to or living
together with infected patients.

The epidemic status in South Korea from May 20, 2015,
caused national public panic and worldwide attention. At the
beginning, it spread evidently amongst the infectors and the
patients in the same sickroom.This paper thus focuses on the
spreading characteristics of intimate contact with community
structure.

Nowadays, the studies of epidemics spreading are
twofold: the spreading model of differential equation and the
complex network theory. There are three spreading models

widely used in the study of virus transmission, namely, SIR
model, SIS model, and SI model [1–4], and the solving
algorithms are mainly based on percolation theory [5, 6],
mean field theory [7, 8], and Markov chain theory [9, 10].
For the complex network, Erdös [11] proposed the random
network, while Watts and Strogatz [12] presented the small
world network model with smaller average shortest path
length and bigger clustering coefficient. Barabási and Albert
[13] put forward the scale-free network model with both
adding points and preferential attachment. According to the
real network, the connections in many networks are not
merely binary entities (i.e., either present or not) but have
associated weights that record their strengths relative to one
another.Thus, Barrat et al. [14] created the BBVmodel where
point weight and edge weight evolve dramatically.

With the further study on the network topology, it is
widely recognized that closely connected nodes and commu-
nities in social networks play an important role in topological
properties and functional dynamics of involved complex
networks [15, 16]. As a result, there are many community
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division algorithms and accuracy indices such as modularity
[17–20]. Based on the aforementioned models, Liu and
Hu [21] researched on the epidemic spreading through the
networkwith small world effect by SISmodel, while Smieszek
et al. [22] studied that by SIR model. Salathé and Jones [23]
focused on the influence of community structure to virus
transmission. In order to know about the virus transmission
mechanism better, the dynamic models endeavor to slow
down the outbreak rate and control the spreading range.
Many different immunization strategies are proposed, such
as random immunization [1], target immunization [8], and
acquaintance immunization [24].

SI model is often applied to study on the epidemic
dynamics at the early outbreak stages [25]. At the begin-
ning, MERS in South Korea were mainly concentrated in
three hospitals with obvious characteristics of community
structure. In reality, the infection probability increases with
the raise of contact time between infectious people and sus-
ceptible people, which must be highlighted in the epidemic
spreading models. Edge weight is essential to describe the
contact intimacy. In order to study the epidemic spreading
characteristics and the optimal opportunity to take measures
of MERS in South Korea, it is supposed that there is a linear
relationship between contact strength and contact time. In
this paper, spreadingmodel is based on SImodel with contact
strength, and weighted network with community structure is
based on BBV network model. The spreading characteristics
are obtained by simulation according to the aforementioned
models. Hence, they are verified by the real data in the South
Korea MERS epidemic.

The remainder of this paper is organized as follows.
Section 2 demonstrates the spreading model based on SI
model in view of contact strength. Section 3 establishes the
weighted network with community structure based on BBV
model and analyzes the characteristics. Then, the spreading
characteristics are studied to find the effective factors in
Section 4, where the epidemic spreading process is divided
into five stages. Section 5 studies the controlling measures
(such as how to execute isolation and reduce the average
weight of network) and the optimal opportunity to carry
them out. Finally, case study based on MERS in South
Korea is demonstrated in Section 6 to verify the models and
the measure effects. Overall, both theoretical analysis and
simulation results focus on the spreading characteristics and
measure effects.

2. Epidemic Spreading Model

In this section, we suppose that the longer time the sus-
ceptible person contacts with the infectious ones, the larger
probability the susceptible person will get infectious, at
the beginning stage of the epidemic outbreak. In order
to study the epidemic spreading process, we propose the
spreadingmodel based on contact strength and the computer
simulation flowchart.

2.1. SI Model Based on Contact Strength. During the study
of epidemic diffusion theory, the models are always based

on some assumptions that the infectious unit is the node in
the network and the epidemic can only spread through the
links.The individuals are divided into 3 types: 𝑆 (Susceptible)
means the healthy state which is likely to be infectious,
𝐼 (Infected) indicates the illness state which has already
been infectious, and 𝑅 (Removed) signifies the immune state
which has always been recovered or dead.

In terms of some epidemic bursting suddenly without
valid control, such as SARS, H1N1 [26], and especially MERS,
SI model is often used to study the spreading characteristics
at the beginning period of diffusion process. Overall, prompt
preventionmeasures would reduce the detrimental influence,
which are of theoretical value and reality significance.

When the contact strength to an infectious person is 𝑇
1
,

the noninfectious probability of susceptible person is defined
as

(1 − 𝜆)
𝑇
1
/𝑇
0 . (1)

Thus, when the contact strength to an infectious person is
𝑇
0
, the infectious probability of susceptible person is defined

as

1 − (1 − 𝜆)
𝑇
0
/𝑇
0 = 𝜆. (2)

One susceptible person contacts an infectious person
with 𝑇

1
strength, then leaves for a while, and then contact

the same infectious person with 𝑇
3
strength. If he does not

get infection at the first time, he would seem as a healthy
susceptible person at the second moment. That is, the two
contacts are independent, and the noninfectious probability
of susceptible person after second contact is

(1 − 𝜆)
𝑇
2
/𝑇
0 ⋅ (1 − 𝜆)

𝑇
3
/𝑇
0 = (1 − 𝜆)

(𝑇
2
+𝑇
3
)/𝑇
0 . (3)

If one susceptible point contacts two infectious points
with strengths 𝑇

4
and 𝑇

5
, respectively, the noninfectious

probability of susceptible person after two contacts is

(1 − 𝜆)
(𝑇
4
+𝑇
5
)/𝑇
0 . (4)

For susceptible point 𝑖, the infection probability 𝜆
𝑖
is

𝜆
𝑖
= 1 − (1 − 𝜆)

∑
𝑗
𝑇
𝑖𝑗
/𝑇
0 , (5)

where 𝑇
𝑖𝑗
indicates the edge strength between point 𝑖 and

infectious point 𝑗 and ∑
𝑗
𝑇
𝑖𝑗
means the sum of edge strength

between point 𝑖 and its adjacent infectious points.
⟨∑
𝑗
𝑇
𝑖𝑗
⟩ is defined as the average ∑

𝑗
𝑇
𝑖𝑗
of each point in

the whole network.
When the whole network is stable, the ratio of susceptible

points is 𝑠(𝑡), and the ratio of infectious points is 𝑖(𝑡), then

𝑠 (𝑡) + 𝑖 (𝑡) = 1,

d𝑖 (𝑡)
d𝑡

= [1 − (1 − 𝜆)
⟨∑
𝑗
𝑇
𝑗
⟩/𝑇
0] 𝑖 (𝑡) [1 − 𝑖 (𝑡)] .

(6)

In the actual infection process, the longer time the
susceptible person contacts the infectious person, the larger
probability of susceptible person to get infection. In other
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Figure 1: Flowchart of the spreading model simulation.

words, the edge strength between them is magnified. In
conclusion, 𝑇

𝑖𝑗
is a formula 𝑇

𝑖𝑗
(𝑡) that depends on time 𝑡.

For simplicity, it is assumed that there is a linear relation-
ship between 𝑇

𝑖𝑗
(𝑡) and 𝑡:

𝑇
𝑖𝑗
(𝑡) = 𝛼

𝑖𝑗
⋅ 𝑡, (7)

where 𝛼
𝑖𝑗
indicates the coefficient of contact strength, 𝛼

𝑖𝑗
< 1,

⟨𝛼⟩means the average 𝛼
𝑖𝑗
, and ⟨𝑘⟩ signifies the average point

degree of network. Thus,

d𝑖 (𝑡)
d𝑡

= [1 − (1 − 𝜆)
(⟨𝑘⟩⋅⟨𝛼⟩𝑡)/𝑇

0] 𝑖 (𝑡) [1 − 𝑖 (𝑡)] , (8)

where 𝑎 = (1 − 𝜆)
(⟨𝑘⟩⋅⟨𝛼⟩)/𝑇

0 .
The solution is

𝑖 (𝑡) =
1

(𝑖
−1

0
− 1) 𝑒−𝑡+ln

−1
𝑎⋅(𝑎
𝑡
−1) + 1

, (9)

where 𝑖
0
is the ratio of infectious points at time 0, and when

𝑡 → ∞, 𝑖(𝑡) = 1.

2.2. Simulation of Spreading Model. According to the above
spreading model, the simulation flowchart is shown in Fig-
ure 1.

In terms of susceptible point 𝑖, the infectious probability
𝜆
𝑖
is

𝜆
𝑖
= 1 − (1 − 𝜆)

(∑
𝑗
𝛼
𝑖𝑗
⋅(𝑡−𝑡
𝑠𝑗
))/𝑇
0 , (10)

where 𝛼
𝑖𝑗
is the edge weight, 𝑡

𝑠𝑗
is the infected moment

for point 𝑗 and 𝑇
0
and 𝜆 are the parameters related to the

epidemic spreading characteristics.
During the simulation process, the time step length is

always the same as 𝑇
0
.

Epidemic spreads in the human-to-humannetwork.After
the construction of the epidemic spreading model based on
the contact among people, we need to construct the network
model. Due to the characteristics of people social contact,
the weighted network model with community structure is
essential to be constructed.

3. Network Model

This section establishes the weighted network with com-
munity structure and proposes the simulation process as
the flowchart and then analyzes the sufficient conditions
for the optimal community division. After that, the weight
distribution and the community division characteristics are
obtained [27].

3.1. Generation of Weighted Network with Community Struc-
ture. BBV network model is a weighted scale-free network
model provided by Barrat et al. [14], which allows the
dynamical evolution of weights during the growth of the
system.

It is assumed that point 𝑖 is within the community 𝑋, 𝐴
𝑖

indicates the strength of point 𝑖, 𝐴𝐼
𝑖
means the inner strength

of point 𝑖, and 𝐴𝑂
𝑖
signifies the outer strength of point 𝑖; thus,

𝐴
𝐼

𝑖
= ∑

𝑗∈𝑋

𝛼
𝑖𝑗
,

𝐴
𝑂

𝑖
= ∑

𝑗∉𝑋

𝛼
𝑖𝑗
,

𝐴
𝑖
= 𝐴
𝐼

𝑖
+ 𝐴
𝑂

𝑖
,

(11)

where 𝛼
𝑖𝑗
means the edge weight between point 𝑖 and point

𝑗; if 𝑖 and𝑗 are disconnected, 𝛼
𝑖𝑗
= 0. If point 𝑖 and point 𝑗

are in the same community, it is called edge weight inner the
community, while if they are in two different communities, it
is called edge weight outer the community.

Therefore, the evolution process of advanced BBV net-
work is as follows.

Step 1 (initial setup). There are 𝑆 communities (i.e., 𝑋
1
, 𝑋
2
,

. . . , 𝑋
𝑆
) contributing to network 𝐺. The initial community

has 𝑚
𝑟
0

nodes (all 𝑚
𝑟
0

are the same as 𝑚), connected by
a small quantity of edges. And different communities are
connected by several edges (without the inner links of points
in the community), which constitutes the initial network. All
initial edge weights are 𝛼

0
.
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Step 2 (adding points). Add a new point 𝑖 in each time step,
and choose an arbitrary community (assumed as 𝑋

𝑟
) to join

in. The new adding point is linked to the existing 𝑚
𝑟
(𝑚
𝑟
≤

𝑚
𝑟
0

) points in the community as the probability 𝑝
𝐼

𝑟
(𝑗) (as

shown in formula (1)) and linked to the existing 𝑛 (𝑛 <

∑
𝑠
𝑚
𝑠
0

) points out of the community as the probability 𝑝𝑂
𝑟
(𝑘)

(as shown in formula (2)):

𝑝
𝐼

𝑟
(𝑗) =

𝐴
𝐼

𝑗

∑
𝑗∈𝑋
𝑟

𝐴
𝐼

𝑗

,

𝑝
𝑂

𝑟
(𝑘) =

𝐴
𝑂

𝑘

∑
𝑘∈𝐺

𝐴
𝑂

𝑘

.

(12)

Step 3 (weight change). The new adding edge is endued
with an initial weight 𝛼

0
, which leads to the weight change

of the inner community of conjoint point 𝑗 and the outer
community of conjoint point 𝑘.The edge weights of the inner
community are adapted to 𝛼

𝑗V = 𝛼
𝑗V + 𝜇

𝐼
𝛼
𝑗V/𝐴
𝐼

𝑖
(where 𝑖,

𝑗, and V are located at different communities), and the edge
weights of the outer community are adapted to 𝛼

𝑘𝑙
= 𝛼
𝑘𝑙
+

𝜇
𝑂
𝛼
𝑘𝑙
/𝐴
𝑂

𝑘
(where 𝑖 and 𝑘 are located at different communities

and 𝑘 and 𝑙 are located at different communities); 𝜇𝐼and 𝜇
𝑂

are the coefficients of weight enhancement.

Step 4 (weight normalization). After the construction of
network, all the weights in the network are normalized.
Assuming that the maximum edge weight of outer commu-
nity is 𝛼𝑂

𝑚
, the maximum edge weight of inner community is

𝛼
𝐼

𝑚
. Thus, the edge weights in the outer community of each

point are normalized as 𝛼𝑂
𝑖
/𝛼
𝑂

𝑚
, and the edge weights in the

inner community of each point are normalized as 𝛼𝐼
𝑖
/𝛼
𝐼

𝑚
.

Similar to the BBV network model, each community
forms a BBV network; when 𝑆 is big, all points in the whole
network are connected to the edges out of the community to
construct a BBV network. According to themean filed theory
[7, 8] and BBV network model [14], both the inner weight
distribution and outer weight distribution of community are
in accordance with the power law.

According to the above four steps, the network meets
all restrictions that are likely to be created as the simulation
process of the weighted network with community structure
in Figure 2.

3.2. Sufficient Conditions for Community Division. After
the network generation, further research needs to analyze
whether this kind of community division is the best. In this
section, we study the sufficient condition to reach the optimal
community division by analyses of modularity.

Salathé and Jones [23] proposed the representation
method of modularity 𝑄 in the weighted network:

𝑄 =

𝑆

∑

𝑟=1

[𝑒
𝑟𝑟
− (ℎ
𝑟
)
2

] , (13)

Start
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t++
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r ,

while the new edge weight is 𝛼0pO
r ,

Figure 2: Flowchart of network model generation.

where

𝑒
𝑟𝑟
=

1

2𝐴
∑

𝑖,𝑗∈𝑋
𝑟

𝛼
𝑖𝑗
,

ℎ
𝑟
=

1

2𝐴
∑

𝑖∈𝑋
𝑟

𝐴
𝑖
,

𝐴 =
1

2
∑

𝑖,𝑗∈𝐺

𝛼
𝑖𝑗
.

(14)

In the formula,𝐴 is the sumof all edgeweights in network
𝐺; 𝑒
𝑟𝑟
is the proportion of the sum edge weight of community

𝑟 occupying the edge weight sum of whole network; ℎ
𝑟
is the

proportion of the sum point strength of community 𝑟 taken
up in the whole network.

Then, it is essential to verify the former network model
generated by four steps, where the modularity is 𝑄

0
. Two

communities 𝑋
𝑟
and 𝑋

𝑠
are chosen arbitrarily from the

network, and then one point V in community 𝑋
𝑠
is assigned

to community 𝑋
𝑟
. Thus, the network modularity changes to

𝑄
1
, and the variation of modularity Δ𝑄 is

Δ𝑄 = 𝑄
0
− 𝑄
1

= [𝑒
𝑟𝑟
− (ℎ
𝑟
)
2

+ 𝑒
𝑠𝑠
− (ℎ
𝑠
)
2

]

− [𝑒
󸀠

𝑟𝑟
− (ℎ
󸀠

𝑟
)
2

+ 𝑒
󸀠

𝑠𝑠
− (ℎ
󸀠

𝑠
)
2

] ,
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𝑞
0
= 𝑒
𝑟𝑟
− (ℎ
𝑟
)
2

+ 𝑒
𝑠𝑠
− (ℎ
𝑠
)
2

,

𝑞
1
= 𝑒
󸀠

𝑟𝑟
− (ℎ
󸀠

𝑟
)
2

+ 𝑒
󸀠

𝑠𝑠
− (ℎ
󸀠

𝑠
)
2

,

𝑞
1
= [

2𝐴 ⋅ 𝑒
𝑟𝑟
+ 2𝐴
𝑂

V,𝑟

2𝐴
− (

2𝐴 ⋅ ℎ
𝑟
+ 𝐴V

2𝐴
)

2

]

+ [
2𝐴 ⋅ 𝑒

𝑠𝑠
− 2𝐴
𝐼

V

2𝐴
− (

2𝐴 ⋅ ℎ
𝑠
− 𝐴V

2𝐴
)

2

] ,

Δ𝑄 = 𝑞
0
− 𝑞
1

=
𝐴
𝐼

V

𝐴
−
𝐴
𝑂

V,𝑟

𝐴
+ 2(

𝐴V

2𝐴
)

2

+ 2 (ℎ
𝑟
− ℎ
𝑠
)
𝐴V

2𝐴
,

(15)

where 𝐴
𝑂

V,𝑟 is the sum edge weight of the adjacent edges
between point V and inner points of community 𝑋

𝑟
, which

names after the sum outer weight of community 𝑟 of point V,
recorded as max

𝑟
(𝐴
𝑂

V,𝑟).
During the network generation, all communities are at

the same level, but when the network scale is bigger, generally
speaking, ℎ

𝑟
≈ ℎ
𝑠
. Thus,

Δ𝑄 ≈
𝐴
𝐼

V

𝐴
−
𝐴
𝑂

V,𝑟

𝐴
+ 2(

𝐴V

2𝐴
)

2

. (16)

During the whole process, it is assured that Δ𝑄 ≥ 0.
When 𝐴

𝐼

V/𝐴 − 𝐴
𝑂

V,𝑟/𝐴 > 0, it is known that Δ𝑄 >

2(𝐴V/2𝐴)
2
> 0. Thus, if 𝐴𝐼V > 𝐴

𝑂

V,𝑟, it is indubitable that
the former community division methodology always gets the
optimal result. If𝐴𝐼V > 𝐴

𝑂

V (V is the arbitrary point), it is surely
satisfied to the optimal restrictions. During the network
construction period, all points need to be connected to more
inner points of community with higher contact strength and
fewer outer points of community with lower contact strength.

After strict theoretical derivation and analyses, it is
concluded that the sufficient condition to reach the optimal
community division is 𝐴

𝐼

V > 𝐴
𝑂

V,𝑟. Plenty of simulations
should be done to analyze the characteristics.

3.3. Characteristics of the Network

3.3.1. Characteristics of the Edge Weight. After the weighted
networks with community structure are generated, the char-
acteristics of network are studied further. It focuses on
the relationship of four characteristics and the community
amount, or the coefficient of weight growth, separately.
The four characteristics are the inner weight distribution of
community, the outer weight distribution of community, the
average inner weight of community, and the average outer
weight distribution of community.

In Figure 3, there are 5000 points: 𝑚 = 𝑚
0
= 3, 𝑛 = (𝑆 −

1) × 𝑚, and 𝜇
𝐼
= 𝜇
𝑂
= 1.

It is demonstrated in Figure 3 as log-log coordinate that
the inner weight distributions of community obey the power
law, which is 𝑝(𝛼) ∼ 𝛼

−𝛾. In terms of the inner weight
distribution of community, 𝛾 slightly increases with the rise

Table 1: Relationship of the average edgeweight and the community
amount.

𝑆 50 100 150 200 250
Mean (𝛼

𝐼
) 0.111 0.182 0.206 0.216 0.238

Mean (𝛼
𝑂
) 0.062 0.089 0.097 0.145 0.135

of 𝑆; while in terms of the outer weight distribution of
community, 𝛾 is generally high when 𝑆 is large; anyway it is
not strictly monotonous.

In Figure 4, there are 5000 points: 𝑆 = 100, 𝑚 = 𝑚
0
= 3,

𝑛 = (𝑆 − 1) × 𝑚, and 𝜇
𝐼
= 𝜇
𝑂
= 𝜇. The less the value of 𝜇 is,

the larger the value of 𝛾 is which related to the inner weight
of the community or the outer weight of the community.

Figures 3 and 4 demonstrate that every BBV network is
isolated independently with different communities, because
the inner weight distribution of each community obeys the
law power. However, Figures 3(a) and 4(a) are both the
statistical results of the inner weight within the community,
and thus there is deviation between the simulation result and
the power-law distribution.

Supposing that mean(𝛼𝐼) indicates the mean of inner
weighs, mean(𝛼𝑂) signifies the mean of outer weight.

In Table 1, there are 5000 points: 𝑆 = 100, 𝑚 = 𝑚
0
= 3,

𝑛 = (𝑆 − 1) × 𝑚, 𝜇
𝐼
= 𝜇
𝑂
= 1.

With the increase of the community amount, the average
inner weights of community get higher. Compared to the
network with fewer communities, the average outer weight of
community is relatively higher when the community amount
is larger.

In Table 2, there are 5000 points: 𝑆 = 100, 𝑚 = 𝑚
0
= 3,

𝑛 = (𝑆 − 1) × 𝑚, and 𝜇
𝐼
= 𝜇
𝑂
= 𝜇.

It is demonstrated in Table 2 that with the growth of
𝜇, both the inner and the outer weight distributions of
communities have the trend of decrease.

After the simulation, it is concluded that the weight
distributions obey the power law and satisfy the reality well.
Moreover, the power-law distribution characteristics rely on
the parameters obviously, hence by control of which, any type
of networks can be built.

3.3.2. Characteristics of the Community Structure. In this
section, we will analyze the sufficient condition to satisfy
the optimal community division and explain whether the
network has a clear community structure by calculating the
value of the modularity.

In Figure 5, there are 5000 points: 𝑆 = 100, 𝑚 = 𝑚
0
= 3,

𝑛 = (𝑆 − 1) × 𝑚, and 𝜇
𝐼
= 𝜇
𝑂
= 1.

It is demonstrated that 𝐴𝐼V > max
𝑟
(𝐴
𝑂

V,𝑟), and each point
meets the condition that 𝐴

𝐼

V > 𝐴
𝑂

V,𝑟. In conclusion, the
community division with this method is optimal.

In Table 3, there are 5000 points: 𝑆 = 100, 𝑚 = 𝑚
0
= 3,

𝑛 = (𝑆 − 1) × 𝑚, and 𝜇
𝐼
= 𝜇
𝑂
= 1. And in Table 4, there are

5000 points: 𝑆 = 100, 𝑚 = 𝑚
0
= 3, 𝑛 = (𝑆 − 1) × 𝑚, and

𝜇
𝐼
= 𝜇
𝑂
= 𝜇.

In reality, the value range of 𝑄 in the network with
community is [0.3, 0.7], and it is demonstrated that there is
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Table 2: Relationship of the average edge weights and the coefficient of weight growth.

𝜇 0.5 0.55 0.6 0.65 0.7 0.8 0.9 1.0 1.5
Mean (𝛼

𝐼
) 0.2806 0.2848 0.2885 0.2493 0.2519 0.2117 0.1846 0.1816 0.1067

Mean (𝛼
𝑂
) 0.1858 0.1929 0.1832 0.1431 0.1352 0.1206 0.1098 0.0894 0.0611
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Figure 3: Relationship of weight distribution and the community amount.

Table 3: Relationship of 𝑄 value and community amount.

𝑆 50 100 150 200 250
𝑄 0.6439 0.6728 0.6950 0.6147 0.6640

obvious community structure in the network from Tables 3
and 4.

4. Characteristics of Epidemic Spreading

This section studies the specific characteristics of the epi-
demic spreading based on the aforementioned models,
including the infection proportion of epidemic spreading in
different stages, and the relationship of transmission rate and
the community amount, or the average network weight, or
the strength of the initial infectious point, separately.

4.1. Influence of Community Amount to Epidemic Spread-
ing. It is defined that the epidemic transmission rate d𝜂
means the increase rate of the infection proportion. During
the simulation process, the transmission rate𝜑(𝑡) is defined as
the amount of new infectious points in each simulation time
step.

According to Figure 6, in terms of the infection propor-
tion variation curve for 200 communities, given 4 infection
proportions, namely, 𝜂(𝑡

1
), 𝜂(𝑡
2
), 𝜂(𝑡
3
), 𝜂(𝑡
4
), we know that

𝜂(0) < 𝜂(𝑡
1
) < 𝜂(𝑡

2
) < 𝜂(𝑡

3
) < 𝜂(𝑡

4
) < 𝜂(∞),

corresponding to 𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
(𝑡
1
< 𝑡
2
< 𝑡
3
< 𝑡
4
), respectively.

𝜑(𝑡
2
) and 𝜑(𝑡

3
) are the transmission rate at 𝑡

2
and 𝑡
3
, given

𝜑
1
= min(𝜑(𝑡

2
), 𝜑(𝑡
3
)), respectively. Therefore, the epidemic

spreading process can be divided into 5 stages.

Stage 1 (the initial stage of spreading). 𝜂(0) ≤ 𝜂(𝑡) < 𝜂(𝑡
1
),

where 𝜂(𝑡) is small, and the transmission rate is slow while
the infection people are gathered in a small range.

Stage 2 (the initial stage of outbreak). 𝜂(𝑡
1
) ≤ 𝜂(𝑡) < 𝜂(𝑡

2
),

and the transmission rate increases constantly but 𝜑(𝑡) <

𝜑(𝑡
2
).

Stage 3 (the middle stage of outbreak). 𝜂(𝑡
2
) ≤ 𝜂(𝑡) < 𝜂(𝑡

3
),

and the infection rate is larger than some value 𝜑(𝑡) ≥ 𝜑
1
.

Stage 4 (the end stage of outbreak). 𝜂(𝑡
3
) ≤ 𝜂(𝑡) < 𝜂(𝑡

4
), and

the transmission rate decreases constantly but 𝜑(𝑡) < 𝜑(𝑡
3
).

Stage 5 (the end stage of spreading). 𝜂(𝑡) > 𝜂(𝑡
4
), the

infection proportion is larger than some value, and at this
stage, the whole network is nearly infectious.

In comparison with the multiple simulations, the rela-
tionships between the infection proportion with different
community amounts and the increase of time step length are
shown in Figure 6.

In Figure 6, there are 5000 points, while the average inner
weights of community are normalized as 0.1, and the average
outer weights of community are normalized as 0.05.

The four curves are shown in Figure 6, when the average
weights are analogous, the four curves have similar variation
trend at Stages 2 to 5, and these four stages are irrelative to
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Figure 4: Relationship of community weight distribution and the coefficient of weight growth.

Table 4: Relationship of 𝑄 value and the coefficient of weight growth.

𝜇 0.50 0.55 0.60 0.65 0.70 0.80 0.90 1.0 1.5
𝑄 0.6090 0.6054 0.6158 0.6376 0.6554 0.6358 0.6281 0.6728 0.6397
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Figure 5: Comparison graph of 𝐴𝐼V and max
𝑟
(𝐴
𝑂

V,𝑟).

the community amount without any control measurements.
Compared to curves 2 and 4, it is found that there is
randomness in the initial spreading stage related to the sum
weight of initial infectious points.

4.2. Influence of the AverageWeight to Epidemic Spreading. In
Figure 7, there are 5000 points and 𝑆 = 100.

The later four stages are related to the average weight
of the whole network, and the bigger the mean is, the
larger the maximum infection proportion would be, and the
transmission rate reaches the highest at the initial stage of
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Figure 6: Simulation graph of infection conditions with different
community amounts.

outbreak. It is the middle stage of outbreak that the average
weight has most effects on; therefore, reducing the weights in
the network can postpone the outbreak to some extent.

The parameters related to the infection ability affect the
five stages. People barely have any effective measures to
master the epidemic during the initial stage of spreading.
This paper focuses on the control of large-scale epidemic
spreading and the effective measures of nodes isolation and
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Figure 7: Relationship between the average weights and the infection proportion or the infection rate.
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Figure 8: Relationship of infection proportion and the strength of
initial infectious point.

edge weights, although the impact of these parameters on
epidemic spreading is not further studied in detail.

4.3. Influence of Initial Infection Strength to Epidemic Spread-
ing. In Figure 8, there are 5000 points, 𝑆 = 100, mean(𝛼𝐼) =
0.1, and mean(𝛼𝑂) = 0.05. It has been simulated 16 times
when the strength of the initial infectious point is the
maximum and another 16 times when the strength of the
initial infectious point is the minimum.

Figure 8 shows that when the strength of initial infectious
point is large, the continuous time at the first stage of
epidemic spreading is shorter and more centralized after
several times of simulation; when the strength of initial
infectious point is small, the continuous time is longer and
distributed more randomly.

Through the simulation, it is concluded that the epidemic
transmission rate has explicit relationship with the average
weight of the network other than the community amount,
especially at the later four stages of epidemic spreading.There
is randomness at the first stage of epidemic spreading, while
the larger the initial infectious point strength is, the less the
randomness will be. Moreover, the first stage duration time is
longer when the strength of the initial infectious point is less.

5. Measures to Control Epidemic Spreading

5.1. Measures to Isolate the Infectious Points. In reality, at the
very beginning of the epidemic spreading process, it is hard
to attract the public attention due to the minority of infectors
[28]. However, we hope to control the epidemic at the initial
stage of epidemic outbreak. Assuming there is a constant
parameter related to the infection ability, it is concluded after
several simulations that

(1) from the initial stage of outbreak to the end stage of
epidemic spreading, the infection proportion is stable
around the value 𝑖

∞
(𝑖
∞

≤ 1);
(2) the stable 𝑖

∞
(𝑖
∞

≤ 1) is related to 𝑡
0
and 𝜆.

The simulation result is demonstrated as in Figure 9.
There are 5000 points, 𝑆 = 100,𝑚 = 𝑚

0
= 3, 𝑛 = (𝑆−1)×𝑚 =

6, 𝜇𝐼 = 𝜇
𝑂
= 1, 𝑇

0
= 1, and 𝜆 = 0.1. The amount of the initial

infectious points is 10, and there are simulation curves at each
𝑡
0
.
It is defined that the extreme isolation delay 𝑡

0
is signed

as 𝑚
𝑡0
which makes the final stable infection proportion 𝑖

∞

satisfy 𝑖
∞

≤ 0.9, in terms of the infection probability 𝜆 at
𝑇
0
= 1.
In Table 5, there are 5000 points, 𝑆 = 100, 𝑚 = 𝑚

0
= 3,

𝑛 = (𝑆 − 1) × 𝑚 = 6, and 𝜇
𝐼
= 𝜇
𝑂
= 1.

This section focuses on the influence of isolation delay
on epidemic spreading and obtains that timely isolation can
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Figure 9: Relationship of 𝜂 and the step length with different 𝑡
0
.

Table 5: The relationship of𝑚
𝑡0
and 𝜆.

𝜆 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
𝑚
𝑡0

16 11 9 8 7 6 5 4

reduce the final infection proportion 𝑖
∞
, which indicates that

there is direct relationship between 𝑖
∞
and the isolation delay.

5.2. Measures to Reduce the Average Weight of Network.
In reality, during the control process at the initial stage
of the infectious epidemic, it exists infectivity for some
viruses without any explicit symptoms [29]. Coupledwith the
isolation efficiency, it is difficult to put all infectious points
isolated at the initial stage; in other words, it is hard to make
𝑡
0
less. Accordingly, if only taking measurement as point

isolation, the epidemic infection proportion 𝑖
∞

eventually
reaches a large value, which is not conducive to control the
epidemic spreading.

If the isolation measures are not taken in time, it is also
required to control the whole network by other measures in
order to better control the epidemic spreading. In reality, it is
often acceptable that the healthy person should enhance the
self-protection conscience and cut down the opportunities
to contact with the infectious ones, which equals reducing
the average weight of points and canceling some edges in the
network model [30].

Nowadays, the widely acceptable methods to control the
whole network include keeping away from public places
and minimizing direct contact with each other as much
as possible [31, 32]. However, if measures are carried out
too early or too much, it will change people’s living habits,
increase the economic loss, and cause large-scale social panic,
but if it is too late, it will lose the best opportunity to control
the epidemic spreading.

It is demonstrated in Figure 7 that it can only postpone the
epidemic outbreak other than cut down the final spreading
proportion by reducing the average weight of the network.
However, it is not useful to lessen the average weight of the

0

0.2

0.4

0.6

0.8

1

In
fe

ct
io

n 
pr

op
or

tio
n

20 40 80600
Time step length (day)

Mean(𝛼I) = 0.2, mean(𝛼O) = 0.1

Mean(𝛼I) = 0.1, mean(𝛼O) = 0.05

Mean(𝛼I) = 0.67, mean(𝛼O) = 0.33

Figure 10: Relationship of infection proportion and time step length
after points isolation.

network at Stage 1 (the initial stage of epidemic spreading)
but to make point isolation. At Stage 2 (the initial stage
of outbreak), if the isolation delay 𝑡

0
cannot meet the

requirements even when the infection proportion becomes
𝑖
∞
, it is essential to take measures to decrease the average

weight of the network.
Figure 10 depicts the influence of different network

average weights have on 𝑖
∞

after the point isolation.
In Figure 10, there are 5000 points, 𝑆 = 100,𝑚 = 𝑚

0
= 3,

𝑛 = (𝑆 − 1) × 𝑚 = 6, 𝑇
0
= 1, 𝜆 = 0.6, and 𝑡

0
= 6. When

the isolation measures are taken and the isolation delay 𝑡
0
is

constant, the less the average weight of the network is, the
smaller the value of 𝑖

∞
would be.

In reality, once the epidemic breaks out, the isolation
measures should be taken; then, we can analyze the character-
istics of epidemic spreading by statistical method and study
the isolation delay. It is necessary to take somemeasures to cut
down the average weight of the network at Stage 2 (the initial
stage of outbreak).When it comes to Stage 3 (themiddle stage
of outbreak), it is essential to decrease the average weight of
the network, in order to make it come into Stage 4 (the end
stage of outbreak) and Stage 5 (the end stage of spreading) as
soon as possible.

6. Case Study on MERS

6.1. Case Study of Epidemic Spreading Characteristics. Epi-
demic spreading model based on contact strength was pro-
posed in Section 2, while weighted network model with
community structure was proposed in Section 3. However,
real data is essential to verify whether the epidemic spreading
result based on this model is persuasive.

From the first MERS infection case that was diagnosed
definitely in South Korea, there have been 166 people infected
until 20 June 2015. The change trend of infection population
during these 31 days is shown in Figure 11.



10 Mathematical Problems in Engineering

It is not until June 7th when the South Korea government
actually issued a response to MERS; in consequence, the 19
days from May 20th to June 7th should be regarded as the
initial stage of the epidemic outbreak without interference
measures, and the infection population is 87.The epidemic in
this periodmainly occurred in 3 hospitals, namely, Pyongtaek
Mary Hospital, Konyang University Hospital, and Daejeon
Hospital. They are considered as 3 communities (𝑆 = 3),
and the sum of points is regarded as the total amount of
contact points in epidemic spreading network with the three
communities. Then the fitting result of the simulation data
and the real-world data are demonstrated in Figure 12, where
the infection proportion 𝜂means the ratio of infectious points
in the total amount of points in the network.

FromMay 20th to June 7th, the population is about 500–
1000 in the contact network of the three hospitals. Hence, the
simulation parameters in Figure 12 are as follows: in terms of
the network model, the total amount of points is 600, 𝑆 = 3,
𝑚 = 𝑚

0
= 3, 𝑛 = (𝑆 − 1) × 𝑚 = 6, 𝜇𝐼 = 0.2, and 𝜇

𝑂
= 0.6;

in terms of the epidemic spreading model, 𝑇
0
= 2.4, 𝜆 = 0.1,

the initial amount of infectious points is 1.The real data curve
is drawn by the MERS infectious population in South Korea
divided into 600.

Overall, due to the fitting result in Figure 12, the real
initial stage of epidemic outbreak can be explainedwell by the
network model and the epidemic spreading model proposed
in this paper.

In this section, the accuracy of models in this paper is
verified by comparison of the real data.

6.2. Case Study of Control Measures. Figure 13 shows the
comparison about the simulation result of infection propor-
tion change with the increase of time step length and the real
data after June 7th when the isolationmeasures were taken by
South Korea government.

In Figure 13, there are 600 points, 𝑆 = 3, 𝑚 = 𝑚
0
= 3,

𝑛 = (𝑆 − 1) × 𝑚 = 6, 𝜇𝐼 = 0.2, and 𝜇
𝑂

= 0.6, and in the
epidemic spreading model, 𝑇

0
= 2.4, 𝜆 = 0.1, the initial

infection population is 1, and the isolation measure is taken
at the 19th step, 𝑡

0
= 4. The real data curve is drawn by the

MERS infectious population divided into 600.
It is demonstrated in Figure 13 that the curve can fit the

real infection proportion statistics curve when the isolation
delay 𝑡

0
= 4. However, the South Korea government took

measure at Stage 2 (the initial stage of outbreak) actually,
which was a little later. The simulation result is shown as in
Figure 14 if themeasureswere taken at Stage 1 (the initial stage
of epidemic spreading).

In Figure 14, the network model and epidemic spreading
model are the same as Figure 13, 𝑡

0
= 4, but the isolation

measure is taken at the first step. The 6 simulation result
curves are the 6 results with maximum 𝑖

∞
among the 100

times simulation.
Figure 14 demonstrates that if we could take measures at

the very beginning of epidemic spreading, the final infection
proportion 𝑖

∞
would be reduced significantly even with

the same isolation delay. However, due to the abruptness
of epidemic outbreak, it is difficult to master control at
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Figure 11: Statistics of MERS infection population in South Korea.
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Figure 12: Fitting result of the simulation infection proportion and
the real-world data.

the early stage. Consequently, it is essential to reduce the
average weight of the network by some auxiliary measures,
for example, dissolving some organizations with evident
community structure (such as schools), decreasing the stay
time in public places, or canceling some public activities.

7. Conclusion

MERS viruses are spreading swiftly at the very beginning
period among the intimate human-to-human contact com-
munities. The control measurements and the optimal oppor-
tunity to take action are proposed to study the spreading
characteristics. Assuming that the contact strength has a
linear relationship with time, the epidemic spreading model
is established based on the SI model, which is the foundation
of analytical solution research. The weighted network model
with community structure is constructed on the basis of the
BBV network model, deducing that the generated network
meets the sufficient conditions for the optimal community
division. The simulation results show that the weight distri-
butions within the community and among the communities
both obey the power-law distribution.
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Figure 14: Simulation result when the isolation measures are taken
at Stage 1.

According to the epidemic spreading networkmodel, this
research focuses on the characteristics of virus transmission.
Hence, the epidemic spreading process would be divided into
five stages: the initial stage of spreading, the initial stage
of outbreak, the middle stage of outbreak, the end stage of
outbreak, and the end stage of spreading.Then the simulation
results show that the duration time of Stage 1 is related to the
sumweight of the initial infection nodes, while those of Stages
2 to 5 are only related to the average weight instead of the
community amount. However, without isolation measures,
the decrease of the average weight only postpones spreading
without interdicting it.

There is always a time delay before patients are isolated;
thus, we study on the effects and optimal opportunity to
master the epidemic spreading by two approaches: the point
isolation and the average weight of network reduction.
In conclusion, shorter time delay would reduce the final
infection proportion, and with the same time delay, the

decline of the average weight would further reduce the final
infection proportion. The simulation data matches the real
data of MERS in South Korea well. Therefore, the measures
are adopted as follows: firstly isolate the infectious points as
soon as possible; if the infection proportion is higher than the
setting threshold, then the averageweight should be cut down
to the corresponding value (e.g., canceling public activities,
dissolving some organizations, and keeping away from the
crowded places).

Themodels in this paper are also appropriate for the diffu-
sion of terrorist forces or evil forces with intimate community
structures. Since the proposed epidemic spreading model is
based on the SI model, it is hard to simulate the condition
in which infectious people recover or die after a period of
epidemic outbreak. Moreover, it is supposed that there is
a linear relationship between contact strength and contact
time, which cannot mimic the reality very well. In the future,
we will study on different diseases with different epidemic
spreading models on the proposed weighted network model
with community structure after the period of large-scale
infection or immunization.
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