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This study provides an automatic method for detecting finger interruptions in electroluminescence (EL) images of multicrystalline
solar cells. The proposed method is a supervised classification method. We obtain regions of interest (ROI) by separating the EL
image to several regions.The fingers within each ROI are candidates for defect detection.We horizontally scan each ROI region and
extract features from each finger pixel. In the training stage, we record a set of features which are extracted from interrupted fingers
and noninterrupted fingers.These features are represented as points in a spectral embedding space produced by spectral clustering
method. These points will be classified into two clusters: interrupted fingers and noninterrupted fingers. In the classification stage,
we firstly detect the position of fingers in an EL image and obtain features from each finger. The set of features in each finger
combined with known features in the training stage will be represented as points in the spectral embedding space and then will be
classified to the cluster with nearer cluster centroid of known features. Experimental results show that the proposed method can
effectively detect finger interruptions on a set of EL images of various solar cells.

1. Introduction

A solar cell is an electrical device that converts the sun-
light directly into electricity by the photovoltaic effect. By
far, the most prevalent bulk material for solar cells is
crystalline silicon because of the competitive conversion
efficiency and usable lifespan. Crystalline silicon solar cells
can be in the form of monocrystalline and multicrystalline
cells. Multicrystalline solar cells are more common than
monocrystalline solar cells due to lower material and man-
ufacturing costs [1]. Finished multicrystalline silicon solar
cells are frequently found to be defective. Defects can be
divided into two categories [2]: intrinsic and extrinsic defects.
Intrinsic defects consist of grain boundaries and dislocations,
which will decrease the photoelectric conversion efficiency.
Extrinsic defects consist of microcracks, breaks, and finger
interruptions, which will shorten lifetime, reduce efficiency,
and make authentication fails of cells [3, 4].

The electroluminescence (EL) imaging technique has
been proposed in recent years to highlight the deficiencies
that degrade the conversion efficiency of a solar cell [5]. An
example of EL image of a multicrystalline silicon solar cell is
shown in Figure 1(a). A schematic of defects in Figure 1(a)
is shown in Figure 1(b). In Figure 1(b), the region within the
white dashed rectangle is a solar cell, the vertical black thin
strips are fingers, and the two horizontal thick strips are bus-
bars (sometimes there aremore than two bus-bars).The black
regions other than fingers and bus-bars are defects, where the
black thin strip marked as defect 1 is a microcrack, the black
stripes marked as defect 2 are finger interruptions, and other
irregular black regions are internal defects.

Automatic extrinsic defect detection in EL images of
multicrystalline silicon solar cell is usually very difficult
due to the disturbances of intrinsic defects. In recent years,
automatic detection of microcracks has been explored in
some literatures [6–9].These researches usually detect defects
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Figure 1: Defects in an EL image ofmulticrystalline silicon solar cell. (a) An EL image. (b) A schematic of defects, where defect 1 is microcrack
and defects 2 are interrupted fingers.
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Figure 2: An example of interrupted fingers and noninterrupted
fingers.These numerics are the number of fingers and the 8th finger
is an interrupted finger defect.

by using gray level and shape differences. However, these
approaches may fail in detecting finger interruption when
the background is seriously interfered and the contrast is
low. Tsai et al. [6] proposed a Fourier image reconstruction
scheme to detect microcracks and finger interruptions in
multicrystalline silicon solar cells. Their method is based
on the fact that the defects in the solar cell appear as line
or bar shaped objects and those appears are darker than
its surroundings in the EL image. In their method, correct
implementation depends crucially on the setting of threshold
values for image reconstruction. In most cases, the threshold
value has to be determined interactively through trail-and-
error method.

In an EL image, finger interruptions are shown as dark
stripes on both sides of the fingers, while noninterrupted
fingers are lighting on both sides of the fingers. An example
of interrupted fingers and noninterrupted fingers is shown in
Figure 2. In this study, we extract the variation of gray level
on both sides of a finger as its features to resist the problems
of background interference and unobvious defects.

The remainder of this paper is organized as follows.
In Section 2, we review the principle of spectral clustering
algorithm. Section 3 explains the proposed defect detection
method in detail. The experiment results are presented in

Section 4. Finally, concluding remarks and future works are
discussed in Section 5.

2. Spectral Clustering Algorithm

We use spectral clustering method to cluster features of
fingers. In our experiments, the features of fingers are not lin-
early separable. The 𝑘-mean method works fine in clustering
linear separable samples only. Spectral clustering method has
the advantage of using graph cuts as objective functions for
nonlinear data separation [10]. Spectral clustering algorithm
refers to a class of techniques which rely on the eigenstructure
of a similarity matrix to partition samples into disjoint clus-
ters with samples in the same cluster having high similarity
and samples in different clusters having low similarity. This
algorithm makes use of the spectral (eigenvalues) of the
similarity matrix to perform dimensionality reduction for
clustering objects in fewer dimensions (embedding space).
Therefore, spectral clustering method has been widely used
in several areas such as information retrieval and computer
vision [11–14].

Given a dataset X = {x
1
, x
2
, . . . , x

𝑛
}, the spectral cluster-

ing algorithm constructs a similarity matrix S𝑛×𝑛, where s
𝑖𝑗
≥

0 reflects the relationship between x
𝑖
and x
𝑗
. It then uses the

similarity information to group elements inX into 𝑘 clusters.
There are several variants of spectral clustering. Here, we
consider the commonly used normalized spectral clustering.
A similarity function is defined as a Gaussian distribution:

𝑠
𝑖𝑗
=
{

{

{

𝑒
(−‖x𝑖−x𝑗‖2/2𝜎2), if 𝑖 ̸= 𝑗,

0, if 𝑖 = 𝑗,
(1)

where 𝜎 is a scaling parameter to control how rapidly the
similarity 𝑠

𝑖𝑗
reduces with the distance between x

𝑖
and x

𝑗
.

Consider the Laplacian matrix:

L = D − S, (2)



Mathematical Problems in Engineering 3

ROI 
location

ROI 
location

Known 
input samples

Unknown 
input samples

Finger 
detection

Finger 
detection

Feature 
extraction

Feature 
extraction

Class 1 

fingers
Noninterrupted

Class 2 
Interrupted 

fingers

results
Classification Comparison

Store Spectral 
clustering

Figure 3: Block diagram of the proposed method.

where D is a diagonal matrix defined as

𝑑
𝑖𝑗
=

{{

{{

{

𝑛

∑

𝑗=1

𝑠
𝑖𝑗
, if 𝑖 ̸= 𝑗,

0, if 𝑖 = 𝑗,

𝑖 = 1, . . . , 𝑛.

(3)

The Laplacian matrix L is symmetric and positive semi-
definite. Compute eigenvalues 𝜆 and eigenvectors y for the
generalized eigenvector problem:

Ly = 𝜆Dy. (4)

Let eigenvector set Y𝑛×𝑘 = {y𝑖
0
, . . . , y𝑖

𝑘−1
}, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑛, be

the solutions of (4). Eigenvector y𝑖 represents data x
𝑖
in the

embedding space and is ordered according to its eigenvalues
with y𝑖

0
representing the smallest eigenvalue.

3. The Proposed Method

The block diagram of the proposed method is shown in
Figure 3. We obtain regions of interest (ROI) by separating
the EL image to several regions. The fingers within each ROI
are candidates for defect detection.We horizontally scan each
ROI region and extract features from each finger pixel. In the
training stage, we record a set of features which are extracted
from interrupted fingers and noninterrupted fingers. These
features are represented as points in a spectral embedding
space produced by spectral clustering method. These points
will be classified into two clusters: interrupted fingers and
noninterrupted fingers. In the classification stage, we firstly
detect the position of fingers in an EL image and obtain
features from each finger. The set of features in each finger
combined with known features in the training stage will be
represented as points in the spectral embedding space and
then be classified to the cluster with nearer cluster centroid
of known features.

3.1. ROI Location. In an industrial production line, the
production of solar cells is under precise control to follow its
specifications. As a result, all produced solar cells have the
same size, bus-bar positions, and width of bus-bars in the EL
images. An example of EL image with size 𝑚 × 𝑛 is shown
in Figure 4. In Figure 4, bus-bars are shown as horizontal
black bold strips; ROIs are regions between bus-bars. We
use slide windows to locate positions of ROIs by horizontal
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Figure 4: The schematic of separating ROIs in an EL image. (a) An
EL image. (b) The horizontal projections of EL image.

projections. Let 𝐼 be an EL image and 𝐼(𝑥, 𝑦) the gray level of
pixel (𝑥, 𝑦). The horizontal projections 𝑓

ℎ
(𝑦) are defined as

𝑓
ℎ
(𝑦) =

𝑚

∑

𝑖=1

𝐼 (𝑖, 𝑦) , 𝑦 = 1, . . . , 𝑛. (5)

Since the bus-bars have lower gray level, we propose to
find the top position 𝑝 of the top ROI by accumulating the
horizontal projection in a slide window of width 𝑤,

𝑝 = arg
𝑑

{

{

{

min
1≤𝑑≤𝑛−𝑡

𝑤

∑

𝑗=1

𝑓
ℎ
(𝑟 + 𝑗 + 𝑑)

}

}

}

, (6)

where 𝑤 is set to be the height of the top bus-bar and 𝑟 is the
height of the top ROI, as shown in Figure 4. In a production
line, the values of 𝑟 and 𝑤 are preknown. After finding 𝑝, the
locations of ROIs can be easily calculated according to the
specification information of bus-bar heights and ROI heights.

3.2. Finger Detection. Now, the positions of fingers should be
detected from each ROI. Fingers are vertical black thin strips.
The vertical projections 𝑓V(𝑥) of each ROI can be calculated
by

𝑓V (𝑥) =

HeightROI
∑

𝑖=1

𝐼 (𝑥, 𝑖) , 𝑥 = 1, . . . , 𝑚, (7)

where HeightROI is the height of ROI and 𝑚 is the width of
ROI. The second derivative ∇2𝑓V(𝑥) is calculated by

∇
2
𝑓V (𝑥) = 𝑓V (𝑥 + 1) + 𝑓V (𝑥 − 1) − 2𝑓V (𝑥) . (8)
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Figure 5:TheROI image and its vertical projections. (a)TheROI image. (b)The vertical projections of ROI image. (c)The second derivative of
vertical projections. The star marks show the positions of fingers.
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Figure 6: A typical horizontal line of a finger pixel. (a) A noninterrupted finger pixel. (b) An interrupted finger pixel. The value shown under
each black dot represents the gray level of that pixel.

The positions of fingers can he identified by finding local
maximums of ∇2𝑓V(𝑥). An example of finding the fingers is
shown in Figure 5. An image of ROI is shown in Figure 5(a);
the vertical projections are shown in Figure 5(b); the second
derivatives of vertical projections are shown in Figure 5(c);
the star marks show the positions of fingers. The number of
fingers in a ROI image is preknown as 𝑛. Since there will be
more than 𝑛 local maximums in the second derivative, we
need to figure out the correct 𝑛 maximums which represent
the 𝑛 fingers in the ROI. In our proposed method, the 𝑛
consecutive maximums with largest sum will represent the
correct positions of 𝑛 fingers.

3.3. Feature Extraction. After the positions of fingers are
detected, we horizontally scan each ROI and extract features
for each finger. An interrupted finger has dark stripes on both
sides, while a normal noninterrupted finger is lighting on
both sides. Thus, for a noninterrupted finger, the pixels right
beside the finger should have higher gray levels; the pixels in
themiddle of two neighboring fingers should have lower gray
levels; the finger itself should have the lowest gray level. A
typical horizontal line of a noninterrupted finger is shown in
Figure 6(a). A typical horizontal line of an interrupted finger
is shown in Figure 6(b). The value shown under each black
dot represents the gray level of that pixel.

According to the difference between noninterrupted fin-
gers and interrupted fingers, we propose to extract seven
features for each finger pixel: three from the left side and three
from the right side and one is the gray level of the finger
pixel itself. For each side, we first divide the pixels between
the finger and its neighboring finger into three partitions: a
middle partition, a left partition, and a right partition. If the
number of these pixels is odd, themiddle partition consists of
three pixels in central; otherwise it consists of two pixels. The
left and right partitions consist of the other pixels in the left
and right sides of the middle partition, respectively. For the
middle partition, we take the average gray level as a feature.
For the left and right partitions, we take their maximum gray
levels as features. For example, the seven features are 126, 163,
156.5, 168, 129, 167, 150.5, 165, and 126 in Figure 6(a) and 126,
149, 133.5, 129, 91, 126, 132, 152, and 127 in Figure 6(b).

3.4. Finger Classification. In the training stage, we manually
obtain features of known noninterrupted and interrupted
fingers and give cluster labels to these features, respectively.
We apply the spectral clustering algorithm to transfer these
labeled features to an embedding space and assign these
features into two clusters: a noninterrupted cluster and an
interrupted cluster, according to their labels. In the clas-
sification stage, we obtain a set of features from pixels of
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Figure 7: The experimental results of EL subimages with noninterrupted finger defects on a 55 × 55 subimage. (a1)–(a3) The EL subimages.
(b1)–(b3) The results of FIR method with 𝐾

Δ𝑓
= 0.5. (c1)–(c3) The results of FIR method with 𝐾

Δ𝑓
= 1. (d1)–(d3) The results of FIR method

with 𝐾
Δ𝑓
= 1.5. (e1)–(e3) The results of our proposed method. The black regions and lines indicate detected defects.

an unknown finger. The classification steps are described as
follows.

(1) Combine the feature set of the unknown finger with
known features in the training stage.

(2) Each feature set f = {𝑓
1
, 𝑓
2
, 𝑓
3
, 𝑓
4
, 𝑓
5
, 𝑓
6
, 𝑓
7
} is used to

construct a data set x = {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
}, where

𝑥
𝑖
= 𝑓
𝑖
− 𝑓
𝑖+1

, 𝑖 = 1, 2, . . . , 6, for applying to the
spectral clustering algorithm.

(3) For all data sets, apply (1) to construct a similarity
matrix S(𝑛+𝑡)×(𝑛+𝑡), where 𝑛 is the number of known
features in the training stage and 𝑡 is the number of
pixels in the unclassified finger.

(4) Apply (2) to compute the Laplacian matrix L of S.

(5) Apply (4) to compute the first 𝑘 largest eigenvectors
of L; and construct Y(𝑛+𝑡)×𝑘.
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Figure 8: The experimental results of EL subimages with noninterrupted finger defects on a 75 × 75 subimage. (a1)–(a3) The EL subimages.
(b1)–(b3) The results of FIR method with 𝐾

Δ𝑓
= 0.5. (c1)–(c3) The results of FIR method with 𝐾

Δ𝑓
= 1. (d1)–(d3) The results of FIR method

with 𝐾
Δ𝑓
= 1.5. (e1)–(e3) The results of our proposed method. The black regions and lines indicate detected defects.

(6) The 𝑛 + 𝑡 rows in Y(𝑛+𝑡)×𝑘 represent 𝑛 + 𝑡 points in
the embedding space R. The first 𝑛 points represent
the 𝑛 known features in the training stage. They are
labeled as noninterrupted or interrupted cluster. The
remaining 𝑡 points will be classified to the cluster with
nearer cluster centroid of known features.

A finger contains numbers of finger pixels. If the number
of finger pixels belonging to the interrupted cluster is larger

than a predefined ratio, the finger will be classified as an
interrupted finger.

4. Experiments

In this section, we present the experimental results from
60 multicrystalline solar cells with various defect types in
EL images. Each solar cell has two or three bus-bars with
72 or 82 fingers in each ROI. The size of each solar cell is
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Figure 9: The experimental results of EL subimages with noninterrupted finger defects on a 95 × 95 subimage. (a1)–(a3) The EL subimages.
(b1)–(b3) The results of FIR method with 𝐾

Δ𝑓
= 0.5. (c1)–(c3) The results of FIR method with 𝐾

Δ𝑓
= 1. (d1)–(d3) The results of FIR method

with 𝐾
Δ𝑓
= 1.5. (e1)–(e3) The results of our proposed method. The black regions and lines indicate detected defects.

1024 × 1024 pixels with 12-bit gray levels. Most researches
on solar cells extrinsic defect detection focus on microcrack
detection and receive valuable success. However, there are
few researches working on finger interruption detection. Up
to date, we can only find one research article working on
finger interruption detection. Tsai et al. [6] proposed to detect
finger interruption by using Fourier image reconstruction
(FIR). Thus we will compare our proposed method with
FIR method. In the FIR method, an EL image needs to be

divided to several subimages for detecting defects. The size
of subimage is suggested to between 55 × 55 and 95 × 95.
In our experiments, we will compare our proposed method
with 55 × 55, 75 × 75, and 95 × 95 subimages of the FIR
method and show the experimental results in binary images.
The threshold parameters 𝑘

Δ𝑓
of the FIR method are set to

0.5, 1, and 1.5 in each subimage size.
The results of detecting EL images with noninterrupted

finger defects are shown in Figures 7, 8, and 9 with subimage
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Figure 10: The experimental results of EL subimages with an interrupted finger defect on a 55 × 55 subimage. (a1)–(a3) The EL subimages;
the solid rectangle indicates the area of interrupted finger defect. (b1)–(b3) The results of FIR method with 𝐾

Δ𝑓
= 0.5. (c1)–(c3) The results

of FIR method with 𝐾
Δ𝑓
= 1. (d1)–(d3) The results of FIR method with 𝐾

Δ𝑓
= 1.5. (e1)–(e3) The results of our proposed method. The black

regions and lines indicate detected defects.

size 55 × 55, 75 × 75, and 95 × 95, respectively. The threshold
parameter 𝑘

Δ𝑓
in the FIR method is set to 0.5, 1, and 1.5

for comparison. In Figures 7 to 9, the FIR method tends to
misjudge stripe noise (intrinsic defects) as extrinsic defects,
as shown in (b1–b3), (c1–c3), and (d1–d3). Our proposed
method will misjudge noise as interrupted finger only when
the characteristic of noise strip is similar to interrupted finger,
as shown in Figures 7(e3), 8(e3), and 9(e3).

The results of detecting EL images with interrupted finger
defect are shown in Figures 10, 11, and 12 with subimage size
55 × 55, 75 × 75, and 95 × 95, respectively. The threshold
parameter 𝑘

Δ𝑓
in the FIR method is set to 0.5, 1, and 1.5

for comparison. In Figures 10, 11, and 12, the results of FIR
method highly depended on the setting of threshold 𝑘

Δ𝑓
. If

𝑘
Δ𝑓

is too small, the FIR method tends to misjudge noises as
interrupted fingers; if 𝑘

Δ𝑓
is too large, the FIR method tends
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Figure 11: The experimental results of EL subimages with an interrupted finger defect on a 75 × 75 subimage. (a1)–(a3) The EL subimages;
the solid rectangle indicates the area of interrupted finger defect. (b1)–(b3) The results of FIR method with 𝐾

Δ𝑓
= 0.5. (c1)–(c3) The results

of FIR method with 𝐾
Δ𝑓
= 1. (d1)–(d3) The results of FIR method with 𝐾

Δ𝑓
= 1.5. (e1)–(e3) The results of our proposed method. The black

regions and lines indicate detected defects.

to ignore suspected areas, even if they are interrupted fingers.
Our proposedmethod can find almost all interrupted fingers,
as shown in Figures 10(e1–e3), 11(e1–e3), and 12(e1–e3).

Actually, our proposed method needs not to divide the
EL image to subimages. The above analysis is for comparison
purpose only. In our proposed method, we locate 4 ROIs in
an EL image, as shown in Figure 13(a). The detection results
are shown in Figure 13(b). In Figure 13(a), the interrupted
fingers are marked in white rectangles. In Figure 13(b), the

solid rectangles indicate the interrupted fingers found. By
our method, the dashed rectangles indicate the interrupted
finger missed. The miss detection is due to the fact that the
interrupted ratio of a finger is smaller than our predefined
ratio. The four ROIs are numbered as 1 to 4 from top to
bottom. Since the heights of the 1st and 4th ROIs are similar,
the heights of the 2nd and 3rd ROIs are similar; their
accuracy rates are slightly different, as shown in Table 1. In
Table 1, the accuracy rate, miss rate, and false alarm rate are
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Figure 12: The experimental results of EL subimages with an interrupted finger defect on a 95 × 95 subimage. (a1)–(a3) The EL subimages;
the solid rectangle indicates the area of interrupted finger defect. (b1)–(b3) The results of FIR method with 𝐾

Δ𝑓
= 0.5. (c1)–(c3) The results

of FIR method with 𝐾
Δ𝑓
= 1. (d1)–(d3) The results of FIR method with 𝐾

Δ𝑓
= 1.5. (e1)–(e3) The results of our proposed method. The black

regions and lines indicate detected defects.

calculated by

Accuracy rate =
True positive + True negative

True positive + True negative + False positive + False negative
,

Miss rate =
False negative

True positive + False negative
,

False alarm rate = False positive
True negative + False positive

.

(9)
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(a)

(b)

Figure 13: Solar cells in our experiments. (a) The EL images; the solid rectangles indicate the interrupted finger defects. (b) The detection
results of (a); the solid rectangles indicate the interrupted finger defects found and the dashed rectangles indicate the interrupted finger defects
missed.

Table 1: The statistics of detection results.

1st and 4nd ROI 2nd and 3rd ROI
Accuracy rate 99.07% 99.58%
False negative rate 6.89% 2.39%
False positive rate 0.66% 0.34%

5. Conclusions

In this paper, we have proposed a supervised classification
method to detect interrupted finger defects in multicrys-
talline solar cells. The interrupted fingers cannot be visually
observed in an image with the conventional CCD imaging
system. The electroluminescence (EL) imaging technique is
thus used to highlight the interrupted fingers in the sensed
image. The automatic extrinsic defect detection in EL images
of multicrystalline silicon solar cell is usually very difficult
due to the disturbances of intrinsic defects. The proposed
method can extract essential features from fingers and effi-
ciently recognize defects. The extracted features come from

the variation of gray-level on both sides of fingers; these
features reflect the property of defects better than shape
features. The proposed method is more flexible than method
of setting threshold values.

We have applied the proposed method in detecting
defects on a variety of solar cells. Experimental results show
that the proposed method achieves superior results over
the Fourier image reconstruction method in the situations
of background interference and unobvious defects. More-
over, our proposed method can quickly locate the ROIs
for detection. In the fix-sized subimage method, a defect
may be divided into different subimages and thus affect the
detection result. Compared to fix-sized subimagemethod, the
proposed method can detect the defects without concerning
the size of subimages and eventually get a better detection
result.
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