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We suggest employing the first-order stable RC filters, based on a single capacitor, for control of unstable fixed points in an array
of oscillators. A single capacitor is sufficient to stabilize an entire array, if the oscillators are coupled strongly enough. An array,
composed of 24 to 30 mean-field coupled FitzHugh–Nagumo (FHN) type asymmetric oscillators, is considered as a case study.
The investigation has been performed using analytical, numerical, and experimental methods. The analytical study is based on the
mean-field approach, characteristic equation for finding the eigenvalue spectrum, and the Routh–Hurwitz stability criteria using
low-rank Hurwitz matrix to calculate the threshold value of the coupling coefficient. Experiments have been performed with a
hardware electronic analog, imitating dynamical behavior of an array of the FHN oscillators.

1. Introduction

A large number of adaptive control techniques have been
developed so far to stabilize unstable fixed points (UFP) of
dynamical systems. These include derivative control [1–3],
tracking filter technique, based on either low-pass or high-
pass first-order RC filters [4–9], and notch filter technique
that employs two second-order Wien-bridge filters with the
incommensurate resonance frequencies [10]. The delayed
feedback technique, though originally designed to control
chaos, that is, to stabilize unstable periodic orbits [11, 12],
under appropriate setting of parameters can stabilize the UFP
as well [5, 6, 13–19].

The above-mentioned techniques can stabilize unstable
nodes (UFPwith even number of real positive eigenvalues 𝜆𝑖,
e.g., 𝜆1,2 > 0 and no imaginary parts of the eigenvalues, i.e.,
Im 𝜆1,2 = 0) and unstable spirals (UFP with even number of
complex eigenvalues with positive real parts, e.g., Re 𝜆1,2 >0). However, the methods fail to stabilize saddle-type UFP,
more specifically, UFP with an odd number of real positive
eigenvalues, for example, 𝜆1 > 0, 𝜆2 < 0. To solve

the problem of the odd number limitation, Pyragas and
coauthors proposed to use an unstable first-order filter [20,
21]. It was an elegant idea to fight one instability by means of
another instability. The method was demonstrated for a vari-
ety of mathematical models and experimental systems [20–
23]. Later an unstable filter control was developed to stabilize
saddle-typeUFP in conservative andweakly damped systems
[24–26] also under the influence of delay (inertia) in the
feedback loop of the controller.

The first-order RC filters, based on a single capacitor,
as well as other methods developed for stabilizing the UFP
have been applied to single oscillators only.The question thus
arises: can a single capacitor stabilize a network of oscillators?
The answer depends on the properties of the network. Evi-
dently, if the oscillators in the array are uncoupled or weakly
coupled, a single capacitor is insufficient to control the entire
network. Each individual oscillator should be provided with
a separate controller. Such solution is impractical for appli-
cations. However, when the oscillators are coupled strongly
enough, one could expect that it is possible to stabilize the
entire network using a single controller.
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Figure 1: Network ofmean-field coupled oscillators,𝑂1, 𝑂2, . . . , 𝑂𝑁.𝐴1, 𝐴2, . . . , 𝐴𝑁 are the outputs of the corresponding oscillators and𝑅∗ are the coupling resistors.TheCN is the coupling node, in general
not accessible directly from outside, but via some passive resistive
network, represented here by an effective buffer resistor 𝑅𝑔.The Ctrl
is an accessible control node.

In this paper, we demonstrate the possibility of stabilizing
the network analytically, numerically, and experimentally.

2. Mathematical Model and Its Analysis

To be specific we consider an array of FitzHugh–Nagumo
(FHN) oscillators [27], also known in literature as Bon-
hoeffer–van der Pol (BVP) oscillators [28, 29]. The FHN
(or BVP) oscillator actually is a simplified version of the
Hodgkin–Huxley (HH) oscillator, imitating the dynamics of
spiking neurons [30]. A set of the FHNoscillators is described
by

𝑥̇𝑖 = 𝑎𝑥𝑖 − 𝑓 (𝑥𝑖) − 𝑦𝑖 − 𝑐𝑖,̇𝑦𝑖 = 𝑥𝑖 − 𝑏𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑁. (1)

Here 𝑓(𝑥𝑖) is a nonlinear function approximated by a three-
segment piecewise linear function [31]

𝑓 (𝑥𝑖) = {{{{{{{{{
𝑑 (𝑥𝑖 + 1) , 𝑥𝑖 < −1,0, −1 ≤ 𝑥𝑖 ≤ 1,𝑔 (𝑥𝑖 − 1) , 𝑥𝑖 > 1. (2)

In (2) 𝑑 ≫ 𝑔. Therefore, 𝑓(𝑥) is an essentially asymmetric
function, in contrast to common FHN or BVP cubic function𝑥3 [27–29].Thebias parameters 𝑐𝑖 in (1) are intentionally set to
be different for each individual oscillator thus making them
nonidentical units.

An array of mean-field coupled (star coupling) oscillators
is sketched in Figure 1.

The array in Figure 1 is given by the 2N-dimensional
system

𝑥̇𝑖 = 𝑎𝑥𝑖 − 𝑓 (𝑥𝑖) − 𝑦𝑖 − 𝑐𝑖 + 𝑘 (⟨𝑥⟩ − 𝑥𝑖) ,̇𝑦𝑖 = 𝑥𝑖 − 𝑏𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑁. (3)

Here ⟨𝑥⟩ is the mean value of the variables 𝑥𝑖
⟨𝑥⟩ = 1𝑁 𝑁∑

𝑖=1

𝑥𝑖. (4)

When an RC tracking filter is applied to the Ctrl node
(Figure 1) of the network the overall systembecomes (2𝑁+1)-
dimensional system

𝑥̇𝑖 = 𝑎𝑥𝑖 − 𝑓 (𝑥𝑖) − 𝑦𝑖 − 𝑐𝑖 + 𝑘 (𝑧 − 𝑥𝑖) ,̇𝑦𝑖 = 𝑥𝑖 − 𝑏𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑁,𝑧̇ = 𝜔𝑓 (⟨𝑥⟩ − 𝑧) . (5)

The cut-off frequency 𝜔𝑓 of the filter should be low (𝜔𝑓 ≪ 1)
to ensure tracking the state of the system under control. Note
that, in comparison with (3), here in the first equation the
mean ⟨𝑥⟩ is replaced with its filtered variable 𝑧. The case of a
single oscillator (𝑁 = 1, yielding the 3-dimensional system)
has been investigated in [31] Analysis of 2N-dimensional
system (3) and (2𝑁 + 1)-dimensional systems (5) is very
complicated. Therefore, we consider a mean-field approach.
The mean-field variables are obtained by directly averaging
the variables𝑥𝑖 and𝑦𝑖 and the parameters 𝑐𝑖 over all oscillators𝑖 in (3) and (5), respectively:

⟨𝑥̇⟩ = 𝑎 ⟨𝑥⟩ − ⟨𝑓 (𝑥𝑖)⟩ − ⟨𝑦⟩ − ⟨𝑐⟩ ,
⟨ ̇𝑦⟩ = ⟨𝑥⟩ − 𝑏 ⟨𝑦⟩ . (6a)

⟨𝑥̇⟩ = 𝑎 ⟨𝑥⟩ − ⟨𝑓 (𝑥𝑖)⟩ − ⟨𝑦⟩ − ⟨𝑐⟩ + 𝑘 (𝑧 − ⟨𝑥⟩) ,
⟨ ̇𝑦⟩ = ⟨𝑥⟩ − 𝑏 ⟨𝑦⟩ ,𝑧̇ = 𝜔𝑓 (⟨𝑥⟩ − 𝑧) . (7a)

Note that (6a) lacks the term 𝑘(⋅ ⋅ ⋅ ), since (⟨𝑥⟩ − ⟨𝑥⟩) = 0.
For 𝑎𝑏 < 1 and |𝑐| < 1/(𝑏−𝑎) the steady-state solutions of

(1), (6a), and (7a) are presented by the following fixed points:

𝑥0𝑖 = − 𝑏𝑐𝑖1 − 𝑎𝑏 ,
𝑦0𝑖 = − 𝑐𝑖1 − 𝑎𝑏 ,𝑖 = 1, 2, . . . , 𝑁

(8)

⟨𝑥⟩0 = − 𝑏 ⟨𝑐⟩1 − 𝑎𝑏 ,
⟨𝑦⟩0 = − ⟨𝑐⟩1 − 𝑎𝑏 .

(9)

⟨𝑥⟩0 = − 𝑏 ⟨𝑐⟩1 − 𝑎𝑏 ,
⟨𝑦⟩0 = − ⟨𝑐⟩1 − 𝑎𝑏 ,

𝑧0 = − 𝑏 ⟨𝑐⟩1 − 𝑎𝑏 .
(10)

Note that the RC tracking filter in (7a) does not change the
position of the fixed point: compare (10) with (9). The values
given by (10) are independent on 𝑘, since ⟨𝑥⟩0 = 𝑧0 and the
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Figure 2: Real parts of the eigenvalues, Re𝜆1,2,3 as functions of the coupling parameter 𝑘. (a) Full view and (b) vertically stretched view.𝑎 = 3.4, 𝑏 = 0.16, and 𝜔𝑓 = 0.15. The arrow in plot (b) indicates the coupling parameter 𝑘th = 3.23, where the largest eigenvalues Re 𝜆2,3 cross
zero axis.

coupling term 𝑘 (𝑧 − ⟨𝑥⟩) in (7a) vanishes for the fixed point.
Thefixed points (9) and (10) are similar in form to fixed points
of the individual uncoupled oscillators (8), except the fact that
the fixed points (9) and (10) are single points, whereas (8)
yields𝑁 points in the phase space.

System (7a), when linearized around the fixed point (10),
reads

⟨𝑥̇⟩ = 𝑎 ⟨𝑥⟩ − ⟨𝑦⟩ + 𝑘 (𝑧 − ⟨𝑥⟩) ,
⟨ ̇𝑦⟩ = ⟨𝑥⟩ − 𝑏 ⟨𝑦⟩ ,𝑧̇ = 𝜔𝑓 (⟨𝑥⟩ − 𝑧) . (11)

The corresponding characteristic equation, obtained
from differential equation (11) using a standard procedure,
has the following algebraic form:

𝜆3 + ℎ2𝜆2 + ℎ1𝜆 + ℎ0 = 0, (12)

where ℎ2 = −𝑎 + 𝑏 + 𝑘 + 𝜔𝑓, ℎ1 = 1 − 𝑎𝑏 + 𝑏𝑘 − (𝑎 − 𝑏)𝜔𝑓,ℎ0 = (1 − 𝑎𝑏)𝜔𝑓.
The fixed point of the mean field is stable, if the real parts

of all three eigenvalues Re 𝜆1,2,3 are negative. Equation (12)
has been solved numerically for different values of coupling
coefficient k (Figure 2) and the threshold value 𝑘th, for which
the largest Re 𝜆max = 0, is found.

In addition, the necessary and sufficient conditions of
stability can be estimated analytically from the Hurwitz
matrix

𝐻 = (ℎ2 ℎ0 01 ℎ1 00 ℎ2 ℎ0). (13)

According to the Routh–Hurwitz stability criterion
Re 𝜆1,2,3 < 0 if all diagonal minors of the 𝐻-matrix are
positive Δ 1 = ℎ2 > 0,Δ 2 = ℎ2ℎ1 − ℎ0 > 0,Δ 3 = ℎ0Δ 2 > 0. (14)

We start the analysis withΔ 3. SinceΔ 2 should be positive
according to the second inequality, the third inequality forΔ 3
can be simplified to ℎ0 > 0. This can be further simplified
to 𝑎𝑏 < 1, because 𝜔𝑓 > 0 by definition. The inequality𝑎𝑏 < 1 is always satisfied, since it was used to derive the fixed
points (8)–(10). Consequently, we are left with the first and
the second inequalities in (14). We define the threshold 𝑘th
requiring that for 𝑘 > 𝑘th the both minors, Δ 1 and Δ 2 are
positive. The first minor Δ 1 = ℎ2 is rather simple and 𝑘th1 is
readily obtained: 𝑘th1 = 𝑎 − 𝑏 − 𝜔𝑓. (15)
For the parameter values given in Figure 2, 𝑘th1 = 3.09. The
second inequality in (14) is more cumbersome and yields
quadratic equation with respect to 𝑘th2.𝑝2𝑘2th2 + 𝑝1𝑘th2 + 𝑝0 = 0, (16)

where 𝑝2 = 𝑏, 𝑝1 = 1−2𝑎𝑏+𝑏2 − (𝑎−2𝑏)𝜔, 𝑝0 = −(𝑎−𝑏)[1−𝑎𝑏 − (𝑎 − 𝑏)𝜔 + 𝜔2].
Analytical solution of (16)

𝑘th = (−𝑝1 ± √𝑝21 − 4𝑝2𝑝0)2𝑝2 (17)

gives two different values: 𝑘󸀠th2 = 3.23 and 𝑘󸀠󸀠th2 = 0.047.
Finally, we obtain 𝑘th = max(𝑘th1, 𝑘󸀠th2, 𝑘󸀠󸀠th2) = 3.23, which
is in an excellent agreementwith the numerical result, derived
fromFigure 2(b), where Re 𝜆2,3 cross the abscissa axis at 𝑘th =3.23.
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Figure 3: Waveforms from (5). (a) Mean-field variable ⟨𝑥⟩ of the synchronized array, (b) dynamical variable 𝑥1 of the first oscillator, (c)
mean-field variable ⟨𝑥⟩ of the unsynchronized (uncoupled) array, and (d) control term 𝑧 − ⟨𝑥⟩. 𝑁 = 24, 𝑘 = 3.4, 𝑎 = 3.4, 𝑏 = 0.16, and𝑐𝑖 = 43.5/(24 + 𝑖), where 𝑖 = 1, 2, . . . , 𝑁, 𝑑 = 60, 𝑔 = 3.4, and 𝜔𝑓 = 0.15. Control is switched on at 𝑡 = 100; in (a), (b), and (d) ⟨𝑥⟩ in the
coupling term is replaced with z; in (c) the whole control term 𝑘(𝑧 − 𝑥𝑖) is applied.
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Figure 4: Fixed point spectra 𝑥0𝑖 (𝑖 = 1, 2, . . . , 24). (a) Unsynchronized (uncoupled) oscillators from (8) and (b) stabilized oscillators from
numerical solution of (5) at 𝑡 = 200. Parameters are the same as in the caption of Figure 3.The higher and thicker lines in the spectra indicate
the mean-field fixed points ⟨𝑥⟩0.
3. Numerical Results

System (5) have been solved numerically using
Mathematica, version 9.0 software package. The results are
presented in Figure 3. The waveforms of the mean variable⟨𝑥⟩(𝑡) (Figure 3(a)) and of the individual oscillators, say𝑥1(𝑡) (Figure 3(b)), look nearly the same, since the array is
synchronized. Other variables 𝑥𝑖(𝑡), not shown in Figure 3,
have similar form with only small phase shifts, as expected
for nonidentical elements. The main difference is in the UFP
values 𝑥0𝑖 due to different bias parameters 𝑐𝑖. The differences
between the fixed points 𝑥0𝑖 of the individual oscillators
(𝑖 = 1, 2, . . . , 24) are brought out by the fixed point spectra,
presented in Figure 4.

It is worth noting that stabilization of the UFP can
be achieved in the unsynchronized (uncoupled) array
(Figure 3(c)) applying the whole control term 𝑘(𝑧 − 𝑥𝑖) in
(5) at 𝑡 = 100 with a sufficiently large coefficient 𝑘 > 𝑘th.
However, this feature is important from a theoretical point of
view only.The term 𝑘(𝑧−𝑥𝑖) in (5)means that it controls every
individual oscillator “𝑖.” It is easy to do in a mathematical
model, but in practical (experimental) situations, it requires
direct access to every neuronal oscillator. Moreover, from a
practical point of view, especially for a possible application to
neuronal systems there is no need to stabilize the UFP, if the

oscillators are not synchronized. Unsynchronized oscillators
yield low mean field, as evidenced by the left hand part (0 <𝑡 < 100) of the plot in Figure 3(c). For larger arrays, say𝑁 > 100, themean field becomes even lower.We recall that in
this paper we consider the case of coupled and synchronized
oscillators.

In Figure 4(a), ⟨𝑥⟩0 = −0.434 is in a good agreement
with the value calculated from (9). In the case of coupled
and stabilized array (Figure 3(b)) the spectrum is narrower
in comparison with the case of uncoupled oscillators due to
strong interaction between oscillators. In Figures 3(a), 3(c),
and 4(b)⟨𝑥⟩0 = −0.434. It well coincides with the value of⟨𝑥⟩0 in Figure 4(a).

4. Experimental Setup

The experiments have been carried out using an electronic
analog array, composed of 30 mean-field coupled FHN
type oscillators and described in detail elsewhere [32]. This
electronic array has been employed earlier to implement
experimentally both the repulsive synchronization [33, 34]
and the mean-field nullifying techniques [34, 35].

An individual FHN type oscillator is presented in
Figure 5(a). Dimensionless variables 𝑥, 𝑦, 𝑧, and t, as well as
the parameters 𝑎, b, c, d, 𝑔, and 𝑘 introduced in (5), are related
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Figure 5: Circuit diagrams. (a) FHN asymmetric electronic oscil-
lator. OA is an operational amplifier, for example, NE5534, 𝐷1 and𝐷2 are the BAV99 type diodes, 𝑉𝐷 = 0.6V. 𝐿 = 10mH, 𝐶 = 3.3 nF,𝑅1 = 𝑅2 = 1 kΩ, 𝑅3 = 510Ω, 𝑅4 = 30Ω, 𝑅5 = 510Ω (𝑅4 ≪ 𝑅5),𝑅6 = 275Ω (external resistor 220Ω in series with the coil ohmic
resistance 55Ω), 𝑅7 = (24 + i) kΩ, 𝑖 = 1, 2, . . . , 30, and 𝑉0 = −15V.
(b) The first-order RC chain. Note the negative resistor “−𝑅,” used
to compensate the positive buffer resistor 𝑅𝑔 of the network (see
Figure 1). The value of the capacitor 𝐶0 is specified in the caption
to Figure 7.

to the electrical values of the analog circuits (Figure 5) in the
following way:

𝑥𝑖 = 𝑉(𝑖)𝐶𝑉𝐷 ,
𝑦𝑖 = 𝜌𝐼(𝑖)𝐿𝑉𝐷 ,
𝑧 = 𝑉𝐶0𝑉𝐷 ,
𝑡 󳨀→ 𝑡√𝐿𝐶,
𝜌 = √ 𝐿𝐶,

𝜔𝑓 = 𝑁√𝐿𝐶𝑅∗𝐶0 ,
𝑎 = 𝜌𝑅3 ,
𝑏 = 𝑅6𝜌 ,
𝑐𝑖 = 𝜌𝑉0𝑅(𝑖)7 𝑉𝐷 ,
𝑑 = 𝜌𝑅4 ,
𝑔 = 𝜌𝑅5 ,
𝑘 = 𝜌𝑅∗ .

(18)

RＣＨ

R01

R02

R03

OA
+
−

Figure 6:Negative impedance converter: active circuit implementa-
tion of the negative resistor “−𝑅” in Figure 5(b). OA is an operational
amplifier, for example, NE5534. 𝑅01 = 𝑅02 = 300Ω. For 𝑅01 = 𝑅02,𝑅in = −𝑅03. The value of the resistor 𝑅03 is specified in the caption
to Figure 7.
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Figure 7: Experimental waveforms, the mean-field voltage ⟨𝑉𝐶⟩,
and the control current 𝐼ctrl. The arrow indicates the time moment,
when the RC chain (node Ctrl in Figure 5(b)) is connected to
the node Ctrl in Figure 1 (the electronic switch, connecting the
controller to the array and its driver is not shown in Figures 1 and 5
for simplicity). 𝑁 = 30, 𝑅∗ = 510Ω, 𝑅𝑔 = 100Ω, and 𝑅03 = 100Ω
(𝑅in = −100Ω; 𝑅𝑔 + 𝑅in = 0). 𝐶0 = 2.2 𝜇F.
Here 𝑉𝐷 is the breakpoint voltage of the forward current-
voltage characteristic of the diodes.

The negative resistor “−𝑅” in Figure 5(b) has been
implemented by means of the negative impedance converter
(Figure 6) [36]. The input resistance of the NIC 𝑅in < 0. The
capacitor 𝐶0 with negative resistor “−𝑅” in series should not
be confused with an unstable RC filter, employed to stabilize
saddle-type UFP [25, 26]. Here “−𝑅” simply compensates the
positive buffer resistor 𝑅𝑔 of the network. The RC tracking
filters are actually composed of the coupling resistors 𝑅∗
(Figure 1) and the capacitor 𝐶0; see also definition of the cut-
off frequency 𝜔𝑓 in (18).

5. Experimental Results

Experimental waveforms have been taken by means of a
digital camera from the screen of a multichannel analog
oscilloscope and are shown in Figure 7.

Similarly to the numerical results (Figure 3) the experi-
mental waveform in Figure 7 exhibits negative stabilized state
(the nonzero value is due to the dc bias 𝑉0 in Figure 5(a)).
Whereas the control current 𝐼ctrl in Figure 7 becomes vanish-
ingly small after a relatively short transient process.
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6. Discussion

The investigation performed here is not an end in itself. The
purpose of the study is the search of practical techniques
inhibiting activity of neuronal arrays. It is widely believed that
strong synchrony of spiking neurons in the brain causes the
symptoms of Parkinson’s disease [37].

One of the simplest methods to damp spiking neurons
is the external stimulation of certain brain areas with strong
high frequency (about 100 to 150Hz) periodic pulses. It is
a conventional clinically approved therapy for patients with
the Parkinson’s symptoms, so-called deep brain stimulation
(DBS) [38–40]. Unfortunately, the DBS treatment is often
accompanied with undesirable side effects. In recent papers
[41–43], it has been demonstrated that the high frequency
forcing eventually stabilizes the UFP of the neuronal oscil-
lators in case of HH, FHN, and other neuronal models. Two
shortcomings of the DBS have been emphasized [43]. Firstly,
though the spiking neurons are suppressed, relatively high
amplitude (10 to 20%) high frequency artifact oscillations
are observed. Secondly, the fixed points of the membrane
voltages are essentially moved from their natural values
because of the rectifying effect in the cells [43]. This can be
a reason of the side effects.

A number of more sophisticated methods to avoid syn-
chronization of interacting oscillators in general and more
specifically with the possible application to neuronal arrays
have been described in literature, for example [33, 37, 44–54].

Specifically, in [47] suppression of synchrony of coupled
oscillators by means of a passive oscillator is described. The
controller is a four-terminal third-order device with separate
recording and field application electrodes.The feedback loop
contains a second-order damped oscillator, an integrator, an
adder, and two amplifiers. Our controller is much simpler.
It is a two-terminal first-order device with the same voltage
sensing and current application electrode.The controller con-
tains a single capacitor and a negative impedance converter
(NIC) based on a single operational amplifier.The NIC is not
necessary, if the buffer resistance 𝑅𝑔 is small.

In addition, a recently found phenomenon of oscillation
quenching in the systems of coupled nonlinear oscillators is
worth mentioning [55–58]. It can manifest via two different
mechanisms, the so-called oscillation death and amplitude
death. The effect, in particular the oscillation death, can be
perspective for oscillation suppression in neuronal disorders,
such as the Parkinson’s disease and essential tremor.This type
of oscillation quenching depends on the intrinsic parameters
of the individual oscillators, but even more on the way and
the strength of coupling. The parameters of the oscillators
and the parameters of coupling can be easily controlled in
the artificially made physical, chemical, electronic, and so
on systems. However, these parameters are difficult to tune
in natural, for example, biological, systems. Therefore, the
techniques employing external feedback loops seem to be
advantageous solutions.

7. Conclusions

An array of coupled neuronal type oscillators, specifically
the FitzHugh–Nagumo cells, can be stabilized by means

of a single capacitor based RC filter feedback technique.
The feedback signals become vanishingly small, when the
UFP is stabilized, similarly to the feedback suppression of
synchrony described in [47]. This can be an advantage over
the nonfeedback techniques, for example, theDBS employing
external high frequency periodic forcing.

Our future work will focus on the investigation of an
array of weakly coupled FHN oscillators (k < 𝑘th), when
stabilization of the UFP is impossible. We hope that a single
capacitor based RC filter can desynchronize oscillators in the
array, somewhat likewise to the repulsive coupling [33, 34]
and the mean-field nullifying [34, 35] techniques.
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[32] E. Tamaševičiūtė, G. Mykolaitis, and A. Tamaševičius, “Ana-
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