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Millennial-scale climate change inAsianmonsoon region duringMIS 3 has been studied using stalagmite, loess, and peat sediments.
However, records frommore materials are essential to further illustrate dynamics of these events. In the present study, a time-series
of grain size covering 60–30 kawas reconstructed from lake sediments in theYunnanProvince, southwesternChina.The time-series
contains 14 obviousmillennial-scale events during the period. Onmillennial-scale, the grain size record is generally consistent with
mean stalagmite 𝛿18O from Hulu Cave, grain size of Gulang loess sequence, Chinese Loess Plateau, and Greenland ice core 𝛿18O.
The results show that the millennial-scale variation was well compared with the Dansgaard-Oeschger (DO) events, indicating that
those global events were well documented in lake sediments in the Asian monsoon region. Because the grain size can be used as a
proxy for water discharge, we suggest that signal of the DO events might be transmitted to lake evolution by Asian monsoon.

1. Introduction

Marine Isotope Stage 3 (MIS 3), with relatively warm and
wet climate and high sea level, is a particular period during
the last glacial [1, 2]. The more attractive character during
this period is the typical millennial-scale climate oscillations,
which was named as Dansgaard-Oeschger (DO) events [3, 4],
and has been extensively studied [5, 6]. To date, studies on
MIS 3 inChinaweremainly focused on howwarmor/andwet
the period was, especially on whether megalakes existed in
northwestern China during this period [7–9].

Due to the lack of suitable materials, few records have
been reconstructed to study millennial-scale climate events
during theMIS 3 inChina. Earlier studies [10, 11] have charac-
terized these events using magnetic susceptibility, grain size
of quartz, and weathering indices in Chinese Loess Plateau.
Recently, Sun et al. reconstructed two high-resolution and
precisely dated winter monsoon records by loess sequences
with high sedimentary rates, and attributed these abrupt
events to variations in Atlantic meridional overturning cir-
culation [12]. Because stalagmite can be precisely dated, more

researches [13–15] used stalagmite to studymillennial climate
events during the MIS 3, since Yuan et al. published high-
resolution stalagmite 𝛿18O records and compared them with
Greenland ice core 𝛿18O [13]. More recently, peat sediment
has also been used to investigate millennial-scale climate
changes [16]. However, lack of enough records limited the
comparison of the events between different regions and
studies on the forcing of the events during the MIS 3.

Yunnan Province is located in northwestern China and
is thus sensitive to Asian monsoon changes. In the present
study, we reconstructed climate change at a study site in Yun-
nan Province during the MIS 3, focusing on millennial-scale
events and the transmitting mechanisms of the DO signal
to lake evolution.

2. Study Area, Materials, and Methods

2.1. Longjie Silt Layers. Longjie Silt Layers [17]were located in
the lower streamof the JinshajiangRiver, which belongs to the
upper stream of the Changjiang (Yangtze) River, where the
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Figure 1: Study area, distribution of Longjie Silt Layers, and YA core site. The base map was generated using the open and free software
DIVA-GIS 7.5 (http://www.diva-gis.org/).

climate is significantly influenced by the Asianmonsoonwith
an annual precipitation of 800–1600mm. The Longjie Silt
Layers are composed of grey white-grey, yellow-grey silt, clay
silt, and clay, distributing along the Jinshajiang River between
the Sanduizi and the Baimakou (Figure 1). Its thickness is
commonly 40–50m, and the depositional environment is
supposed to be shallow lake [18]. However, the formation,
mechanism, and controlling factors of this lacustrine layer are
still unclear [19–22].

2.2. YA Core. The YA core was located on the southern
side of the modern Jinshajiang River, 57m higher relative to

present river level (101∘52󸀠56󸀠󸀠E, 25∘57󸀠34󸀠󸀠N; elevation 979m,
Figure 1). The length of core obtained from the drill site
was 91.9m and the recovery rate was >95%. An exceptional
section of the record, raised from 11.0 to 30.0m below the
core top, was selected here for study, because of being well
constrained by luminescence dating. This sediment interval
is composed of yellow-grey fine to coarse silt, namely, the
Longjie Silt Layers, which is similar in composition to the
modern sediment in the Jinshajiang River (upper stream of
Changjiang River). This unit is interpreted as a lacustrine
environment, and the vertical variation of these sedimentary
facies is depicted in Figure 2.
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Figure 2: Profile (a), OSL ages (b), and grain size variation (c–f) of YA core.

2.3. Luminescence Dating. Four samples (Figure 2) were col-
lected for optically stimulated luminescence (OSL) dating
by hammering metal cylinders of 2.5 cm (diameter) × 6 cm
(length) horizontally into cores. Sample preparation was con-
ducted under subdued red light. The light-exposed sediment
was removed from both ends of the cylinders. All samples
were pretreated with 10% HCl and 30% H

2
O
2
to remove car-

bonates and organics, respectively. To remove feldspars, the
quartz fraction of fine silty grains (4–11𝜇m) was then treated
with silica saturated fluorosilicic acid (H

2
SiF
6
) for about two

weeks [23, 24].Thepurity of the prepared quartzwas tested by
routine IR stimulation. Any sample with detectable decaying
IRSL signal above the background was reetched with H

2
SiF
6

to avoid the age underestimation that may originate from
the contamination of feldspars [25]. For equivalent dose
determination, we followed the sensitivity-correctedmultiple
aliquot regenerative-dose protocol given by Lu et al. [26],
performing on aDaybreak 2200 automatedOSL reader in the
OSL laboratory, Institute of Hydrogeology and Environmen-
tal Geology, Chinese Academy of Geological Sciences.

The concentrations of uranium (U), thorium (Th), and
potassium (K), involved in dose rate calculations, were mea-
sured by neutron activation analysis in the China Institute
of Atomic Energy in Beijing. The cosmic-ray dose rate was
estimated according to Prescott and Hutton [27]. The dose
rate of each sample was then calculated following themethod
of Aitken [28].

2.4. Sediment Grain Size. A total of 183 grain size samples
were measured at a 10 cm sampling interval. The grain size
samples were pretreated with 10–20mL of 30% H

2
O
2
to

remove organic matter, washed with 10% HCl to remove
carbonates, rinsed with deionized water, and then placed in
an ultrasonic bath for several minutes to facilitate dispersion.
The grain size spectra of the remaining terrigenous material
were measured using a Malvern Mastersizer 2000 laser-
particle size analyzer at East China Normal University. One
hundred grain size classes between 0.2 and 200 𝜇m were
exported for further analysis.

Sediment grain size is a powerful proxy for paleoenviron-
mental reconstruction because depositional interpretation
varies with sedimentary grain size and composition. Because
grain size spectra representmixtures of sediment delivered by
multiple processes, to identify the processes controlling grain
size variation, varimax-rotated, principle component analysis
(VPCA) is often employed. This method partitions the vari-
ance in the grain size data set into sediment input compo-
nents that can be interpreted in terms of processes [29, 30].

3. Results

3.1. Chronology of YA Core. Parts (a–d) of Figure 3 show
OSL decay curves of the natural dose (N) and a regeneration
dose.Their OSL signals decrease very quickly during the first
ten seconds of stimulation, indicating that the OSL signal is
dominated by the fast component. Parts (e–h) of Figure 3
show the growth curves. For all samples, the growth curves
can be well fitted using the exponential form.

The water contents decrease stratigraphically with depth
probably due to the lower part of the core being closer to the
level of groundwater because of regional uplift. In contrary,
the OSL ages from the YA core increase stratigraphically
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Figure 3: Luminescence decay (left panel) and growth (right panel) curves of Y-1 (a, e), Y-2 (b, f), Y-6 (c, g), and Y-8 (d, h), respectively.
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Table 1: Optically stimulated luminescence dating results of the YA core.

Longjie YA core Depth (m) U (ppm) Th (ppm) K (%) De (Gy) Dr (Gy/ka) Water (%) Age (ka)
Y-l 11.1 2.66 ± 0.015 12.60 ± 0.2 1.58 ± 0.05 116.21 ± 5.55 3.68 ± 0.38 12.45 ± 5 31.6 ± 2.2
Y-2 15.2 2.70 ± 0.015 11.50 ± 0.2 1.48 ± 0.05 147.86 ± 3.30 3.32 ± 0.20 20.91 ± 5 44.5 ± 3.5
Y-6 24.5 3.06 ± 0.015 15.60 ± 0.2 2.23 ± 0.05 227.31 ± 1.21 4.21 ± 0.17 30.15 ± 5 54.0 ± 5.9
Y-8 30.0 2.36 ± 0.015 13.40 ± 0.2 2.05 ± 0.05 220.57 ± 5.90 3.70 ± 0.15 27.14 ± 5 59.6 ± 7.0
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Figure 4: Grain size distribution of three samples from the Longjie Section (a–c) and three samples of modern suspended sediment (d), Lugu
Lake ((e) Wang et al., 2014), and Changjiang River delta (f).

with depth (Table 1), indicating that, within the chronological
resolution of the depth-age pairs, the sediment accumulation
rate follows a clear relationship. To establish a depth-age
transfermodel, we apply a simply linear interpolation strategy
to provide geochronological information for each grain size
sample.

3.2. Grain Size Variation. Frequency and cumulative curves
of grain size of three typical samples in Longjie Section
show a similar distribution pattern (Figure 4), indicating that
they were deposited under similar sedimentary environment.
Furthermore, we found that these frequency and cumulative
curves are similar to those of modern suspended sediment

of the Jinshajiang River (this study) and Lugu Lake near the
study area [31] but different from the modern sediment of
Changjiang River delta [32] and loess deposits.

Variation in the clay, sand, and silt fractions is subtle
in the younger sedimentary unit but more pronounced in
the older stratigraphic unit (Figure 5). The grain size VPCA
results of the individual data sets (Figure 6) indicate that the
leading components, grain size component GSC-1 and GSC-
2, account for roughly 78% of the variance in the down core
sediment samples, while the minor components (GSC-3 and
GSC-4) only account for less than 10% of the total variance.

To evaluate the environmental information included in
these stable components for further analyses, we calculate
the weighted average of the two leading components to form
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a new series, GS12, which captures 78.3% of the overall grain
size variability:

GS12 = (69.9 × GSC-1 + 18.4 × GSC-2) ÷ 78.3. (1)

The weighting coefficients are simply the percentage of
variance associated with each component. This approach
filters out the minor constituents from the grain size spectra
using the data adaptive filters defined by the first and second
components [30, 33].

4. Discussion

4.1. Interpretation of SedimentGrain Size. Thesediment of the
Longjie Silt Layers was supposed to be formed in fluvial or
lake environments [20, 34], and this hypothesis was verified
[22] by field investigation and grain size comparison between
Longjie sediment and Daihai [35] and Lugu Lake sediments
[31]. Frequency and accumulative curves of grain size of most
samples in the YA core share a common pattern, demonstrat-
ing a similar sedimentary environment through the MIS 3.
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Figure 7: Comparison of grain size in Longjie Section (a) with stalagmite 𝛿18O in Hulu Cave [36–39] (b), mean grain size of the Gulang
loess sequence, Chinese Loess Plateau [12] (c), and Greenland ice core 𝛿18O [40] (d). Thin lines represent original data, and bold lines were
filtered from 1.5 ka low-frequency pass process. Numbers labeled in (a) represent possible warm-wet events regarding Dansgaard-Oeschger
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Furthermore, we found that the VPCA factor loadings of
YA core are similar to those of shallow water sediments but
different from those of the loess and river sand (see Figure 4
in [30]). Therefore, it is inferred that the sediment of YA core
from the Longjie Silt Layers was deposited in a shallow-lake
environment (Longjie Lake).

Because the Longjie Silt Layers distribute at the cross-
point of the Jinshajiang River and Longchuan River, there
were twopossible sources of the sediment in the Longjie Lake:
(1) suspended from the Jinshajiang River and (2) trapped
from the Longchuan River. As a branch, the runoff of the
Longchuan River is only 1/60 of the runoff of the Jinshajiang
River, and its sediment loads are also much smaller. In this
context, it is supposed that fine grains might be mainly
from suspended materials of the Jinshajiang River, somewhat
similar as a flood plain of the Jinshajiang River, but the
coarse grains were possibly from the Longchuan River due to
gravitational differentiation.Thus, integrating positively from
fine particles and negatively from coarse particles (Figure 6),
the GS12 series can be an indicator of runoff variation of the
Jinshajiang and Longchuan Rivers.

4.2. Lake Evolution within MIS 3 and Its Driving Forces. In
general, GS12 variation can be grouped into two phases: great
variability before 44 ka and low variability after (Figure 5).
From60 to 44 ka, GS12 is characterized by high variationwith
distinct changes. During the earlyMIS 3, GS12 has an average
value of 0.23 with a much larger value of standard deviation,
0.73. This zone of high variability can be partitioned into
dozens of substages and all of the transitions between each

substage are abrupt. In contrast, from 44 to 30 ka, GS12
exhibits lower variation, with an average value of −0.40 and
a moderate standard deviation of 0.60. Subsequently, we
divided lake evolution within the MIS 3 period into two
stages: the first one was from 60 to 44 ka; frequent fluctuation
of the GS12 series indicates a subperiod with high-frequency
variation of water discharge and lake-level changes and the
other was from 44 to 30 ka, and it is supposed to be a
subperiodwith relatively stablewater discharge and lake level.

Because the YA core site is located within valleys of
Jinshajiang catchments, rainfall and ice melting should be
two major factors affecting river runoff. When precipitation
increased, GS12 value will increase, while melting of ice and
snow can be positively related to GS12 series. Thus, it is
inferred that GS12 variation was mainly controlled by both
monsoon precipitation and temperature on Tibetan Plateau.

Stalagmite 𝛿18O has always been used to indicate Asian
monsoon intensity [13, 36–39], although its indicative sig-
nificance is still in debate [41–45]. Herein, we compared the
GS12 with that of the stalagmite 𝛿18O in Asian monsoon
region. The results show that trends of the two time-series
are roughly consistent on millennial-scale (Figure 7(b)). The
consistence further confirms that stalagmite 𝛿18Ocan be used
as proxy of monsoon precipitation during MIS 3, and that
summer monsoon signals recorded in different materials are
comparable during the period.

To study the forcingmechanism and transmitting process
of the millennial events during MIS 3, we then compared
our GS12 with grain size variation of the Gulang loess
sequence, Chinese Loess Plateau, considering the uncertainty
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Figure 8: Monthly distributions of the precipitation and temperature of the Yuanmou (a) and Panzhihua (b) meteorological stations for
1951–2004 AD period.

of OSL dating (Figure 7(c)). These variations are comparable
between two records on millennial-scale, indicating the
common forcing of Asianmonsoon, as indicated by Sun et al.
[12]. Additionally, we also found consistence with Greenland
ice core 𝛿18O series (Figure 7(d)).

Because the summer and winter monsoon are mainly
considered as low- and high-latitude factors, respectively,
the common forcing of the two signals should be linked to
both low- and high-latitude processes. Generally, changes in
summer andwintermonsoon strengthwere attributed to shift
of Intertropical Convergence Zone (ITCZ) and strength of
the Siberia High, respectively. The northern westerly, located
in the mid- to high-latitude, can influence both the ITCZ
and the Siberia High. As indicated by earlier studies [12],
slowdown of the Atlantic meridional overturning circulation
would cause decreasing of temperature in the northern
hemisphere and strengthen the northernwesterly circulation.
Then the winter monsoon would be strengthened during the
cold periods, and the ITCZ would shift southward, causing
the weakening of the Asian summer monsoon.

We therefore summarized the linkage between lake evo-
lution recorded in the Longjie Silt Layers and commonly cli-
matic forces as follows: when the winter monsoon strength-
ened and the summer monsoon weakened, winter snow-
fall increased but summer rainfall significantly decreased.
Although melting snow would increase, because the summer
rainfall accounts for >80% of annual quantity (Figure 8),
regional water discharge significantly decreased. Due to
weakened hydrodynamics, lake sediment would become
finer. However, possibly due to incised river channels and/or
tectonic uplift, this paleolake turned far away or higher than
the river base level, causing influences from climatic change
and grain size variability significantly decreased from 60–
44 ka to 44–30 ka. More evidence and further studies will be

necessary to test the interaction between tectonic activity and
climate change in the future.

5. Conclusions

In summary, a time-series for Longjie Silt Layers during the
MIS 3 was reconstructed by grain size of lake sediments. The
record contains a series of millennial-scale events, which are
comparable with DO events in other Asianmonsoon records.
The consistence of these events in both summer and winter
monsoon records indicated common forcing of summer and
winter monsoon strength on millennial-scale during the
period. The signal was suggested to be transmitted into lake
evolution through physical relationship between climatic
changes and regional water discharges and sediment trans-
port.
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