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The purpose of this paper is to establish the admitted region for five simultaneous, functionally independent invariants of the strain
rate tensor S and rotation rate tensor Ω and calculate some simultaneous invariants of these tensors which are encountered in the
theory of constitutive relations for turbulent flows. Such a problem, as far as we know, has not yet been considered, though it is
obviously an integral part of any problem in which scalar functions of the tensors S andΩ are studied. The theory provided inside
this paper is the building block for a derivation of new algebraic constitutive relations for three-dimensional turbulent flows in the
form of expansions of the Reynolds-stress tensor in a tensorial basis formed by the tensors S andΩ, in which the scalar coefficients
depend on simultaneous invariants of these tensors.

1. Introduction

The strain rate tensor S and the rotation rate tensors Ω
are the symmetric and antisymmetric parts of the velocity
gradient tensor, respectively. In what follows, wewill consider
incompressible flow, when the tensor S is a deviator by virtue
of the continuity equation that satisfies the extra condition
tr S = 0.

After transforming to principal axes, the tensor S has the
form

S =

[

[

[

𝜎
1

0 0

0 𝜎
2

0

0 0 𝜎
3

]

]

]

. (1)

The tensorΩ, in an arbitrary coordinate system, is written as

Ω =

[

[

[

0 −𝜔
3

𝜔
2

𝜔
3

0 −𝜔
1

−𝜔
2

𝜔
1

0

]

]

]

, (2)

where 𝜔
1
, 𝜔
2
, and 𝜔

3
are the vorticity vector components. If

tensor (2) is written in the coordinate system connected with
the principal axes of the tensor S, the five quantities

𝜎
1
, 𝜎
2
, 𝜔
1
, 𝜔
2
, 𝜔
3 (3)

constitute a full set of simultaneous, functionally indepen-
dent invariants of the tensors S andΩ [1].

If a scalar physical quantity depends on the tensors S and
Ω, it is a function of quantities (3). For example, the theory
of algebraic constitutive relations (algebraic stress models)
for turbulent flows [2–5] deals with functional relations
between the Reynolds-stress tensor and strain and rotation
rate tensors that are calculated from the mean velocity field.
Such relations are equivalent to the representations of the
stress tensor in terms of expansions in a tensorial basis
formed by the tensors S and Ω. The scalar coefficients in
the expansions depend on simultaneous invariants of these
tensors.

The simultaneous invariants are conveniently chosen to
be quantities that, unlike (3), are easily calculable in an
arbitrary coordinate system. For example, they can be the
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following five quantities that are calculated as the trace of
some products of the tensors S andΩ:

𝜂 = tr S2 = 𝜎

2

1
+ 𝜎

2

2
+ 𝜎

2

3
,

𝜁 = tr S3 = 𝜎

3

1
+ 𝜎

3

2
+ 𝜎

3

3
,

𝜉
𝑛
= tr S𝑛Ω2 − 1

2

tr S𝑛 trΩ2 = 𝜎

𝑛

1
𝜔

2

1
+ 𝜎

𝑛

2
𝜔

2

2
+ 𝜎

𝑛

3
𝜔

2

3
,

𝑛 = 0, 1, 2.

(4)

It is just invariants (4) and their algebraic combinations that
are used in the algebraic stress models for turbulent flows
(see, e.g., [2–11]). As opposed to invariants (3), which can take
arbitrary, independent values, quantities (4) vary in a certain
region.

The aim of the present paper is to determine the admitted
region for invariants (4). Such a problem, as far as we know,
has not yet been considered, though it is obviously an integral
part of any problem in which scalar functions of the tensors
S and Ω are studied. We will calculate in passing some
invariants of the tensors S and Ω that are encountered in
the theory of constitutive relations for turbulent flows as
functions of invariants (4). In the present study, the tensor S is
an arbitrary symmetric, traceless tensor andΩ is an arbitrary
antisymmetric tensor.

In Section 2, we determine the admitted region for the
invariants 𝜂 and 𝜁 of the strain rate tensor and calculate
in terms of 𝜂 and 𝜁 the invariant Γ = (𝜎

1
− 𝜎
2
)(𝜎
2

−

𝜎
3
)(𝜎
3
−𝜎
1
), which is needed in what follows. In Section 3, we

calculate the important simultaneous invariant of the tensors
S and Ω Λ = Γ𝜔

1
𝜔
2
𝜔
3
, which in a sense is independent of

invariants (4), since it can be determined in terms of them
only with ambiguity in sign. In Section 4, on the basis of the
representation for the invariant Λ, the admitted region for
invariants (4) is determined.

To calculate new invariants in terms of quantities (4), two
basic relationships are used: the Cayley-Hamilton identity
and finite isotropic relations between two tensors, which
exist, if the tensors have a diagonal form in one coordinate
system [1].

2. Invariants of the Tensor S
For the traceless tensor S, the Cayley-Hamilton identity [1]
reads

S3 = 1

2

𝜂S + |S| I, (5)

where I is the identity matrix. After calculating the trace of
both sides of equality (5), we get

|S| = 𝜎
1
𝜎
2
𝜎
3
=

1

3

𝜁. (6)

To this equality, we add two more

𝜎
1
+ 𝜎
2
+ 𝜎
3
= 0, (7)

𝜎
1
𝜎
2
+ 𝜎
2
𝜎
3
+ 𝜎
3
𝜎
1
= −

1

2

𝜂. (8)

The latter is obtained after squaring equality (7) and making
use of the definition of the invariant 𝜂. Equations (6)–(8)
imply that the eigenvalues 𝜎

𝑖
owing to the Viete theorem are

the roots of the cubic equation

𝜎

3
−

1

2

𝜂𝜎 −

1

3

𝜁 = 0 (9)

and therefore have real values under the condition

√
6

󵄨
󵄨
󵄨
󵄨

𝜁

󵄨
󵄨
󵄨
󵄨

⩽ 𝜂

3/2
, (10)

which specify the admitted region for two invariants of the
strain rate tensor with zero trace.

To calculate the invariant

Γ = (𝜎
1
− 𝜎
2
) (𝜎
2
− 𝜎
3
) (𝜎
3
− 𝜎
1
) , (11)

we consider the matrix

Σ =
[

[

[

𝜎
2
− 𝜎
3

0 0

0 𝜎
3
− 𝜎
1

0

0 0 𝜎
1
− 𝜎
2

]

]

]

. (12)

Since Σ and S (1) have a diagonal form in the same coordinate
system, they should be related by an isotropic relation [1]

Σ = 𝛿
0
I + 𝛿
1
S + 𝛿
2
S2, (13)

where 𝛿
0
, 𝛿
1
, and 𝛿

2
are scalar coefficients. By calculating the

trace of both sides of equality (13) and then multiplying it
consecutively by S and S2 and taking the trace, we obtain the
system of equations

Δ
[

[

[

𝛿
0

𝛿
1

𝛿
2

]

]

]

= −

[

[

[

0

0

Γ

]

]

]

,

Δ =

[

[

[

[

[

3 0 𝜂

0 𝜂 𝜁

𝜂 𝜁

1

2

𝜂

2

]

]

]

]

]

.

(14)

Here, we used the equalities

trΣ = 0,

trΣS = 0,

trΣS2 = −Γ,

(15)

and tr S4 = (1/2)𝜂

2, the latter of which is obtained by
multiplying the Cayley-Hamilton identity (5) by S and taking
the trace.

The calculation of the inverse matrix gives

Δ
−1

= (𝜂

3
− 6𝜁

2
)

−1 [

[

[

[

𝜂

3
− 2𝜁

2
2𝜂𝜁 −2𝜂

2

2𝜂𝜁 𝜂

2
−6𝜁

−2𝜂

2
−6𝜁 6𝜂

]

]

]

]

, (16)
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which enables us to determine the coefficients 𝛿
0
, 𝛿
1
, and 𝛿

2

and rewrite equality (13) in the form

(𝜂

3
− 6𝜁

2
)Σ = 2Γ (𝜂

2I + 3𝜁S − 3𝜂S2) . (17)

Multiplying (17) by Σ, taking the trace, and using again
equalities (15) as well as the equality trΣ2 = 3𝜂, which follows
from (8), we obtain the representation in question:

2Γ

2
= 𝜂

3
− 6𝜁

2
. (18)

This formula also implies condition (10).

3. Invariant Λ

In what follows, we will need the invariants

𝜉
3
= tr S3Ω2 − 1

2

tr S3 trΩ2 = 𝜎

3

1
𝜔

2

1
+ 𝜎

3

2
𝜔

2

2
+ 𝜎

3

3
𝜔

2

3
,

𝜉
4
= tr S4Ω2 − 1

2

tr S4 trΩ2 = 𝜎

4

1
𝜔

2

1
+ 𝜎

4

2
𝜔

2

2
+ 𝜎

4

3
𝜔

2

3
,

(19)

which are formed by analogy to invariants (4). Multiplying
the Cayley-Hamilton identity (5) consecutively by Ω2 and
SΩ2, taking the trace, and using equalities (4), we get

tr S3Ω2 = 1

2

𝜂𝜉
1
−

2

3

𝜁𝜉
0
,

tr S4Ω2 = 1

2

𝜂𝜉
2
+

1

3

𝜁𝜉
1
−

1

2

𝜂

2
𝜉
0
.

(20)

Now the representation of invariants (19) in terms of invari-
ants (4) can be written in the form of the matrix equality

[

[

[

[

[

[

[

[

[

𝜉
0

𝜉
1

𝜉
2

𝜉
3

𝜉
4

]

]

]

]

]

]

]

]

]

= W𝜉,

W =

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0

0 1 0

0 0 1

1

3

𝜁

1

2

𝜂 0

0

1

3

𝜁

1

2

𝜂

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝜉 =
[

[

[

𝜉
0

𝜉
1

𝜉
2

]

]

]

.

(21)

Consider the invariant
Λ = − tr S2Ω2SΩ, (22)

the direct calculation of which gives Λ = Γ𝜔
1
𝜔
2
𝜔
3
.

The matrixes

Θ =

[

[

[

[

𝜔

2

1
0 0

0 𝜔

2

2
0

0 0 𝜔

2

3

]

]

]

]

(23)

and S should be also related by the isotropic relation

Θ = 𝛼
0
I + 𝛼
1
S + 𝛼
2
S2. (24)

Calculating the trace of both sides of equality (24) and then
multiplying this equality consecutively by S and S2, and
taking the trace, we obtain the system of equations

Δ
[

[

[

𝛼
0

𝛼
1

𝛼
2

]

]

]

= 𝜉 (25)

with the same matrix (14) on the left-hand side. The coeffi-
cients in question are specified by the equality

[

[

[

𝛼
0

𝛼
1

𝛼
2

]

]

]

= Δ
−1
𝜉, (26)

where the matrix Δ−1 has the form (16).
Multiplying equality (24) by the matrix

Π =

[

[

[

[

𝜔

2

2
𝜔

2

3
0 0

0 𝜔

2

3
𝜔

2

1
0

0 0 𝜔

2

1
𝜔

2

2

]

]

]

]

(27)

and calculating the trace yield

3 (𝜔
1
𝜔
2
𝜔
3
)

2

= 𝛼
𝑛
𝛽
𝑛
, (28)

𝛽
𝑛
= 𝜎

𝑛

1
𝜔

2

2
𝜔

2

3
+ 𝜎

𝑛

2
𝜔

2

3
𝜔

2

1
+ 𝜎

𝑛

3
𝜔

2

1
𝜔

2

2
,

𝑛 = 0, 1, 2.

(29)

Since the coefficients 𝛼
𝑛
are specified by equality (26), the

invariant Λ can be determined in terms of the invariants 𝛽
𝑛
.

Direct calculations give

trΩ4 = 4𝛽
0
+ 2𝜋
0
,

tr SΩ4 = 𝛽
1
− 𝜋
1
,

tr S2Ω4 = 𝛽
2
− 𝜋
2
+ 𝜂 (𝛽

0
+ 𝜋
0
) ,

(30)

𝜋
𝑛
= 𝜎

𝑛

1
𝜔

4

1
+ 𝜎

𝑛

2
𝜔

4

2
+ 𝜎

𝑛

3
𝜔

4

3
. (31)

On the other hand, the left-hand sides of equalities (30) can
be obtained on the basis of the Cayley-Hamilton identity
for the tensor Ω, which reads Ω3 = −𝜉

0
Ω. By multiplying
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it consecutively by Ω, SΩ, and S2Ω, taking the trace, and
making use of (4), we get

trΩ4 = 2𝜉

2

0
,

tr SΩ4 = −𝜉
0
𝜉
1
,

tr S2Ω4 = 𝜂𝜉

2

0
− 𝜉
0
𝜉
2
.

(32)

Equations (30) and (32) imply

𝛼
𝑛
𝛽
𝑛
= 𝜉
0
(

1

2

𝛼
0
𝜉
0
+

1

2

𝜂𝛼
2
𝜉
0
− 𝛼
1
𝜉
1
− 𝛼
2
𝜉
2
)

−

1

2

𝜋
0
(3𝛼
0
+ 𝜂𝛼
2
) + 𝛼
𝑛
𝜋
𝑛

= 𝜉
0
[

1

2

𝜉
0
(3𝛼
0
+ 𝜂𝛼
2
) − 𝛼
𝑛
𝜉
𝑛
]

−

1

2

𝜋
0
(3𝛼
0
+ 𝜂𝛼
2
) + 𝛼
𝑛
𝜋
𝑛

=

1

2

𝜉
0
[𝜉

2

0
− 2𝛼
𝑛
𝜉
𝑛
− 𝜋
0
] + 𝛼
𝑛
𝜋
𝑛
.

(33)

Here, we take into account that the first equation of system
(25) reads 3𝛼

0
+ 𝜂𝛼
2
= 𝜉
0
.

Now, let us calculate the quantities 𝜋
𝑛
specified by (31).

Multiplying (24) byΘS𝑛, 𝑛 = 0, 1, 2, calculating the trace, and
taking into account equalities (4) and (19) and the fact that
𝜋
𝑛
= trΘ2S𝑛, we have

𝜋
𝑛
= 𝛼
𝑚
𝜉
𝑚+𝑛

, 𝑚, 𝑛 = 0, 1, 2. (34)

Hence, in particular, we get the equality 𝜋
0

= 𝛼
𝑛
𝜉
𝑛
, which

reduces (33) to the form

𝛼
𝑛
𝛽
𝑛
=

1

2

𝜉
0
[𝜉

2

0
− 3𝜋
0
] + 𝛼
𝑛
𝜋
𝑛
. (35)

The quantity 𝜋
0
is the quadratic form of the matrix Δ−1:

𝜋
0
=

1

2

Γ

−2
[(𝜂

3
− 2𝜁

2
) 𝜉

2

0
+ 𝜂

2
𝜉

2

1
+ 6𝜂𝜉

2

2
+ 4𝜂𝜁𝜉

0
𝜉
1

− 4𝜂

2
𝜉
0
𝜉
2
− 12𝜁𝜉

1
𝜉
2
] .

(36)

Equalities (21) and (34) imply

𝛼
𝑛
𝜋
𝑛
= 𝛼
𝑛
𝛼
𝑚
𝑊
𝑛+𝑚,𝑙

𝜉
𝑙
, (37)

where all the indices take the values 0, 1, and 2. Hence, taking
the values of the entries of the matrixW (21) into account, we
get

𝛼
𝑛
𝜋
𝑛
= 𝛼

2

0
𝜉
0
+ 2𝛼
0
𝛼
1
𝜉
1
+ (2𝛼

0
𝛼
2
+ 𝛼

2

1
) 𝜉
2

+ 2𝛼
1
𝛼
2
(

1

3

𝜁𝜉
0
+

1

2

𝜂𝜉
1
)

+ 𝛼

2

2
(

1

3

𝜁𝜉
1
+

1

2

𝜂𝜉
2
) .

(38)

By substituting into (35) equalities (36) and (38) and the
values of 𝛼

𝑛
that follow from (16) and (26), we finally obtain

(6Λ)

2
= −4𝜁

2
𝜉

3

0
− 12𝜁𝜉

3

1
− 36𝜉

3

2
+ 36𝜁𝜉

0
𝜉
1
𝜉
2

− 9𝜂

2
𝜉
0
𝜉

2

1
+ 18𝜂𝜉

2

1
𝜉
2
+ 18𝜂𝜉

2

2
𝜉
0
− 12𝜂𝜁𝜉

2

0
𝜉
1
.

(39)

It is easy to make sure that (39) coincides with the expression
that was given in [12] without deduction. As is seen in (39),
the invariant Λ can be determined in terms of invariants (4)
but with ambiguity in sign.

4. Admitted Region for the Invariants

Equality (39) enables us to establish the admitted region for
invariants (4). Polynomial (39) is homogenies in the variables
𝜉
0
, 𝜉
1
, and 𝜉

2
. By equating it to zero, we obtain an equation

which specifies a conic surface in the space (𝜉
0
, 𝜉
1
, 𝜉
2
) with

the vertex at the origin. In the variables

𝑠 =

𝜉
1

𝜉
0
√6𝜂

,

𝑡 =

𝜉
2

𝜂𝜉
0

,

𝜘 =

𝜁√6

𝜂

3/2
,

(40)

(39) takes the form

27𝜉

−3

0
(𝜔
1
𝜔
2
𝜔
3
)

2

(𝜘

2
− 1)

= 54𝑡

3
− 27𝑡

2
− 54 (3𝑠

2
+ 𝜘𝑠) 𝑡 + 108𝜘𝑠

3
+ 81𝑠

2

+ 18𝜘𝑠 + 𝜘

2
.

(41)

Here we used equality (18). The parameter 𝜘 according to
condition (10) varies over interval [−1, 1].

In accordance with (4), the vectors 𝜉 specified in (21) and
𝜇 = [𝜔

2

1
, 𝜔

2

2
, 𝜔

2

3
] are related by the one-to-one relation

𝜉 = G𝜇,

G =

[

[

[

[

1 1 1

𝜎
1

𝜎
2

𝜎
3

𝜎

2

1
𝜎

2

2
𝜎

2

3

]

]

]

]

.

(42)

This follows from the fact that, in the general case, the
determinant |G| = Γ is unequal to zero (it vanishes in the only
case |𝜘| = 1).The invariant𝜔

1
𝜔
2
𝜔
3
and therefore polynomial

(41) vanish, if at least one component of the vector𝜇 vanishes.
In that case, equality (42) is a parametric representation of a
plane in the space (𝜉

0
, 𝜉
1
, 𝜉
2
). In other words, if 𝜔

1
𝜔
2
𝜔
3
= 0,

then three quantities 𝜉
0
, 𝜉
1
, and 𝜉

2
should be related by a linear

equation of the form

𝑡 = 𝑎𝑠 +

1

3

𝑏, (43)
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where 𝑎 and 𝑏 are constant coefficients, which specifies a
straight line in the plane (𝑠, 𝑡) and a plane in the space
(𝜉
0
, 𝜉
1
, 𝜉
2
). After substituting (43) into (41), we obtain a

third-order polynomial in the variable 𝑠. The polynomial’s
coefficients should be equated to zero, which gives the four
equations for quantities 𝑎 and 𝑏:

𝑎

3
− 3𝑎 + 2𝜘 = 0, (44)

2𝑏

3
− 3𝑏

2
+ 𝜘

2
= 0,

𝑎𝑏

2
− 𝑎𝑏 − 𝜘𝑏 + 𝜘 = 0,

2𝑎

2
𝑏 − 𝑎

2
− 2𝜘𝑎 − 2𝑏 + 3 = 0.

(45)

Owing to theViete trigonometric formula, the cubic equation
(44) has three real roots:

𝑎
1,2

= −2 cos(𝜙 ±

2

3

𝜋) ,

𝑎
3
= −2 cos𝜙,

𝜙 =

1

3

cos−1𝜘.

(46)

The comparison of (44) with (9) leads to

𝜎
𝑖
= −

𝑎
𝑖
√6𝜂

6

.
(47)

It is easy to see that if 𝑎 is a root of (44), the other three
equations (45) are satisfied at 𝑏 = 𝜘/𝑎. Thus, polynomial (41)
can be factorized as follows:

(𝜔
1
𝜔
2
𝜔
3
)

2

(𝜘

2
− 1)

2𝜉

3

0

= (𝑡 − 𝑎
1
𝑠 −

𝜘

3𝑎
1

)

⋅ (𝑡 − 𝑎
2
𝑠 −

𝜘

3𝑎
2

)(𝑡 − 𝑎
3
𝑠 −

𝜘

3𝑎
3

) .

(48)

The straight lines (43) have three points of intersection in
the plane (𝑠, 𝑡) with the coordinates

(−

𝑎
𝑖

6

,

𝑎

2

𝑖

6

) . (49)

As was said above, on the straight lines (43) in the general
case, one component of the vorticity vector vanishes. In
points (49), two components are equal to zero. One canmake
sure of it by turning again to equality (42), which, when the
vector 𝜇 has only one nonzero component, is a parametric
equation of a straight line that issues out of the origin in the
space (𝜉

0
, 𝜉
1
, 𝜉
2
). Such a line corresponds to a point in the

plane (𝑠, 𝑡). Hence, when the vorticity vector is directed along
one of the strain-rate-tensor principal axes, the invariants
𝜉
0
, 𝜉
1
, 𝜉
2
on the basis of (40) and (49) must be related by the

equalities

𝜉
1
= −

𝑎√6𝜂

6

𝜉
0
,

𝜉
2
=

𝑎

2
𝜂

6

𝜉
0
,

(50)

in which 𝑎 is a root of (44). These relations again imply
equalities (47).

After returning to variables (40) and taking into account
equalities (47) and the definitions of invariants (4), we rewrite
the first factor on the right-hand side of (48) in the form

(𝑡 − 𝑎
1
𝑠 −

𝜘

3𝑎
1

) =

1

6𝜉
0

(𝜉
2
+ 𝑎
1
𝜉
1
+ 𝑎
2
𝑎
3
𝜉
0
)

=

1

6𝜉
0

[(2𝑎

2

1
+ 𝑎
2
𝑎
3
) 𝜔

2

1
+ (𝑎

2

2
+ 𝑎
1
𝑎
2
+ 𝑎
2
𝑎
3
) 𝜔

2

2

+ (𝑎

2

3
+ 𝑎
1
𝑎
3
+ 𝑎
2
𝑎
3
) 𝜔

2

2
] =

𝜔

2

1
(𝑎

2

1
− 1)

2𝜉
0

.

(51)

Here, we used the properties of the roots of (44), which
follows from the Viete theorem, particularly, the equality
𝑎
1
+ 𝑎
2
+ 𝑎
3
= 0. We get similarly

(𝑡 − 𝑎
2
𝑠 −

𝜘

3𝑎
2

) =

𝜔

2

2
(𝑎

2

2
− 1)

2𝜉
0

,

(𝑡 − 𝑎
3
𝑠 −

𝜘

3𝑎
3

) =

𝜔

2

3
(𝑎

2

3
− 1)

2𝜉
0

.

(52)

Now, taking the range of variation of roots (46) into account,

1 ⩽ 𝑎
1
⩽ 2,

−1 ⩽ 𝑎
2
⩽ 1,

−2 ⩽ 𝑎
3
⩽ −1,

(53)

we may deduce that the first and third factors on the right-
hand side of (48) are always nonnegative while the second
one is less than or equal to zero, and the admitted region for
the invariants 𝜉

0
, 𝜉
1
, and 𝜉

2
in the plane (𝑠, 𝑡) is a triangle

with apexes in the points (49). In Figure 1(a), these triangle
regions are depicted for a range of 𝜘 over the interval [0, 1].
Since polynomial (41) is invariant under simultaneous change
in sign of the quantities 𝑠 and 𝜘, it is sufficient to consider
the case 𝜘 ⩾ 0. The regions that correspond to positive and
negative values of 𝜘 are symmetric with respect to the axis
𝑡. In the limiting case 𝜘 = 1, the triangle degenerates into a
straight-line segment.

Consider the limiting case 𝜘 → 1 in detail. Let us
introduce new variables

𝜀𝜏 = 𝑡 − 𝑎
1
𝑠 −

𝜘

3𝑎
1

,

𝜎 = 𝑡 − 𝑎
3
𝑠 −

𝜘

3𝑎
3

,

𝜀 =
√
1 − 𝜘

2
,

(54)
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Figure 1: Admitted regions for the invariants 𝜉
0
, 𝜉
1
, and 𝜉

2
in the planes (a) (𝑠, 𝑡) and (b) (𝜎, 𝜏) for various values of 𝜘.

according to which the triangle’s two sides shown in Fig-
ure 1(a) become coordinate lines of different families. By
solving these equations for 𝑠 and 𝑡, we obtain

𝑠 =

𝜎 − 𝜀𝜏

𝑎
1
− 𝑎
3

−

𝑎
2

6

,

𝑡 =

𝑎
1
𝜎 − 𝑎
3
𝜀𝜏

𝑎
1
− 𝑎
3

+

𝑎

2

2

6

.

(55)

After substituting (55) into equality (48), the latter reads

(𝜔
1
𝜔
2
𝜔
3
)

2

2𝜉

3

0

= −𝜏𝜎[

(𝑎
2
− 𝑎
3
) 𝜀𝜏 + (𝑎

1
− 𝑎
2
) 𝜎

(𝑎
1
− 𝑎
3
) 𝜀

+

𝑎

3

2
− 𝜘

3𝑎
2
𝜀

] .

(56)

Now, taking into account the asymptotic behavior of the roots
𝑎
𝑖

𝑎
1,2

= 1 ±

𝜀√3

3

+ 𝑂 (𝜀

2
) ,

𝑎
3
= −2 + 𝑂 (𝜀

2
) ,

𝜘 󳨀→ 1,

(57)
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we can construct the admitted regions for the invariants in the
plane (𝜎, 𝜏), which have the form of right triangles, shown in
Figure 1(b).

5. Conclusions

The problem of determining a functional relation between
any scalar physical quantity and the strain rate and rota-
tion rate tensors is reduced to determining a function of
simultaneous scalar invariants of the tensors S and Ω, which
from reasons of the ease of computation can be chosen as
the quantities 𝜂, 𝜁, 𝜉

0
, 𝜉
1
, and 𝜉

2
. Hence, the problem of

investigating the admitted region for these five invariants
naturally arises. It has been established that this region can
be constructed in three-dimensional space of the parameters

𝑠 =

𝜉
1

𝜉
0
√6𝜂

,

𝑡 =

𝜉
2

𝜂𝜉
0

,

𝜘 =

𝜁√6

𝜂

3/2
,

(58)

where it is situated between the planes 𝜘 = ±1, while its
boundary in each cross section 𝜘 = const is a triangle in the
plane (𝑠, 𝑡). When the parameter 𝜘 tends to its limiting values
±1, the triangle’s area vanishes while the triangle degenerates
into a straight-line segment.

In the sequel, we plan to derive new algebraic consti-
tutive relations (explicit algebraic stress models) for three-
dimensional turbulent flows in the form of expansions of
the Reynolds-stress tensor in a tensorial basis formed by the
tensors S and Ω, in which the scalar coefficients depend on
simultaneous invariants of these tensors. The result obtained
in the present study will be used, in particular, to investigate
the asymptotic behavior of the scalar coefficients at the
boundary of the admitted region for the invariants.
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