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Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the
previous studies lack analysis andmodelling of impact factors on bicycles’ free flow speed.Themain focus of this study is to develop
multilayer back propagation artificial neural network (BPANN) models for the prediction of free flow speed and crash risk on the
separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic
condition, bicycle type, and cyclists’ characteristics) were developed. 459 field data samples were collected from eleven bicycle paths
in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing.The results show that
considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction
models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared
to those of cyclists’ characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.

1. Introduction

Traffic safety and crash risk of both motorized vehicles and
bicycles are the high-priority issues to traffic engineers and
researchers [1–4]. Recently, with the rapid growth of bicycles
(including classic bicycles and electric bicycles) in developing
countries such as Vietnam, Malaysia, Indonesia, and China,
there have been many efficiency and safety problems for
bicycle traffic flow. Although there are many significant envi-
ronmental, climate, congestion, and public health benefits for
cycling, bicycle crash is still a serious issue [5]. According to
the statistical data from the Ministry of Public Security in
China [6], the percentages of deaths and injuries of cyclists
in all travel modes have been increasing, up to around 15%
and 17%, respectively. In 2012, there were nearly 9,000 people
who died in bicycle traffic crashes in China. Therefore, the
improvement of bicycle safety is very important and urgent
for both traffic engineers and researchers.

Speed is a fundamental measure of traffic performance
of a highway system and can be widely used to describe the
condition of the traffic flow and as an input for travel time,

delay, and level of service determination [7]. Meanwhile,
speed is also an important factor in road safety. There have
been lots of studies having found that speed not only affects
the severity of a crash but is also related to the risk of being
involved in a crash [8].There is a strong relationship between
crash risk of motorized vehicles and speed under free flow
conditions [9]. Similar conclusions can also be found for
bicycle traffic flow [10]. Therefore, modelling and analysis of
impact factors on bicycle free flow speed or crash risk are very
useful and will provide the basis for improved bicycle traffic
safety.

The previous studies on bicycle speed focus on the
determination of bicycle free flow speed and speed distribu-
tion. Liu et al. [11] reported the mean of observed bicycle
free flow speed was approximately 14 kph. Wei et al. [12]
reported that the peak-hour free flow speeds of bicycle with
and without separated barrier are 18.2 kph and 13.9 kph,
respectively. According to Allen et al. [13], the bicycle free
flow speed appears to be somewhere between 10 kph and
28 kph, with the majority of the observations being between
12 kph and 20 kph. Cherry [14] found free flow speeds of
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Table 1: Descriptive statistics of model parameters.

Parameters types Designation Max Min Mean SD
Cycleway features Cycleway width (m) CW 4.60 2.27 3.46 0.74
Traffic flow parameters Bicycle flow (bicycles/h/m) FB 1364 72 590 302

Bicycle types % of BSEB PBS 42.31% 3.75% 16.78% 5.79%
% of SSEB PSS 79.59% 29.61% 53.11% 10.56%

Characteristics of cyclists

% of male cyclists PMC 92.75% 43.54% 65.64% 8.48%
% of young cyclists PYC 92.02% 22.50% 64.14% 14.13%

% of middle-aged cyclists PMAC 62.38% 4.80% 28.10% 11.82%
% of loaded cyclists PLC 30.00% 1.32% 11.19% 5.67%

bicycles in Shanghai were 18.2 kph and 13.0 kph for electric
bicycles and classic bicycles, respectively; free flow speeds in
Kunming were similar, at 17.9 kph for electric bicycles and
12.8 kph for classic bicycles. Lin et al. [15] found the free
flow speeds for both electric bicycles and classic bicycles in
Kunming were 21.86 kph and 14.81 kph, respectively. Similar
results (21.86 kph for electric bicycles and 14.81 kph for classic
bicycles) have also been found in Hangzhou by Jin et al.
[16]. In terms of bicycle speed distribution, Dey et al. [17]
proposed a speed distribution curve model under mixed
traffic conditions, including both fast-moving vehicles (e.g.,
cars/jeeps, trucks/buses, two-wheelers, and three-wheelers)
and slow-moving vehicles (e.g., bicycles and tractors). Lin et
al. [15] used the lognormal distribution to fit the heteroge-
neous bicycle speed data.Wang et al. [18] analysed the impact
of various factors on the speed of heterogeneous bicycle flow
and used normal distribution to fit the bicycle speed samples.

Most studies emphasize modelling the relationships
between free flow speed and such factors as geometric
features, traffic characteristics, traffic control, environmental
features, weather conditions, and driver’s experience and
characteristics [19–23]. However, the majority of existing
models are only applicable to predict the speed for cars [23].
The impact factors on free flow speed for motorized vehicles
are significantly different compared to bicycle traffic. To the
best of our knowledge, there was little research focus on
modelling the affecting factors on bicycles’ free flow speed.
The authors believe that this research would be helpful in
evaluating and improving the safety of bicycle traffic flow,
particularly at high heterogeneous bicycle flow locations.

The contribution of this paper is to develop artificial
neural network (ANN) models to predict free flow speed for
bicycle traffic with considering some impact factors. Four
different models, namely, Model 1, Model 2, Model 3, and
Model 4, were developed considering different categories of
contributing factors. The characteristics of different models
were analysed and compared. It is expected that the devel-
oped models may be useful for future prediction of bicycles’
free flow speed or crash risk under different cycleway features,
traffic conditions, bicycle types, and/or characteristics of
cyclists.

2. Data Collection

2.1. Model Parameters. Selection of model parameters is
a critical task to model the relationship between bicycle

free flow speed and its contributing factors. Based on the
literature review and analysis of bicycle traffic flow [16],
the input parameters of the proposed models could be
divided into the following four groups: cycleway features
(e.g., cycleway width, pavement condition, and geometric
feature), traffic conditions (e.g., flow, speed, and density),
bicycle types (e.g., electric bicycles), and characteristics of
cyclists (e.g., age, gender, and alcohol consumption). Because
the cycleway conditions are good and separated with motor-
ized vehicle by barriers at the survey sites, the pavement
conditions and geometric features have little effect on cyclists.
Therefore, only cycleway width (CW) was considered in
the proposed models. The traffic conditions category only
includes bicycle flow per hour per meter (BF). Bicycle types
in China typically consist of three categories: classic bicy-
cle (CE), bicycle-style-electric-bicycle (BSEB), and shooter-
style-electric-bicycle (SSEB). The bicycle type parameters
hence include percentage of BSEBs (PBS) and percentage
of SSEBs (PSS). Considering the difficulty of bicycle data
collection, four characteristic parameters of cyclists including
percentage of male cyclists (PMC), percentage of young
cyclists (PYC), percentage of middle-aged cyclists (PMAC),
and percentage of loaded cyclists (PLC) were selected in this
paper. The selected input parameters of models are listed in
Table 1.

2.2. Data Survey. Field bicycle data used in this study were
collected from eleven cycleways in Hangzhou, China. The
widths of cycleway range from 2.27 to 4.60m. All of the
survey sites are straight and low gradient, located at least 100
meters away from intersection, and separated withmotorized
vehicle lane. The cameras were set up on the roadside of
the cycleway to record the operation of bicycle traffic. Video
surveillance application could record the movement of bicy-
cles and the flow and speed can be automatically calculated.
The other parameters (e.g., bicycle type and age and gender
of cyclists) could be recorded and coded manually. In this
paper, bicycle type consists of three categories: CE, BSEB, and
SSEB. Cyclists’ genders are easily distinguished and recorded
by investigator. According to cyclists’ age, the cyclists were
divided into three groups: the young (under 40), the middle-
aged (between 40 and 60), and the elderly (over 60). The
loaded cyclist means a cyclist who is carrying something
(including an object or a person) on his/her bicycle. From
the collected bicycle data, the descriptive statistics of model
parameters can be found in Table 1. From the table, it can
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Table 2: Selected input parameters for different ANN models.

Model parameters Model 1 Model 2 Model 3 Model 4
Cycleway features WB ✓ ✓ ✓ ✓

Traffic flow parameters FB ✓ ✓ ✓ ✓

Bicycle types PSS ✓ ✓

PBS ✓ ✓

Characteristics of cyclists

PMC ✓ ✓

PYC ✓ ✓

PMAC ✓ ✓

PLC ✓ ✓

be found that average bicycle flow is 590 bicycles/h/m, and
the average percentages of BSEB, SSEB, male, young, middle-
aged, and loaded cyclists are 16.78%, 53.11%, 65.64%, 64.14%,
28.10%, and 11.19%, respectively. Each parameter has wide
range and is suitable for modelling the relationships with free
flow speed of bicycle.

2.3. Estimation of Free Flow Speed for Bicycle Traffic. The free
flow speed of bicycle flow is the speed of bicycles under low
volumes and low densities and is the most important param-
eter for cycleway capacity estimation, LOS, and speed limit.
Because it is difficult to determine which traffic conditions
are of low volumes and densities, the 85th percentile speed is
usually used as the free flow speed [24]. The 85th percentile
speed of bicycle is the speed belowwhich 85 percent of cyclists
travel and is the most frequently used for speed limit design.
The TRB special report also shows that the 85th percentile
speed is an important descriptive statistic in evaluating road
safety [25].Therefore, in this study, we use the 85th percentile
speed of bicycle flow as the free flow speed and the crash risk
indicator for the evaluation of bicycle safety.

3. Artificial Neural Network Models

Artificial neural networks are a family of statistical learning
models inspired by biological neural networks and are used
to estimate or approximate functions that can depend on
a large number of inputs and are generally unknown [26].
ANN models are widely used in modelling free flow speed
of motorized vehicles [27–31].

3.1. Description of Models. An ANN model can include
multiple input variables to predict multiple output variables.
In this study, four ANN models were developed with or
without considering different input variables such as bicycle
types and characteristics of cyclists.The purpose of including
different input variables in themodelling of bicycles’ free flow
speed and crash risk is to analyse and assess whether or not
the selection of input variables will affect the performance of
the developed ANNmodels.

Table 2 lists four categories input parameters used for
each model. Cycleway features and traffic flow parameters
have been proved to have important effect on free flow
speed; hence, these two parameters are always included
in four models. Model 2 and Model 3 include the input
parameters of bicycle types and characteristics of cyclists,
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Figure 1: Structure and notations in a three-layer BPANNmodel.

respectively; meanwhile, Model 4 selects both bicycle types
and characteristics of cyclists as the input variables. The
tick marks (✓) in Table 2 indicate that the input parameters
are included in the modelling process as input variables.
The developed four ANN models will provide selectivity
and flexibility for considering suitable input variables in the
prediction of free flow speed of bicycle flow.

3.2. Network Architectures. A back propagation ANN
(BPANN) model, as shown in Figure 1, was introduced for
modelling bicycle free flow speed. BPANN model is one
of the most well-known ANN models applied in many
areas [26]. The goal and motivation for developing the
backpropagation algorithm are to find a way to train a
multilayered neural network such that it can learn the
appropriate internal representations to allow it to learn any
arbitrary mapping of input to output.
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The three-layer BPANN architecture of this study is listed
in Figure 1.Multilayer BPANN is a layered parallel processing
system consisting of input layer, output layer, and hidden
layer [32]. According to Figure 1, 𝑖, 𝑗, and 𝑘 are subscripts for
input, hidden, and output layers, respectively. The number of
input and output parameters and hidden nodes is 𝑛,𝑚, and 𝑙,
respectively. The number of nodes in input and output layers
(𝑛 and 𝑚) corresponds to the number of input variables and
output variables. The number of nodes in the hidden layer (𝑙)
should be determined by the network designer and number
of input and output variables. The weight factors for hidden
layer and output layer are𝜔

𝑖𝑗
and𝜔

𝑗𝑘
, respectively.The values

𝑛 and 𝑚 are problem dependent. In this study, the values
of 𝑛 are 2, 4, 6, and 8 for Models 1, 2, 3, and 4. The output
parameter is free flow speed, and thus the value𝑚 is one.

The number of nodes in hidden layer has significant
effect on the performance of BPANN models. According to
the previous research, the number of nodes in hidden layer
should meet the following conditions:

𝑙 = √𝑛 + 𝑚 + 𝑎, (1)

where 𝑎 is an integer between 0 and 10. Because the four
models have different numbers of input variables, we use
the same number of nodes in hidden layer for comparison.
Therefore, in this paper, the number of nodes in hidden layer
was set as 10 for all of models.

3.3. BPANN Algorithm Process. The backpropagation learn-
ing algorithm for ANN can be divided into two phases: prop-
agation and weight update. The detailed algorithm processes
are listed as follows.

3.3.1. Initialization of BPANN. The input variables are
expressed as x = (𝑥
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where 𝑒 is the error of each output sample.
Interconnecting weights were assigned some random

numbers. The given precision 𝜀 and maximum learning
number𝑀 are set.

3.3.2. Calculating the Inputs and Outputs in Hidden Layer.
The input and output values in hidden layer could be
calculated by the following equations:
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where 𝑏
ℎ
and 𝑏
𝑜
are the critical values of neurons in hidden

layer and in output layer, respectively. 𝑓(⋅) is the logarithmic
sigmoid transfer function which is represented by the follow-
ing equation:

𝑓 (𝑥) =
1

1 + 𝑒−𝑥
0 < 𝑓 (𝑥) < 1. (4)

3.3.3. Calculating Partial Derivative of Error Function. The
partial derivative of the error function for each neuron in
output layer can be expressed as follows:
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The partial derivative of the error function for each
neuron in hidden layer can be also expressed as follows:
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3.3.4. Adjustment of InterconnectingWeights. The adjustment
of interconnecting weights for hidden layer and output layer
is expressed as
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Figure 2: Learning performance of four BPANNmodels.

where Δ𝜔
𝑖𝑗
and Δ𝜔

𝑗𝑘
are the changes of weight values for

hidden and output layers; 𝑁 is the number of iterations; 𝜂 is
the learning rate, a parameter selected for the magnitude of
change in interconnecting weights.

3.3.5. Calculating the Total Error. The total error of all
training samples can be calculated as

𝐸 =
1

2

𝑇

∑

𝑡=1

𝑚

∑

𝑘=1

[𝑑𝑜
𝑘 (𝑡) − 𝑦𝑜
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2
, (8)

where 𝑡 is the serial number of training samples and 𝑇 is the
number of training samples.

3.3.6. Iteration Termination Conditions. If 𝐸 < 𝜀 or the
number of iterations is larger than preset maximum learning

number 𝑀, then stop the ANN algorithm and output the
results. Otherwise, return to the second step and begin the
next learning iteration.

4. Results and Discussion

The BPANN codes were developed using a commercial
software namedMATLAB.The field bicycle data for training,
validation, and testing are collected from eleven bicycle paths
in Hangzhou, China [33]. 459 samples were collected, and
70%of total samples (321 samples) were used for training, 15%
(69 samples) for validation, and 15% (69 samples) for testing.
Detailed descriptive statistics of field data can be found in [16]
and Table 1. The BPANN with 2-10-1, 4-10-1, 6-10-1, and 8-
10-1 architectures for Models 1–4 are trained and validated.
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Figure 3: Regression results of model 1.

The trainedmodels were tested by 69 samples which were not
used in the training and validation stages.

Before training, in order to improve the training perfor-
mance of the BPANN, it is often useful to scale the field input
variables so that they always fall within a specified range.
Therefore, in this study, field sample data is normalized in the
range [0 1] by using the following formula:

𝑛𝑥
𝑖
=

𝑥
𝑖
−min (𝑥

𝑖
)

max (𝑥
𝑖
) −min (𝑥

𝑖
)
. (9)

The strength of each training, validation, and testing
stage was evaluated by calculating the error and regression
coefficient 𝑅. Learning performance plots of four BPANN
models are shown in Figure 2, and the regression analysis
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plots of four models for training, validation, and testing are
presented in Figures 3–6.

The performance indicators, the mean absolute percent-
age error (MAPE) and the root mean square error (RMSE),
for the testing samples were proposed [34]. These two
indicators are given by the following equations:

MAPE =
1

𝑀

𝑀

∑

𝑗=1



�̂�
𝑓
(𝑗) − 𝑉

𝑓
(𝑗)

𝑉
𝑓
(𝑗)



× 100%,

RMSE = √
1

𝑀

𝑀

∑

𝑗=1

[�̂�
𝑓
(𝑗) − 𝑉

𝑓
(𝑗)]
2

,

(10)
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Figure 5: Regression results of model 3.

where �̂�
𝑓
(𝑗) is the predicted free flow speed of bicycle for

the 𝑗th testing sample; 𝑉
𝑓
(𝑗) is the observed free flow speed

for the 𝑗th testing sample; 𝑀 is the number of testing
samples.

The correlation coefficient (𝑅2), MAPEs, and RMSEs
of four models are listed in Table 3, and the observed
and predicted free flow speeds are illustrated in Figure 7.
From the figure and the table, we have the following
findings:

Table 3: Prediction errors for different models.

𝑅
2 MAPE RMSE (km/h)

Model 1 0.72 5.25% 1.60
Model 2 0.85 4.54% 1.21
Model 3 0.82 4.60% 1.28
Model 4 0.87 4.13% 1.09
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Figure 6: Regression results of model 4.

(1) It is seen that all four BPANN models predict free
flow speed with less errors, and the absolute speed
differences are less than 2 kph. The results indicate
that these models are all excellent in predicting the
free flow speed. Model 1 including minimum input
variables also performswell in predicting the free flow
speed.

(2) It can be also found that Model 2 and Model 3 have
higher accuracies than Model 1. It is evident that
the inclusions of bicycle types and characteristics of
cyclists greatly improves the performance of Model
2 and Model 3 compared to Model 1. Different from
motorized vehicles, characteristics of cyclists can be
observed and analysed. Model 3 shows that using the
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Figure 7: Observed and predicted free flow speed for different
models.

input variables of cyclists’ characteristics produces a
slightly higher rate of accuracy compared to Model 1.

(3) Comparing Model 2 and Model 3, it can be found
that the performance of Model 2 is better than that
of Model 3. This implies that bicycle type has more
significant effect on bicycles’ free flow speed and
crash risk than characteristics of cyclists. Due to the
higher speed of electric bicycles, the free flow speed
and bicycle crash risk have significant correlation
on the percentage of electric bicycles. Therefore, the
management and speed limit for electric bicycles are
very important to improve the safety of bicycle path.

(4) Considering both input categories of bicycle types
and characteristics of cyclists, the performance of
Model 4 for testing dataset is the best.TheMAPE and
RMSE of testing data are 4.13% and 1.09 kph, respec-
tively. This model provides us with the theoretical
foundation for analysing the impact factors on the
free flow speed and crash risk of bicycle traffic flow.

5. Conclusions

Free flow speed of bicycle traffic flow is a very important
parameter for determining the speed limit of cycleway and
evaluating the crash risk of bicycle traffic flow.The developed
BPANNmodels in this paper are expected to be a useful and
robust method to help traffic engineers improve the safety
of bicycle traffic flow. Therefore, four different models with
or without considering the impact factors (e.g., bicycle types
and characteristics of cyclists) are used to predict the free
flow speed and crash risk of heterogeneous bicycle traffic flow.

The BPANN models have been trained, validated, and tested
using MATLAB software. As mentioned in results of testing
datasets, the correlation coefficients (𝑅2) of four models by
using adaptive learning have been obtained as 0.72, 0.85, 0.82,
and 0.87, respectively, for expected outputs. The results imply
that the proposed ANN methods have acceptable accuracies
in predicting free flow speed of bicycles, and the considered
bicycle types and characteristics of cyclists will effectively
improve the accuracy of the prediction models. The study is
limited to predicting the free flow speed only considering four
categories factors. Other parameters such as percentage of
passing, geometric features, and environmental features may
be included for modelling in future work.
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