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Abstract

Background: Many studies have provided evidence of the existence of genetic heterogeneity of environmental
variance, suggesting that it could be exploited to improve robustness and uniformity of livestock by selection.
However, little is known about the perspectives of such a selection strategy in beef cattle.

Methods: A two-step approach was applied to study the genetic heterogeneity of residual variance of weight gain
from birth to weaning and long-yearling weight in a Nellore beef cattle population. First, an animal model was
fitted to the data and second, the influence of additive and environmental effects on the residual variance of these
traits was investigated with different models, in which the log squared estimated residuals for each phenotypic
record were analyzed using the restricted maximum likelihood method. Monte Carlo simulation was performed to
assess the reliability of variance component estimates from the second step and the accuracy of estimated
breeding values for residual variation.

Results: The results suggest that both genetic and environmental factors have an effect on the residual variance of
weight gain from birth to weaning and long-yearling in Nellore beef cattle and that uniformity of these traits could
be improved by selecting for lower residual variance, when considering a large amount of information to predict
genetic merit for this criterion. Simulations suggested that using the two-step approach would lead to biased
estimates of variance components, such that more adequate methods are needed to study the genetic
heterogeneity of residual variance in beef cattle.

Background

In most linear mixed models used in animal breeding, it is
usually assumed that residual variance is constant across
genotypes. However, recent studies have provided statis-
tical support for the hypothesis that residual variance (¢%)
is partly under genetic control, highlighting its importance
in livestock e.g. [1-4]. Comprehensive reviews on this topic
have been reported in [5] and [6].

Mackay and Lyman [7] have found strong experimental
evidence of genetic heterogeneity of residual variance in
bristle number between isofemale lines of Drosophila.
More recently, divergent selection experiments for birth
weight [8] and litter size [9] in rabbits confirmed that re-
sidual variance is genetically controlled.
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Such genetic differences in residual variance between
individuals could be exploited to obtain more homoge-
neous products and/or more robust animals by selecting
for lower residual variance. Although uniformity is an im-
portant issue in beef production, few studies have explored
the advantages of introducing this as a selection criterion
in beef cattle breeding programs. A primary concern of
beef producers is to improve uniformity of production
traits such as carcass weight, fat deposition and carcass
composition because the price paid to producers is based
on these criteria. Another interesting issue would be to in-
crease the proportion of animals within a desired range for
growth-related traits such as birth weight and mature
weight.

Genetic heterogeneity of residual variance has been inves-
tigated using structural models that can estimate genetic
effects on the mean and the residual variance in a single
step [1-3]. A free software is also available to implement
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such models under a Bayesian framework [10]. However,
computing time and estimability problems may hamper the
use of this approach in some cases.

Rowe et al. [11] employed an alternative two-step proced-
ure to study the genetic heterogeneity of residual variance
of body weight in broilers. In the first step, body weight was
analyzed with allowance for differences in residual variance
among sire families, and in the second step, the resulting
estimates of residual variance were analyzed by least squares
methods. Another approach consists in analyzing the log
squared of the estimated residuals of observations, In(é?)
[3,8,12,13]. Mulder et al. [3] reported a method to analyze
the log squared estimated residuals that is capable of esti-
mating the genetic variance of residual variance, which gives
the flexibility to account for genetic and environmental
effects at the level of each record, by assuming In(é%) as an
estimator of the residual variance, and can be implemented
in standard REML packages.

Given the standard structure of beef cattle data with a
relatively large number of progeny per sire and a few sibs
per dam, analysis of the log squared estimated residuals
should be suitable to investigate the influence of environ-
mental and additive effects on residual variance in large
populations of beef cattle. Neves et al. [14] used this ap-
proach in a exploratory work to study the genetic vari-
ability of residual variance of fifteen traits in Nellore beef
cattle, but the adequacy of this method to such data
structure still requires further investigation.

As suggested by Gutierrez et al. [12], this approach
could be particularly interesting in an initial phase of in-
vestigation, avoiding the computational time necessary
to fit high-dimensional structural models with extremely
large datasets [6]. In addition, a simulation study using
the unbalanced structure of a real beef cattle population
may provide additional arguments in favor of the ad-
equacy of this approach to study the genetic variability
of residual variance of beef cattle traits.

Thus, the objectives of this study were: (1) to investigate
the influence of additive and environmental effects on re-
sidual variance of two traits related to body weight in a
large Nellore beef cattle population using a two-step ap-
proach and (2) to apply a Monte Carlo simulation of the
second step, to assess the reliability of variance component
estimation and the accuracy of estimated breeding values
for residual variation.

Methods

Data

We used data from the Alianga Nelore database, compris-
ing records from 382 Nellore herds raised with pasture
systems in Brazil and Paraguay, collected from 1996 to
2009. Weight gain from birth to weaning (GBW, in kg)
and long-yearling weight (YW, measured at about 550
days of age, in kg) were chosen as traits for this study.
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Homogeneity in GBW is an important criterion because
animals with too low weights at weaning are not desired
and animals with very large weights tend to have poorer
performances in the subsequent period of food restriction
(dry season). Likewise, more uniformity in YW would be
valuable to avoid the penalties that are applied for carcass
weights outside the optimum range.

Mulder et al. [3] investigated the genetic heterogeneity
in residual variance of body weight in broiler chickens and
fitted each sex separately, because variances in males and
females differed greatly. In the present study, although the
coefficients of variation were similar for both sexes,
phenotypic variances were about 29% higher in males for
GBW and 67% higher for YW. Since one of our objectives
was to investigate the need for sex-specific analyses, het-
erogeneity of environmental variance was analyzed separ-
ately for each sex and the results were compared with
those from a single analysis of records from both sexes.

For both traits, contemporary groups (CG) were defined
based on concatenations of herd, year, and season of birth,
sex, date of measurement, and management group. Genetic
connectedness among CG was verified using the AMC soft-
ware [15]. Briefly, this program evaluates connectedness
among CG on the basis of total direct genetic links between
them due to common sires, common sires and dams, or
any common ancestor, in a way that genetic links are
weighted by the corresponding additive relationships. A
minimum of ten direct genetic links was required to include
a CG in the set of connected groups that were included in
the estimation of the variance components.

To reduce the impact of outliers on the estimates of
variance components, only records within the range of
the trait mean + 3.5 SD were considered. In all analyses,
only records for animals reared in CG with a minimum
of 25 animals and sired by bulls with at least 50 progen-
ies were considered in both steps (described in the next
sections).

Information on the number of levels of fixed effects (CG),
number of sires, number of dams and average progeny size
of sires after data editing is presented in Table 1.

Step 1
Univariate animal models were fitted using the ASREML-R
package [16], in order to estimate variance components and
to obtain solutions for fixed and random effects relevant to
each trait. In addition to CG, other identifiable environmen-
tal effects that significantly affected the traits in this study
were considered as fixed effects. For the analysis of GBW,
animal age, birth date within birth season and age of dam
at calving (according to the calf’s sex) were taken in account
by fitting appropriate covariates. Animal age (linear and
quadratic effects) was included in the analysis of YW.

In matrix notation, the model used to analyze GBW
can be represented as:



Neves et al. Genetics Selection Evolution 2012, 44:19
http://www.gsejournal.org/content/44/1/19

Table 1 Summary statistics pertaining to weight traits in
Nellore beef cattle

Trait Datasett N Ncg Ns Np Np Mean CV Skew Kurt
(kg) (%)
GBW males 22892 358 93 20139 246 14748 1611 —0.13 028
GBW females 23421 373 101 20749 232 13326 1572 —0.10 035
GBW both 51179 808 144 40485 355 14026 17.04 —001 046
YW  males 8944 211 45 8044 199 27749 1464 044 034
YW females 11915 262 64 10585 186 25642 1227 032 0.19
YW  both 28560 638 118 22154 242 27803 1496 058 0.89

GBW =weight gain from birth to weaning (in kg); YW =long-yearling weight (in
kg); N =number of records per trait; Ns=number of sires; Np=number of
dams; Ncg = number of levels of contemporary groups; Np = average size of
progeny group of sires; CV = coefficient of variation (in %); Skew and

Kurt = coefficients of skewness and kurtosis for the distribution of the raw data,
respectively; *for each trait, analyses were carried out separately with data of
males or females and also with a dataset containing records of both sexes.

y=Xb+ Zia+ Zym+ Wc+e, (1)

in which: y=vector of observations; b=vector of fixed
effects; a =vector of direct additive genetic effects; m = vec-
tor of maternal additive genetic effects; ¢ = vector of mater-
nal permanent environmental effects; e = vector of residual
random errors associated with observations. X, Z;, Z, and
W are incidence matrices that associate b, a, m and c to y,
respectively. The assumptions of this model are:
y Xb

a
E=|m|=1]0
C
e

|4
I, QR

o o I

where: G = matrix of genetic covariances between direct
and maternal effects, A =numerator relationship
matrix, ¢°. = maternal permanent environmental vari-
ance, I4 = identity matrix of order equal to the number
of dams, I,, = identity matrix of order equal to the num-
ber of observations, R = residual (co) variance matrix. It
was assumed that G = [02“ og”‘

] , where o7, = vari-
am o m

ance of direct additive genetic effects, o7, = variance of
maternal additive genetic effects, and o,,, = covariance
between maternal and direct additive genetic effects.
Since only a few dams had more than one offspring of
each sex with information on GBW, the maternal per-
manent environmental effect was not included when the
information of each sex was considered separately be-
cause the data structure would not allow adequate esti-
mation of this parameter. Also due to the data structure,
O.m Was set to zero in all analyses (most dams had no
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data for their own performance and a large number of
sires had no maternal grandprogeny records).

In order to estimate the effect of allowing for het-
erogeneous residual variances in the first step, a first
set of analyses was carried out by assuming a homo-
scedastic model (HOM). Then, an equivalent set of
analyses was carried out, allowing for different re-
sidual variances for each sire family (model HET).
Therefore, matrix R of equation 1 is a diagonal
matrix, in which the elements are either equal to o
(model HOM) or equal to ¢’ (model HET), where
0’ is the residual variance specific to the progeny of
the j'™ sire.

The model used to analyze the YW trait included only
direct additive effects and residuals as random effects.
This model was chosen because including both types of
maternal effects described in equation (1) did not im-
prove model fitting (evaluated by the statistics Akaike In-
formation Criterion (AIC) and the Bayesian Information
Criterion (BIC)).

Thus, variance components for GBW and YW were
estimated by considering different sources of data (i.e.
data from males, females or both sexes) and different
assumptions on residual variance in the first step (i.e.
HOM or HET model). In addition, 10-fold cross-valid-
ation was performed to investigate the predictive ability
of the HOM and HET models for each analyzed dataset.
In this case, each dataset was randomly partitioned into
10 disjoint subsets, each with approximately one tenth of
the records. In each case, nine of the subsets were used
for model fitting (training set), after which the observa-
tions in the remaining subset were predicted (testing set)
and the mean squared error (MSE) of prediction was cal-
culated. At the end of this process, the average of the
MSE was calculated, with the estimates of MSE obtained
separately for each testing set.

Step 2

Solutions obtained in the first step were used to estimate
the residual (é) for each observation. For each trait, log
squared estimated residuals, In(é*), were used as a meas-
ure of the residual variance, as discussed previously.

In order to investigate the influence of fixed effects (CG)
and additive genetic effects on the residual variance of
GBW and YW, different models were fitted to the log
squared estimated residuals in ASREML-R. The full model
of the second step can be represented by:

In(&?) = Xb* + Zia* + Zym" + (2)

where In(é*) =vector of individual log squared estimated
residuals for the trait analyzed; b’ = vector of fixed effects;
a’ =vector of direct additive genetic effects; m" = vector of
maternal additive genetic effects, and € = vector of residual
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random errors associated with the log squared estimated
residuals. Assumptions of model (2) were:

[ n(&?) Xb*
E=| % =1, |
€ 0
-
%] [eea o
V= " { 0 1,@13*]

where: G =matrix of genetic covariances, A =numerator
relationship matrix, I,, =identity matrix of order equal to
the number of observations, R = residual variance (c%€).

2

o 0

Avexp , where
0 0% m, exp

It was assumed that G* = {
GZAV,W, is the variance due to direct additive genetic
effects and 0%,,., is the variance due to maternal addi-
tive genetic effects on the log squared estimated resi-
duals. As in the first step, maternal effects only improved
model fitting for GBW (according to AIC and BIC) and
thus were not considered in the case of YW.

Results from model (2) and reduced models were com-
pared to evaluate the importance of including direct
additive genetic effects and maternal additive effects in
the analyses of the log squared estimated residuals. A
likelihood-ratio test was applied to assess the significance
of considering additive genetic effects at the level of re-
sidual variance. The statistics BIC and AIC were also cal-
culated, in order to penalize models with a larger
number of parameters.

Genetic parameters for residual variation

Two parameters, namely evolvability of residual variance
(Ev) and heritability of residual variance (h*,) were calcu-
lated in order to measure the strength of genetic variation
on residual variance and also to compare our results with
those of previous studies. Because the additive variance
estimates (0%ay,exp) from the second step were expressed on
an exponential scale, they were transformed as proposed by
[3] into estimates on the scale of residual variance (i.e.
d”4v), which were used to compute Ev.

Evolvability was proposed by Houle [17] to quantify
the possibility of changing the mean of a trait by selec-
tion. In the present context, Ev reflects the opportunity
to change the average residual variance by selection. Ev
was calculated as an additive coefficient of variation
(Ev=04y / 0°). Parameter o, is an estimate of the re-
sidual variance and was equal to the REML estimate of
residual variance for the HOM model and the average of
residual variance among sire families for the HET model.

The heritability of residual variance (h?) was derived by
[5] as a regression coefficient of breeding values for residual
variance (4,) on squared phenotypes and it has been used
as a central parameter in calculation of the accuracy of
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predicted breeding values for residual variance (ra,a,)-
Here, h®v was calculated as reported in [3], while the herit-
ability of In(¢®) and its standard error (s.e.) were directly
estimated on a log scale and were used to approximate the
standard error of h?,.

The Pearson’s correlation coefficient between estimated
breeding values (EBV) of sires for the mean and for log
squared estimated residuals was calculated to provide a
rough indication of the genetic association between these
criteria, since direct estimation of this parameter is not feas-
ible with the two-step approach. Because this estimate is
dependent on the accuracy of EBV, only sires with more
than 50 progeny were used, in order to reduce this source
of bias.

Simulation study
Observed pedigree
The data structure of the population described previ-
ously was used to simulate trait Y. Twenty replicates
were simulated for each scenario described below. We
considered animals of both sexes with information on
YW (Table 1).

For individuals with records, trait Y, expressed in kg,
was simulated as follows:

yi/' = bmi —+ am,«j + exp((bvi —+ (ll/l‘]*) /2) 6,']‘,

where b,,; is the fixed effect simulated for the i CG,
am; is the breeding value of animal j for the mean of Y
and the last term replicates random residual effects
according to the exponential model described by San-
Cristébal-Gaudy et al. [1]. At the level of the log of re-
sidual variance, we simulated a fixed effect due to the i
CG (b,;), the breeding value of jth animal (av;) and ¢; is
independent and identically distributed as N (0;1).

With the aim of mimicking the real effects of CG on
the mean and the residual variance of Y, CG effects b,
were drawn from a uniform distribution defined by U
(300;400) and values for b, were drawn from a uniform
distribution U(5.40;5.80).

For the founder animals, am and av were simulated
from a MVN(0,G,,y), in which G, = {02“ 20””’ } ,

Omy 07 Av,exp
with 6%,=200 and 074,., equal to 0.01, 0.09 or 0.25.
The covariance between direct additive genetic effects on
the mean and the residual variance (o,,,) was simulated
such that three scenarios for the additive genetic correl-
ation between the mean and the residual variance of Y
could be investigated (r,,, = —0.50; 0 or 0.50).

For subsequent generations, breeding values of non-
founder animals were simulated as the average of the
breeding values of the sire and dam plus a random
Mendelian sampling term.
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Accordingly, the expected value of the environmental
variance (0%) is equal to exp(b,)*exp(6”ay,exp/2). Thus, Y
was simulated to resemble a trait with heritability around
0.40, a mean equal to 350 kg and a phenotypic variance
of about 480 kg’ (because the value simulated for 6%4,,cxp
affects the expectation of o°, and the values for heritabil-
ity and phenotypic variance vary depending on 6%4,,c., )-
According to formulas in [3], the parameters simulated
at the level of the log residual variance, when converted
to the scale of the residual variance, result in Ev equal to
about 10%, 30% and 50%, depending on the value simu-
lated for 04,,cx, (0.01,0.09 or 0.25, respectively) .

The two-step approach described in the previous section
was used to analyze each replicate of the simulated data.
In the first step, an animal model was fitted, including CG
as fixed effect, considering two scenarios for residual vari-
ance HOM or HET. In the second step, models with the
same definition as equation (2) were employed, except that
maternal additive effects were not included. Estimates of
0”Av,exp according to each model were compared with cor-
responding true values. The accuracy of prediction of
breeding values for log squared estimated residuals was
assessed with the Pearson’s correlation between estimated
and true breeding values, by considering only sires, only
dams and all animals in the pedigree.

Simulated pedigree

In order to investigate the adequacy of the methods pro-
posed here with a more balanced dataset, the same simula-
tion parameters as described in the previous section were
used to simulate five generations of an artificial population
with 25 000 records. The base population consisted in
5 000 dams and 100 sires. At each generation, sires
(dams) had 50 (1) offspring and records were distributed
across 100 CG, such that each CG included the progeny of
five sires, each with 10 sons. The simulation process con-
sidered a 20% replacement rate for both sexes per gener-
ation, assuming random mating and no selection. Data
were analyzed and results were compared in the same way
as described in the previous section.

Results
Step 1
Summary statistics of data for GBW and YW are pre-
sented in Table 1. The values for skewness and kurtosis
indicate an approximate normal distribution of data for
GBW and a slightly positively skewed distribution in the
case of YW (Table 1), for both males and females.
Although the estimates of variance components were
very similar for models HOM and HET for both GBW
and YW, model HET had a better fit according to AIC,
while model HOM provided a better fit according to BIC
(Table 2). As a general rule, model HOM had slightly
lower average MSE than model HET, which indicates
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that model HOM has a higher predictive ability. The
only exception was for GBW in the dataset with female
records, for which model HET performed slightly better
in terms of predictive ability.

When each sex was analyzed separately, estimates of dir-
ect heritability (h?) were higher for males than for females
(about 12% and 33% for GBW and YW, respectively) for
both models HOM and HET. Higher estimates of average
residual variance and genetic additive (direct and maternal)
variance were also obtained for males than for females, pos-
sibly because of scale effects. When the data on males and
females were considered jointly, the estimates of h® (s.e.)
were similar for models HOM and HET, ie. about 0.12
(0.02) and 0.41 (0.03) for GBW and YW, respectively.

Step 2

If the residuals from the first step are normally distribu-
ted, their squares will follow a x* distribution [6]. For
both GBW and YW, the distributions of the log squared
residuals were close to the log of a chi-squared variable,
(skewness about —1.5 and excess kurtosis about 1.0), re-
gardless of whether model HET or HOM was fitted in
the first step (data not shown), and whether female or
male records were considered.

Estimates of variance components and related para-
meters obtained from the second step are presented in
Table 3, as well as the results for information criteria.
When a heteroscedastic model was fitted in the first step
(HET), results of likelihood-ratio tests indicated that fit-
ting additive genetic effects at the level of the (log) re-
sidual variance significantly improved model fitting
(P <0.0001), compared to a situation in which only fixed
effects were considered, for both GBW and YW and re-
gardless of the source of information (males, females, or
both). The same conclusion holds when such models are
compared using information criteria (AIC and BIC,
Table 3).

Conversely, the influence of additive genetic effects on
residual variance was weaker when model HOM was fit-
ted in the first step. Information criteria did not favor
the model with additive effects on residual variance for
YW, regardless of the source of information (males,
females, or both), while these criteria only favored the
model with additive genetic effects on the residual vari-
ation of GBW when records of both males and females
were analyzed jointly (GBW/B, Table 3).

For both traits, estimates of additive variance for the
log squared estimated residuals from model HET were at
least 12-fold larger than comparable estimates from
model HOM (Table 3). In addition, estimates of 0%ayexp
obtained after fitting model HOM in the first step were
very close to zero and, given the magnitude of their
standard errors, they did not provide reasonable evi-
dence of additive variance on In(é®). For all traits,
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Table 2 Results of variance component estimation according to trait, sex” and residual variance structure™

Trait/Sex Model o’ o’ h%y m o’ AIC BIC MSE
GBW/M HOM 44 (9) 226 (8) 0.12 (0.02) 113 (7) 157113 157137 380.54
GBW/M HET 44 (8) 225 (8) .11 (0.02) 120 (7) 156986 157748 381.22
GBW/F HOM 31 (6) 193 (6) 0.10 (0.02) 78 (5) 155334 155358 305.67
GBW/F HET 31 (6) 192 (7) 0.10 (0.02) 84 (5) 155163 155992 305.51
GBW/B HOM 44 (7) 209 (4) 0.12 (0.02) 53(12) 47 (12) 346263 346298 33794
GBW/B HET 42 (6) 212 (7) 0.12 (0.02) 58 (12) 47 (12) 345807 347105 338.17
YW/M HOM 308 (58) 292 (44) 0.51 (0.08) 64302 64316 569.00
YW/M HET 2 (58) 268 (18) 0.54 (0.05) 64267 64593 569.19

YW/F HOM 177 (24) 281 (18) 0.39 (0.05) 82970 82985 439.54
YW/F HET 183 (24) 279 (12) 040 (0.03) 82907 83386 439.97
YW/B HOM 220 (15) 310 (11) 042 (0.03) 202426 202443 499.54
YW/B HET 8 (15) 306 (10) 042 (0.02) 202249 203229 500.04

“GBW = weight gain from birth to weaning; YW = long-yearling weight; M = males; F =females; B=both sexes;

- B N -
HOM = model with homogeneous residual variance;

HET = model allowing for differences between sire families in residual variance; 0°, = estimated variance for additive direct genetic effect for the mean of each trait;
0% = estimated residual variance (average residual variance among sire families), in the case of model HOM (HET); 6%, = estimated variance due to maternal
additive genetic effects for the mean of GBW; o = estimated variance due to maternal permanent environmental effects for the mean of GBW; AIC = Akaike
Information Criterion; BIC =Bayesian Information Criterion. MSE = average mean squared error of prediction based on a 10-fold cross-validation; standard errors are

presented between brackets.

regardless of the animal’s sex, a 95% confidence interval
for 0%syexp did not include zero when the first step
accounted for differences between sire families in re-
sidual variance.

In the case of GBW, taking into account both direct
and maternal additive effects improved the model fitting
in the second step. When model HOM was fitted in the
first step, estimates of the maternal additive effect for
In(é*) were between 40% and 80% larger than those
obtained when model HET was fitted in the first step.

Under model HET, 0%y, estimates were at least two-
fold higher in males than in females. For a same trait, the
0’avexp estimated for females was close to that obtained
when records of both sexes were analyzed jointly (Table 3).

Estimates of Ev were less than 13% in all situations when
model HOM was fitted in the first step but were as high as
65% and 78% for GBW and YW, respectively, when only
the data from males were considered and model HET was
fitted in the first step. Interestingly, for both GBW and YW,
Ev estimates were around 43% in situations when only
records of females were considered and also when records
of both sexes were combined (Table 3).

Values of the heritability of residual variance (h?,) were
always less than 0.5% under model HOM, while they
ranged from 3 to 6% when model HET was fitted. Again,
h?, estimates were higher in males than in females, for
both GBW and YW. The approximated standard error of
h?, was small when model HET was fitted in the first
step (data not shown), such that the 95% confidence
interval did not include zero.

In general, the Pearson’s correlation between the sire’s
EBV for the mean and for the log squared estimated

residuals was positive and low (below 0.40). The only ex-
ception was for YW in males, for which the estimated
correlation was very close to zero (Table 3).

Simulation study

For both sets of simulations (using observed or simu-
lated pedigrees), the estimated variance components for
the mean of the simulated trait were in reasonable agree-
ment with the simulated (true) values, such that the ab-
solute values of the relative bias for estimates of additive
variance and residual variance were at most 3.7% and
1.7%, respectively (data not shown). Also, there was no
evidence that fitting model HET instead of model HOM
in the first step resulted in estimates of residual variance
closer to the simulated values, for all scenarios of addi-
tive variance, residual variance and correlation between
mean and residual variance.

In the simulations using the observed pedigree and for
all scenarios, estimates of additive variance obtained in
the second step were biased. If model HOM was fitted in
the first step, the estimates of 0”5y, were biased down-
wards (between 35%—60% lower than the true values)
(Table 4) and if model HET was fitted in the first step,
they were biased upwards, although the amount of rela-
tive bias was larger for model HET, in all scenarios.

With a more balanced design (simulated pedigree), the
amount of bias in estimates from the second step was
similar to that obtained in the simulations using the
observed pedigree (Table 4). The only major difference
was found for model HOM and if the true value of
0°Avexp Was equal to 0.01. In this case, 0°sycx, Was under-
estimated in the simulation using the observed pedigree,
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Table 3 Estimates of parameters related to the residual variance of weight traits in Nellore beef cattle
Trait/Sex” Model™ Oavexp Omexp dAIC dBIC 0%y Ev(%) h?,(%) Fv
GBW/M HOM 0.0165 0.549 0.19 8.2 372 8.54 0.13 0.23
(0.02) (0.09)
GBW/M HET 1.07 0.297 -276 —285 21500 65.20 587 0.21
(0.19) 0.11)
GBW/F HOM 2E-7 0.105 2 10 0.00 0.03 0.00 0.12
(0.00) (0.08)
GBW/F HET 0495 0.0614 =121 =129 7030 43.80 3.37 0.26
(0.10) (0.09)
GBW/B HOM 0.0404 0.265 -16 =71 730 12.90 039 027
(0.02) (0.04)
GBW/B HET 0476 0.189 -350 —340 8570 43.70 3.89 0.27
(0.07) (0.05)
YW/M HOM 2E7 2 9.1 0.01 0.03 0.00 0.12
(0.00)
YW/M HET 1.68 -240 -230 44400 78.70 5.50 -0.01
(032
YW/F HOM 0.0277 0.83 82 881 10.60 0.21 0.21
(0.03)
YW/F HET 0457 =79 =71 14200 42.70 3.02 0.36
0.11)
YW/B HOM 0.0193 —0.002 8.2 740 8.77 0.13 0.25
(0.02)
YW/B HET 0473 -195 -187 17300 43.00 2.89 0.23
(0.08)

“GBW = weight gain from birth to weaning; YW = long-yearling weight; M = males; F =females; B = both sexes; "HOM = assuming homogeneous residual variance in
model (1); HET = model allowing for differences between sire families in residual variance. 0%y,ex: €stimated additive genetic variance for log squared of estimated
residuals, In(&?); 0%m,exp’ €stimated maternal additive genetic variance for In(é%); 0% :estimates of additive genetic variance on the scale of the residual variance
(0%), assuming the quantitative model for genetic heterogeneity of o’ [5]; Ev: evolvability of 6% in %; h%: heritability of 6%; rm,: Pearson’s correlation between sire
EBV for mean and for o”; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; dAIC (dBIC): difference between the AIC (BIC) obtained for a
model considering additive genetic effects on In(¢% and the AIC (BIC) of a model only with fixed effects; negative values indicate that better fit was obtained with
the model considering genetic heterogeneity on In(é%); standard errors are presented between brackets.

while it was overestimated in the simulation using the
simulated pedigree.

For both sets of simulations, when heterogeneous residual
variances among sire families were accounted for in the first
step, the higher the simulated values for sy the lower
the amount of relative bias, which was not observed for
model HOM (Table 4). It should be noted that when a
small value was simulated for 0., (i.e. 0.01), this param-
eter was overestimated almost 20-fold (30-fold) under
model HET compared to the true value in the case of simu-
lations using the observed (simulated) pedigree. Similarly,
the higher the values simulated for 6”syey» the closer the
agreement between the true additive genetic correlation be-
tween mean and residual variance and the estimates based
on Pearson’s correlation between estimated breeding values
for these criteria (r 1), regardless of the assumptions about
residual variance in the first step.

In the simulations using the observed pedigree, average
accuracies of predicted breeding values for the log squared
estimated residuals were in reasonable agreement with the
expected values calculated according to formulas in [3],
given the amount of information available and the values
simulated for the heritability of residual variance (h?). In
general, meaningful values (above 0.50) were observed only
for accuracies averaged across all sires when 0%y, Was
greater than 0.09 (Table 5). Regardless of the value simu-
lated for the correlation between mean and residual vari-
ance, the highest average accuracy was about 0.30 when
considering the EBV of all animals and around 0.15 when
considering only dams, which was for the scenario in which
0Avexp Was equal to 0.25. The values obtained in the simu-
lation using the simulated pedigree were very similar to
those obtained in the simulation using the observed pedi-
gree and are therefore not presented.
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Table 4 Bias in estimation of 6., and correlation between mean and residual variance for a simulated trait *

Observed pedigree

Model fmv 0%av,exp=0.01 0%Av,exp=0.09 0%Av,exp=0.25
Bias (%) rmv Bias (%) rmv Bias (%) rmv
HOM -0.5 -372 -0.13 —554 -0.26 585 -032
(162) (0.03) (5.2) (0.02) (27) (0.02)
HET -05 18424 -0.15 302.8 -0.29 1699 -035
(101.5) (0.02) (20.2) (0.02) (51.8) (0.02)
HOM 0 -354 0.02 —53.7 0.01 —55.1 0.02
(12.9) (0.02) (5.2) (0.02) (33) (0.02)
HET 0 1957.8 0.00 2912 0.01 1424 0.02
(160.3) (0.02) (17.3) (0.02) (10.1) (0.02)
HOM 05 —44.5 0.11 —61.9 0.21 -564 030
(18.1) (0.02) (4.8) (0.02) (27) (0.02)
HET 05 18200 0.13 3114 026 1315 034
(184.4) (0.02) (24.8) (0.02) (89) (0.02)
Simulated pedigree
Model Yoy 0’av,exp=0.01 0’av,exp=0.09 0 av,exp=0.25

Bias (%) v Bias (%) r'mv Bias (%) r'mv
HOM -0.5 68.30 —-0.05 —45.74 -0.20 —53.37 -0.26
(40.80) (0.02) (562) 0.01) (3.35) (0.02)
HET -05 2993.04 -0.08 389.63 -0.23 13373 -0.30
(156.76) (0.02) (18.90) (0.01) (13.85) (0.02)

HOM 0 56.29 -0.03 -51.58 -0.02 -50.35 0.01
(42.09) (0.02) (5.07) (0.02) (3.46) (0.02)
HET 0 3062.76 0.02 361.38 0.01 136.38 -0.02
(131.99) (0.02) (18.28) (0.01) (7.77) (0.02)

HOM 05 1147 0.05 —47.80 0.21 —-52.36 027
(34.49) (0.02) (5.99) (0.01) (3.90) (0.01)

HET 05 2684.63 0.08 363.39 023 108.27 031
(184.43) (0.01) (19.62) (0.01) (16.81) (0.01)

" Results obtained after analyses of log squared estimated residuals under different scenarios, given as mean (s.e.) of 20 replicates. Each scenario is characterized
by the simulated values for additive genetic variance on residual variance (azA\,,exp), according to the model postulated by [15] and for the additive genetic
correlation between the mean and the residual variance of the trait. Homoscedastic (HOM) or heterogeneous residual variances among sire families (HET) were
assumed in the model for the mean of the trait (first step of analyses); simulations employed either the observed pedigree structure or a simulated pedigree; bias
(%) =relative bias, computed as deviation between the estimated and the simulated value for ozAvrexp, as percentage of the simulated parameter; ry,,, - simulated
value for additive genetic correlation between the mean and the residual variance of the simulated trait; r },,, = Pearson’s correlation between sire EBV for mean

and for residual variance.

In general, comparing the accuracies obtained when
model HET versus HOM was fitted in the first step
shows that allowing for heterogeneous residual variances
in the first step resulted in higher accuracies of predicted
EBV for In(é) for sires (between 8% and 20% higher)
(Table 5).

Discussion

Genetic parameters for the mean

Parameters associated with additive genetic effects on GBW
and YW means obtained after the first step of this study are

consistent with results of previous studies reporting low to
moderate estimates of heritability for direct and maternal
effects on pre-weaning growth traits [18,19], and moderate
to high values for YW [20,21] in Nellore cattle.

When analyses were carried out separately for each
sex, heritability estimates were higher in males, for both
GBW and YW (notably in the case of YW). Conversely,
heritability estimates were higher in females for yearling
weight gain in Holstein cattle [22], body weight in broiler
chickens [3,23], and slaughter weight in pigs [4] and such
discrepancies deserve further investigation.
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Table 5 Average accuracy of prediction of breeding values for log squared estimated residuals for a simulated trait "

azAv,exp =0.01

0%av,exp = 0.09 0%av,exp=0.25

Model v All Sire Dam Sire Dam All Sire Dam
HOM -0.5 0.11 0.20 0.05 025 0.50 0.12 029 063 0.14
(0.02) (0.02) (0.01) 0.01) 0.01) (0.00) (0.01) 0.01) (0.00)

HET -05 0.1 0.23 0.05 0.26 0.57 0.11 0.30 0.70 0.14
(0.01) (0.02) (0.00) (0.01) (0.02) (0.00) (0.01) (0.02) (0.00)

HOM 0 0.16 0.20 0.07 0.26 047 0.12 0.31 0.64 0.15
(0.02) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01)

HET 0 0.13 022 0.06 0.27 0.55 0.12 0.31 0.71 0.15
(0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

HOM 05 0.12 021 0.05 022 044 0.10 030 063 0.15
(0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.00)

HET 05 0.12 023 0.05 023 053 0.10 030 0.70 0.14
(0.01) (0.02) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00)

“Results given as mean (s.e.) of 20 replicates; accuracies were computed as Pearson’s correlations between estimated and true breeding values, by considering only
the sires (sire), only the dams (dam) or all animals in the pedigree (all); results pertain to simulation using the observed pedigree structure; each scenario is
characterized by the simulated values for additive genetic variance on residual variance (0%y,ex,) and for the additive genetic correlation between the mean and
the residual variance of the trait (r,,,); homoscedastic (HOM) or heterogeneous residual variances among sire families (HET) were assumed in the model for the

mean of the trait (first step of analyses).

Genetic parameters for the residual variance

Results from the second step showed stronger evidence
for genetic heterogeneity of residual variance if heteroge-
neous residual variances were allowed for in the first
step, although more extensive comparisons could not be
made based on restricted likelihood, e.g. comparison of
models that assume different combinations of fixed
effects on residual variance.

Similar to results reported by [3], it is not clear
whether fitting a model with heterogeneous residual var-
iances among sire families in the first step provides a
better fit, for both GBW and YW. Although AIC favored
model HET, support for the HET model was weaker
than for the HOM model when a more severe penalty
for complexity (BIC) was applied. In addition, model
HOM had a slightly higher predictive ability. This lack of
agreement between AIC and BIC could indicate that re-
sidual variances are estimated with low precision, rather
than weak evidence for genetic heterogeneity of residual
variance [3]. Based on this argument, imposing a mini-
mum progeny size for sires to be considered in the ana-
lysis seemed a natural choice. However, given the typical
data structure of beef cattle populations, imposing this
type of restriction would make it more difficult to obtain
a representative sample of sire families, especially if add-
itional restrictions with respect to the time period in
which data are collected are made.

Genetic parameters for residual variance in this same
population were estimated in an exploratory study [14],
in which model HOM was fitted for 15 traits considering
records on both sexes and most estimates of Ev were

between 15 and 25%. In the present study, estimates of
Ev for comparable models were lower (about 13% and
9% for GBW and YW, respectively), which may be
explained by the fact that the records considered cover a
shorter period of time than in [14].

Despite this, results of both studies suggest that gen-
etic additive effects act on the residual variance, while
there is reasonable evidence of both genetic and environ-
mental heterogeneity of residual variance for traits
related to body weight in other livestock species, such as
broilers [3,11,23], rabbits [8] and pigs [4].

The estimated Ev under model HET were more consist-
ent with previous estimates for body weight in other spe-
cies [5,6], while model HOM provided lower estimates. In
broilers, [3] and [23] applied approaches similar to those
in this study and reported Ev estimates ranging between
35 and 55%, depending on the animal’s sex, while [11]
reported coefficients around 30%, but with a different ap-
proach. In pigs, estimates of Ev were about 34% for body
weight at slaughter [4] and in rabbits, about 25% for birth
weight [8]. The low h’v estimates obtained for both GBW
and YW are in agreement with value ranges reported in
previous studies [5,6], which means that a large amount of
information is needed to predict accurately the EBV for re-
sidual variance.

Nevertheless, given the magnitude of the estimated Ev
for weight gain from birth to weaning and long-yearling
weight, when model HET was fitted in the first step, a
meaningful response to selection on EBV for residual
variance of these traits would be expected in the case of
large sire families.
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Results from other studies also indicate that selection on
EBV for residual variance can improve uniformity. In broi-
lers, [3] predicted reductions up to 20-30% in residual vari-
ance of body weight after one generation when selecting
only on this criterion. Empirical evidence for this approach
comes from the divergent selection experiment reported by
Garreau et al. [8], in which, after four generations of selec-
tion there was a difference of 27.3% between lines in
within-litter variance of birth weight in rabbits.

Considerable differences between males and females
were observed in genetic parameters for residual vari-
ation. Similar results were also reported by [3], which
suggested that residual variance has a different genetic
basis in each sex, such that using sex-specific variance
ratios could be valuable to estimate breeding values. It
was expected that, when data of both sexes were ana-
lyzed jointly, the estimates for Ev and h®v would be inter-
mediate between those obtained for each sex, however in
the present study, the resulting estimates were very close
to those obtained for females under model HET.

Although this question deserves further investigation,
using a well-designed dataset, implementing sex-specific
analyses is not possible in situations in which the number
of progeny of each sex is small and the data structure does
not permit adequate estimation of effects at the level of re-
sidual variance. For instance, due to the restrictions
imposed on the size of contemporary groups and progeny
groups, a substantial amount of data could not be consid-
ered in sex-specific analyses (about 10% and 27% of the
records available for GBW and YW, respectively).

Genetic relationship between mean and residual variance
An important issue in selection for residual variance is the
genetic association between mean and residual variance
(rmy)- Since direct estimation of r,,, was not feasible under
the current approach, the correlation between sire EBV for
mean and residual variance (r },,) was used as an indicator
of the direction of this association, as also applied by [23].
Simulations suggested that the correlation between breed-
ing values for mean and log squared estimated residuals is
consistent with the sign of the true correlation, but the
quality of this estimate as an approximation of 1,
depended on the magnitude of the genetic variance of
residual variance.

As a general rule, estimates of ry,, were moderate and
positive for both GBW and YW. While some studies have
reported negative genetic correlations between mean and
residual variance [3,11,12,23], other authors have obtained
positive values for this correlation [12,24] for traits related
to body weight in different species.

Adequacy of the two-step approach
The two-step approach applied in the present study made
it possible to estimate the genetic variance of residual
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variance in a relatively large population, but the simula-
tions suggested that the investigated models provide biased
estimates of genetic parameters for residual variance. The
similar pattern of bias found for simulations with simu-
lated and observed pedigrees suggests that this bias may
be caused much more by the nature of the two-step ap-
proach than by data structure.

As a general rule, model HOM resulted in underesti-
mated genetic variance of residual variance, while it was
overestimated when the first step accounted for hetero-
geneous residual variances among sire families (model
HET). Thus, it is expected that true values for genetic
variance of residual variance of GBW and YW are some-
what intermediate between those obtained under models
HOM and HET.

Although the amount of bias was higher when model
HET rather than model HOM was fitted in the first step,
the accuracies of prediction were also higher for model
HET. These findings must be interpreted with caution
since the environmental noise simulated at the level of
the residual variance was only due to a fixed effect (CG),
which is probably a situation more favorable to predic-
tion of breeding values for residual variance than in the
case of real data.

An important issue when analyzing field data in a study
on genetic heterogeneity of residual variance is that, if the
data is not carefully collected for this purpose, it can lead
to severe confounding between environmental and genetic
effects, which are much more difficult to disentangle than
when the focus is on analysis of the mean of a trait [5,6].

We hypothesized that this type of confounding could
be more marked in the case of GBW, because this trait
is more influenced by maternal effects. Although more
sophisticated procedures are probably needed to provide
stronger support for the existence of genetic variance of
residual variance of beef cattle traits, we found Ev esti-
mates of comparable magnitude for both traits studied.

Yang et al. [25] verified that estimates of genetic effects
on the residual variance, and also the genetic correlation be-
tween mean and variance, ry,,, are dependent of the scale
on which the data are analyzed under a structural model.
However, it is not clear to which extent scale effects influ-
ence inferences under the two-step approach. Also, Yang
et al. [25] highlighted the importance of confirming that
normality assumptions are met when genetic heterogeneity
of residual variance is studied. One of the major problems
of the two-step approach is that, when residuals are nor-
mally distributed, their squares approach a chi-square dis-
tribution [6]. Thus, even after log transformation, the
distributions of the response variable in the second step are
negatively skewed and leptokurtic, which violate the nor-
mality assumptions of the linear mixed model and probably
explain part of the bias identified for estimates of genetic
variance of residual variance in the simulations.
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As pointed out in Wilson and Hilferty [26], it is expected
that using a cube-root rather than a log transformation of
squared residuals produces a response variable with a dis-
tribution that is closer to normal. Results of a preliminary
simulation suggested that accuracies of sire EBV for re-
sidual variance would be higher and variance components
will be less biased when using cube-root transformed
squared residuals as response in the second step, especially
when model HOM is fitted in the first step (data not
shown). Future studies could be aimed at comparing these
procedures more precisely.

The two-step approach provided some evidence of useful
genetic variability on the residual variance of GBW and
YW, but important drawbacks were identified. Thus it
would be interesting to apply more sophisticated proce-
dures in order to obtain more precise estimates of variance
components of residual variance in beef cattle. In this con-
text, structural models implemented in a Bayesian frame-
work are especially appealing, while REML approaches
[3,27] are expected to be suitable to study the genetic het-
erogeneity of residual variance in large populations. In the
present study, attempts to fit the double hierarchical gener-
alized linear model proposed by [27] did not converge. Also,
direct estimation of r,,, and an extension of heteroscedastic
models to multi-trait analyses could be the subject of future
research in order to optimize selection for both average per-
formance and increased uniformity in beef cattle.

Conclusions

Results suggest that both genetic and environmental effects
influence residual variance of weight gain from birth to
weaning and long-yearling in Nellore beef cattle and that
uniformity of these traits could be improved by selecting
for lower residual variance, when considering a large
amount of information to predict genetic merit for this cri-
terion. Stronger statistical support for the action of genetic
effects on residual variances was obtained when the model
for the mean of each trait accounted for heterogeneous re-
sidual variances among sire families. More adequate meth-
ods are needed to study the genetic heterogeneity of
residual variance in beef cattle.
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