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This paper clarifies that the fractional Brownian motion, 𝐵
𝐻
(𝑡), is of long-range dependence (LRD) for the Hurst parameter 0 <

𝐻 < 1 except 𝐻 = 1/2. In addition, we note that the fractional Brownian motion is positively correlated for 0 < 𝐻 < 1 except
𝐻 = 1/2. Moreover, we present a theorem to state that the differential or integral of a random function, 𝑋(𝑡), may substantially
change the statistical dependence of 𝑋(𝑡). One example is that the differential of 𝐵

𝐻
(𝑡), in the domain of generalized functions,

changes the LRD of 𝐵
𝐻
(𝑡) to be of short-range dependence (SRD) when 0 < 𝐻 < 0.5.

1. Introduction

Fractional Brownian motion (fBm) is widely used [1–10]. Its
theory and applications attract the interests of researchers in
various fields, ranging from telecommunications to biomedi-
cal engineering; see, for example, [11–44], simply citing a few.

There is a set of statistical properties of fBm, such as
nonstationarity and being nondifferentiable in the domain of
ordinary functions [45]. Two properties, namely, nonstation-
arity and nondifferentiable property, are the basic properties
of standard Brownian motion (Bm) [46–52], which is well
known in the fields of time series as well as stochastic pro-
cesses [53, 54]. As the substantial generalization of Bm, fBm
has a property that Bm lacks, that is, its statistical dependence
[1–4, 45]. The measure of the statistical dependence of fBm is
characterized by the Hurst parameter𝐻 ∈ (0, 1).

Note that the fBm for the Hurst parameter 𝐻 ∈ (0, 1)

and 𝐻 ̸= 1/2 is of LRD [11, 12, 45, 55, 56]. In addition,
fBm is positively correlated for 𝐻 ∈ (0, 1) but 𝐻 ̸= 1/2

[57]. However, the LRD property of fBm may be sometimes
conservatively expressed. For example, the LRD property of
fBm was restricted by 𝐻 ∈ (0.5, 1) as can be seen from [58,
page 2341] and [59, page 708]. For this reason, it may be
meaningful to clarify, which this paper aims at.

The remaining paper is organized as follows. In Section 2,
we describe that the range of 𝐻 for fBm to be of LRD is
𝐻 ∈ (0, 1) and𝐻 ̸= 1/2. Discussions are in Section 3, which is
followed by conclusions.

2. FBm Is LRD for 0 < 𝐻 < 1 except 𝐻 = 0.5

In what follows, a random function in general is denoted by
𝑋(𝑡) for 𝑡 ∈ (0,∞). We denote 𝐵

𝐻
(𝑡) for 𝑡 ∈ (0,∞) as fBm

with𝐻 ∈ (0, 1).
Without generality losing, we assume that 𝑋(𝑡) is a ran-

dom function with mean zero. The autocorrelation function
(ACF) of𝑋(𝑡) is, for 𝑡, 𝑠 ∈ (0,∞), denoted by

𝐶
𝑋𝑋 (𝑡, 𝑠) = 𝐸 [𝑋 (𝑡)𝑋 (𝑠)] . (1)

By LRD [1, 2], we mean that

∫

∞

0

𝐶
𝑋𝑋 (𝑡, 𝑠) 𝑑𝑡 = ∞. (2)

If

∫

∞

0

𝐶
𝑋𝑋 (𝑡, 𝑠) 𝑑𝑡 < ∞, (3)

𝑋(𝑡) is of short-range dependence (SRD).
Denote by 𝑆

𝑋𝑋
(𝜔, 𝑡) the power spectrumdensity function

(PSD) of 𝑋(𝑡). Denote by 𝐹 the operator of the Fourier
transform. Then [60–64],

𝑆
𝑋𝑋 (𝜔, 𝑡) = 𝐹 [𝐶𝑋𝑋 (𝑡, 𝑠)] . (4)

The LRD condition described in the frequency domain is
expressed by

lim
𝜔→0

𝑆
𝑋𝑋 (𝜔, 𝑠) = ∞. (5)
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The above expression implies the property of 1/𝑓 noise
regarding random functions with LRD [1–4, 65–70]. On the
other hand,𝑋(𝑡) is of SRD if

lim
𝜔→0

𝑆
𝑋𝑋 (𝜔, 𝑠) < ∞. (6)

Let 𝑊−V be the Weyl integral of order V > 0. Then, for
random function𝑋(𝑡); see, for example, [71–75], one has

𝑊
−V
𝑋(𝑡) =

1

Γ (V)
∫

∞

𝑡

(𝑢 − 𝑡)
V−1
𝑋 (𝑢) 𝑑𝑢. (7)

Thus, the fBm of the Weyl type is in the form:

𝐵
𝐻 (𝑡) − 𝐵𝐻 (0) =

1

Γ (𝐻 + 1/2)

× {∫

0

−∞

[(𝑡 − 𝑢)
𝐻−0.5

− (−𝑢)
𝐻−0.5

] 𝑑𝐵 (𝑢)

+∫

𝑡

0

(𝑡 − 𝑢)
𝐻−0.5

𝑑𝐵 (𝑢)} .

(8)

Following [76], the PSD of the fBm of the Weyl type is
expressed by

𝑆
𝐵𝐻𝐵𝐻

(𝜔, 𝑡) =
1

|𝜔|
2𝐻+1

(1 − 2
1−2𝐻 cos 2𝜔𝑡) . (9)

Therefore, we have the following theorem.

Theorem 1. FBm is of LRD for𝐻 ∈ (0, 1) except𝐻 = 1/2.

Proof. Because lim
𝜔→0

𝑆
𝐵𝐻𝐵𝐻

(𝜔, 𝑡) = ∞ for all 𝑡 > 0 and for
𝐻 ∈ (0, 1) except𝐻 = 1/2, the theorem holds.

As a matter of fact, fBm reduces to the standard Bm if
𝐻 = 1/2. The PSD of BM, see [11], is given by

𝑆
𝐵1/2𝐵1/2

(𝑡, 𝜔) =
1

𝜔2
(1 − cos 2𝜔𝑡) . (10)

Thus,

lim
𝜔→0

𝑆
𝐵1/2𝐵1/2

(𝑡, 𝜔) = 2𝑡
2
̸=∞. (11)

From the theorem, we have the following corollary.

Corollary 2. FBm is not SRD for𝐻 ∈ (0, 1).

In passing, we mention that the ACF of 𝐵
𝐻
(𝑡) of theWeyl

type is in the form:

𝐶
𝐵𝐻𝐵𝐻

(𝑡, 𝑠) =
𝑉
𝐻

(𝐻 + 1/2) Γ (𝐻 + 1/2)

× [|𝑡|
2𝐻
+ |𝑠|
2𝐻
− |𝑡 − 𝑠|

2𝐻
] ,

(12)

where 𝑉
𝐻
is the strength of 𝐵

𝐻
(𝑡). It is given by

𝑉
𝐻
= Var[𝐵

𝐻 (1)] = Γ (1 − 2𝐻)
cos𝜋𝐻
𝜋𝐻

. (13)

Following [57, page 4], we have the following remark.
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Figure 1: ACF of fBm for 𝑡, 𝑠 = 0, 1, . . . , 30 and𝐻 = 0.2.
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Figure 2: ACF of fBm for 𝑡, 𝑠 = 0, 1, . . . , 30 and𝐻 = 0.4.

Remark 3. The ACF of fBm is positively correlated for 𝐻 ∈

(0, 1) except 𝐻 = 1/2. That is, 𝐶
𝐵𝐻𝐵𝐻

(𝑡, 𝑠) ≥ 0 for 𝑡, 𝑠 ∈
(0,∞). Figures 1 and 2 indicate the plots of 𝐶

𝐵𝐻𝐵𝐻
(𝑡, 𝑠) for

𝑡, 𝑠 = 0, 1, . . . , 30 with𝐻 = 0.2 and 0.4, respectively.

3. Discussions

Let𝐺
𝐻
(𝑡) be the fractional Gaussian noise (fGn).Then, in the

domain of generalized functions over the Schwartz space of
test functions [45], we write

𝐺
𝐻 (𝑡) =

𝑑𝐵
𝐻 (𝑡)

𝑑𝑡
. (14)
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Denote by 𝐶
𝐺𝐻𝐺𝐻

(𝜏, 𝑠) the ACF of 𝐺
𝐻
(𝑡). Then, for 𝜀 > 0 [19,

45], one has

𝐶
𝐺𝐻𝐺𝐻

(𝜏; 𝜀) =
𝑉
𝐻
𝜀
2𝐻−2

2

× [(
|𝜏|

𝜀
+ 1)

2𝐻

+



|𝜏|

𝜀
− 1



2𝐻

− 2



𝜏

𝜀



2𝐻

] .

(15)

From the contents in Section 2, we have the following
theorem.

Theorem 4. Let𝑋(𝑡) be a random function.Then, the statisti-
cal dependence of 𝑑𝑋(𝑡)/𝑑𝑡 may substantially differ from that
of 𝑋(𝑡), where the differential is in the domain of generalized
functions.

Proof. To prove the theorem, we only need an example to
show it. Let 𝑋(𝑡) = 𝐵

𝐻
(𝑡). Then, 𝑑𝑋(𝑡)/𝑑𝑡 = 𝐺

𝐻
(𝑡). It is

well known that fGn is LRD when 𝐻 ∈ (0.5, 1) as 𝐶
𝐺𝐻𝐺𝐻

is
nonintegrable if 𝐻 ∈ (0.5, 1). On the other hand, for 𝐻 ∈

(0, 0.5), the integral of𝐶
𝐺𝐻𝐺𝐻

is zero. Hence, fGn is SRDwhen
𝐻 ∈ (0, 0.5). In passing, we note that 𝐶

𝐺𝐻𝐺𝐻
(𝜏; 𝜀) changes

its sign and becomes negative for some 𝜏 proportional to 𝜀
in this parameter domain [45, page 434]. Since 𝐵

𝐻
(𝑡) is LRD

for 𝐻 ∈ (0, 1) except 𝐻 = 1/2, the statistical dependence of
𝐺
𝐻
(𝑡) substantially differs from that of 𝐵

𝐻
(𝑡). This completes

the proof.

From Theorem 4, we immediately obtain the corollary
below.

Corollary 5. Let 𝑋(𝑡) be a random function. Then, the
statistical dependence of𝐷−1𝑋(𝑡)may substantially differ from
that of 𝑋(𝑡), where𝐷−1 is the integral operator of order one.

Proof . Let 𝑋(𝑡) = 𝐺
𝐻
(𝑡). Then, 𝐷−1𝑋(𝑡) = 𝐵

𝐻
(𝑡). Since

𝐵
𝐻
(𝑡) is LRD for𝐻 ∈ (0, 0.5) while 𝐺

𝐻
(𝑡) is SRD when𝐻 ∈

(0, 0.5), one sees that the statistical dependence of 𝐷−1𝑋(𝑡)
substantially differs from that of 𝑋(𝑡). Thus, Corollary 5
results.

4. Conclusions

We have clarified that fBm is LRD and positively correlated
for 𝐻 ∈ (0, 1) except 𝐻 = 1/2. In addition, we have proved
that the differential or integral of a random function may
considerably change its statistical dependence.
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Mass, USA, 2002.

[5] J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West, Fractal
Physiology, Oxford University Press, 1994.

[6] J.-P. Bouchaud and A. Georges, “Anomalous diffusion in dis-
ordered media: statistical mechanisms, models and physical
applications,”Physics Reports, vol. 195, no. 4-5, pp. 127–293, 1990.

[7] W. Willinger and V. Paxson, “Where mathematics meets the
internet,” Notices of the American Mathematical Society, vol. 45,
no. 8, pp. 961–970, 1998.

[8] V. Paxson and S. Floyd, “Wide area traffic: the failure of Poisson
modeling,” IEEE/ACMTransactions on Networking, vol. 3, no. 3,
pp. 226–244, 1995.

[9] S. C. Lim and L. P. Teo, “Modeling single-file diffusion with
step fractional Brownian motion and a generalized fractional
Langevin equation,” Journal of Statistical Mechanics, vol. 2009,
no. 8, Article ID P08015, 24 pages, 2009.

[10] S. Kim, S. Y. Nam, and D. K. Sung, “Effective bandwidth for a
single server queueing system with fractional Brownian input,”
Performance Evaluation, vol. 61, no. 2-3, pp. 203–223, 2005.

[11] V. M. Sithi and S. C. Lim, “On the spectra of Riemann-Liouville
fractional Brownian motion,” Journal of Physics, vol. 28, no. 11,
pp. 2995–3003, 1995.

[12] S. V. Muniandy and S. C. Lim, “Modeling of locally self-similar
processes using multifractional Brownian motion of Riemann-
Liouville type,” Physical Review E, vol. 63, no. 4, part 2, Article
ID 461047, 2001.

[13] D. Feyel and A. de La Pradelle, “On fractional Brownian
processes,” Potential Analysis, vol. 10, no. 3, pp. 273–288, 1999.

[14] R. F. Peltier and J. Levy-Vehel, “Multifractional Brownian
motion: definition and preliminaries results,” INRIA TR 2645,
1995.

[15] T. G. Sinai, “Distribution of the maximum of a fractional
Brownian motion,” Russian Mathematical Surveys, vol. 52, no.
2, pp. 119–138, 1997.

[16] S. C. Lim and S. V. Muniandy, “On some possible generaliza-
tions of fractional Brownianmotion,” Physics Letters A, vol. 266,
no. 2-3, pp. 140–145, 2000.

[17] M. D. Ortigueira and A. G. Batista, “On the relation between
the fractional Brownian motion and the fractional derivatives,”
Physics Letters A, vol. 372, no. 7, pp. 958–968, 2008.

[18] S. C. Lim and L. P. Teo, “Weyl and Riemann-Liouvillemultifrac-
tional Ornstein-Uhlenbeck processes,” Journal of Physics A, vol.
40, no. 23, pp. 6035–6060, 2007.

[19] M. Li and S. C. Lim, “A rigorous derivation of power spectrum
of fractional Gaussian noise,” Fluctuation and Noise Letters, vol.
6, no. 4, pp. C33–C36, 2006.

[20] M. Li andW. Zhao, “On bandlimitedness and lag-limitedness of
fractional Gaussian noise,” Physica A, vol. 392, no. 9, pp. 1955–
1961, 2013.

[21] M. Li and W. Zhao, “Quantitatively investigating locally weak
stationarity of modified multifractional Gaussian noise,” Phys-
ica A, vol. 391, no. 24, pp. 6268–6278, 2012.



4 Mathematical Problems in Engineering

[22] V. Paxson, “Fast approximate synthesis of fractional gaussian
noise for generating self-similar network traffic,” ACM SIG-
COMM Computer Communication Review, vol. 27, no. 5, pp. 5–
18, 1997.

[23] C. Cattani, M. Scalia, E. Laserra, I. Bochicchio, and K. K. Nandi,
“Correct light deflection in Weyl conformal gravity,” Physical
Review D, vol. 87, no. 4, Article ID 47503, 4 pages, 2013.

[24] C. Cattani, “Harmonic wavelet approximation of random,
fractal and high frequency signals,”Telecommunication Systems,
vol. 43, no. 3-4, pp. 207–217, 2010.

[25] C. Cattani, G. Pierro, and G. Altieri, “Entropy and multifrac-
tality for the myeloma multiple TET 2 gene,” Mathematical
Problems in Engineering, vol. 2012, Article ID 193761, 14 pages,
2012.

[26] C. Cattani, “Fractals and hidden symmetries in DNA,” Mathe-
matical Problems in Engineering, vol. 2010, Article ID 507056, 31
pages, 2010.

[27] S. Hu, Z. Liao, and W. Chen, “Sinogram restoration for low-
dosed X-ray computed tomography using fractional-order
Perona-Malik diffusion,” Mathematical Problems in Engineer-
ing, vol. 2012, Article ID 391050, 13 pages, 2012.

[28] Z. W. Liao, S. X. Hu, D. Sun, and W. F. Chen, “Enclosed Lapla-
cian operator of nonlinear anisotropic diffusion to preserve
singularities and delete isolated points in image smoothing,”
Mathematical Problems in Engineering, vol. 2011, Article ID
749456, 15 pages, 2011.

[29] J. W. Yang, Y. J. Chen, and M. Scalia, “Construction of affine
invariant functions in spatial domain,” Mathematical Problems
in Engineering, vol. 2012, Article ID 690262, 11 pages, 2012.

[30] H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K.
Peng, and M. Simons, “Long-range power-law correlations in
condensed matter physics and biophysics,” Physica A, vol. 200,
no. 1–4, pp. 4–24, 1993.

[31] B. Podobnik, P. C. Ivanov, K. Biljakovic, D. Horvatic, H. E. Stan-
ley, and I. Grosse, “Fractionally integrated process with power-
law correlations in variables and magnitudes,” Physical Review
E, vol. 72, no. 2, Article ID 026121, 7 pages, 2005.

[32] A. Carbone, G. Castelli, and H. E. Stanley, “Time-dependent
Hurst exponent in financial time series,” Physica A, vol. 344, no.
1-2, pp. 267–271, 2004.

[33] Z. Chen, P. C. Ivanov, K.Hu, andH. E. Stanley, “Effect of nonsta-
tionarities on detrended fluctuation analysis,”Physical ReviewE,
vol. 65, no. 4, Article ID 041107, 15 pages, 2002.

[34] C. Toma, “Advanced signal processing and command synthesis
for memory-limited complex systems,”Mathematical Problems
in Engineering, vol. 2012, Article ID 927821, 13 pages, 2012.

[35] E. G. Bakhoum and C. Toma, “Specific mathematical aspects
of dynamics generated by coherence functions,” Mathematical
Problems in Engineering, vol. 2011, Article ID 436198, 10 pages,
2011.

[36] E. G. Bakhoum and C. Toma, “Mathematical transform of
traveling-wave equations and phase aspects of quantum interac-
tion,”Mathematical Problems in Engineering, Article ID 695208,
15 pages, 2010.

[37] G. Korvin, Fractal Models in the Earth Science, Elsevier, 1992.
[38] E. E. Peters, Fractal Market Analysis—Applying ChaosTheory to

Investment and Economics, John Wiley & Sons, 1994.
[39] S.-C. Liu and S. Chang, “Dimension estimation of discrete-time

fractional Brownian motion with applications to image texture
classification,” IEEE Transactions on Image Processing, vol. 6, no.
8, pp. 1176–1184, 1997.

[40] S. Chang, S.-T. Mao, S.-J. Hu, W.-C. Lin, and C.-L. Cheng,
“Studies of detrusor-sphincter synergia and dyssynergia during
micturition in rats via fractional brownian motion,” IEEE
Transactions on Biomedical Engineering, vol. 47, no. 8, pp. 1066–
1073, 2000.

[41] C. Fortin, R. Kumaresan, W. Ohley, and S. Hoefer, “Fractal
dimension in the analysis of medical images,” IEEE Engineering
in Medicine and Biology Magazine, vol. 11, no. 2, pp. 65–71, 1992.

[42] A. Eke, E. P.Herman, J. B. Bassingthwaighte et al., “Physiological
time series: distinguishing fractal analysis noises frommotions,”
European Journal of Physiology, vol. 439, no. 4, pp. 403–415,
2000.

[43] G.M. Raymond, D. B. Percival, and J. B. Bassingthwaighte, “The
spectra and periodograms of anti-correlated discrete fractional
Gaussian noise,” Physica A, vol. 322, pp. 169–179, 2003.

[44] H. E. Schepers, J. H. G.M. van Beek, and J. B. Bassingthwaighte,
“Four methods to estimate the fractal dimension from self-
affine signals,” IEEE Engineering in Medicine and Biology Mag-
azine, vol. 11, no. 2, pp. 57–64, 1992.

[45] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian
motions, fractional noises and applications,” SIAM Review, vol.
10, pp. 422–437, 1968.

[46] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the
Brownian motion,” Physical Review, vol. 36, no. 5, pp. 823–841,
1930.

[47] T. Hida, Brownian Motion, Springer, 1980.
[48] J. Dunkel andP.Hänggi, “Relativistic Brownianmotion,”Physics

Reports, vol. 471, no. 1, pp. 1–73, 2009.
[49] M. Peligrad and S. Utev, “Another approach to Brownian

motion,” Stochastic Processes and their Applications, vol. 116, no.
2, pp. 279–292, 2006.

[50] E. Frey and K. Kroy, “Brownian motion: a paradigm of soft
matter and biological physics,” Annalen der Physik, vol. 14, no.
1–3, pp. 20–50, 2005.

[51] P. Hänggi, F. Marchesoni, and F. Nori, “Brownian motors,”
Annalen der Physik, vol. 14, no. 1–3, pp. 51–70, 2005.

[52] F. Cecconi,M.Cencini,M. Falcioni, andA.Vulpiani, “Brownian
motion and diffusion: from stochastic processes to chaos and
beyond,” Chaos, vol. 15, no. 2, Article ID 026102, p. 9, 2005.

[53] A. Papoulis, Probability, Random Variables and Stochastic Pro-
cesses, McGraw-Hill Book, 2nd edition, 1984.

[54] W. A. Fuller, Introduction to Statistical Time Series, John Wiley
& Sons, New York, NY, USA, 2nd edition, 1996.

[55] S. C. Lim and S. V. Muniandy, “Generalized Ornstein-Uhlen-
beck processes and associated self-similar processes,” Journal of
Physics A, vol. 36, no. 14, pp. 3961–3982, 2003.

[56] H. Qian, “Fractional brownian motion and fractional gaussian
noise,” Lecture Notes in Physics, vol. 621, pp. 22–33, 2003.

[57] F. Aurzada and C. Baumgarten, “Persistence of fractional
Brownian motion with moving boundaries and applications,”
Journal of Physics A, vol. 46, no. 12, Article ID 125007, 2013.

[58] V.Maroulas and J. Xiong, “Large deviations for optimal filtering
with fractional Brownianmotion,” Stochastic Processes and their
Applications, vol. 123, no. 6, pp. 2340–2352, 2013.

[59] R. Scheffer and R. Maciel Filho, “The fractional Brownian
motion as a model for an industrial airlift reactor,” Chemical
Engineering Science, vol. 56, no. 2, pp. 707–711, 2001.

[60] M. Sun, C. C. Li, L. N. Sekhar, and R. J. Sclabassi, “Wigner
spectral analyzer for nonstationary signals,” IEEE Transactions
on Instrumentation and Measurement, vol. 38, no. 5, pp. 961–
966, 1989.



Mathematical Problems in Engineering 5

[61] M. B. Priestley, “Evolutionary spectra and non-stationary pro-
cesses,” Journal of the Royal Statistical Society B, vol. 27, pp. 204–
237, 1965.

[62] J. S. Bendat and A. G. Piersol, Random Data: Analysis and
Measurement Procedure, John Wiley & Sons, 3rd edition, 2010.

[63] J. Xiao and P. Flandrin, “Multitaper time-frequency reas-
signment for nonstationary spectrum estimation and chirp
enhancement,” IEEE Transactions on Signal Processing, vol. 55,
no. 6, pp. 2851–2860, 2007.

[64] P. Borgnat, P. Flandrin, P. Honeine, C. Richard, and J. Xiao,
“Testing stationarity with surrogates: a time-frequency ap-
proach,” IEEE Transactions on Signal Processing, vol. 58, no. 7,
pp. 3459–3470, 2010.

[65] M. Li and W. Zhao, “On 1/𝑓 noise,” Mathematical Problems in
Engineering, vol. 2012, Article ID 673648, 22 pages, 2012.

[66] K. Fraedrich, U. Luksch, and R. Blender, “1/𝑓 model for
long-time memory of the ocean surface temperature,” Physical
Review E, vol. 70, no. 3, Article ID 037301, pp. 1–4, 2004.

[67] W. T. Li and D. Holste, “Universal 1/𝑓 noise, crossovers of scal-
ing exponents, and chromosome-specific patterns of guanine-
cytosine content in DNA sequences of the human genome,”
Physical Review E, vol. 71, no. 4, Article ID 041910, 9 pages, 2005.

[68] F. N.Hooge, “1/𝑓 noise,”Physica B, vol. 83, no. 1, pp. 14–23, 1976.
[69] M. S. Keshner, “1/𝑓 noise,” Proceedings of the IEEE, vol. 70, no.

3, pp. 212–218, 1982.
[70] G. Aquino,M. Bologna, P. Grigolini, and B. J.West, “Beyond the

death of linear response: 1/𝑓 optimal information transport,”
Physical Review Letters, vol. 105, no. 6, Article ID 069901, 1 page,
2010.

[71] J. Klafter, S. C. Lim, and R.Metzler, Fractional Dynamics: Recent
Advances, World Scientific, 2012.

[72] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations, Elsevier Sci-
ence, Amsterdam, The Netherlands, 2006.

[73] S. Samko,A.A.Kilbas, andD. I.Maritchev, Integrals andDeriva-
tives of the Fractional Order and Some of Their Applications,
Gordon and Breach, Amsterdam, The Netherlands, 1993.

[74] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics,
Oxford University Press, Oxford, UK, 2008.

[75] R. C. Blei, Analysis in Integer and Fractional Dimensions, Uni-
versity Press, Cambridge, UK, 2003.

[76] P. Flandrin, “On the spectrum of fractional Brownianmotions,”
IEEE Transactions on InformationTheory, vol. 35, no. 1, pp. 197–
199, 1989.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


