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This paper studies the synchronization of complex dynamical networks with multilinks and similar nodes. The dynamics of all
the nodes in the networks are impossible to be completely identical due to the differences of parameters or the existence of
perturbations. Networks with similar nodes are universal in the real world. In order to depict the similarity of the similar nodes,
we give the definition of the minimal similarity of the nodes in the network for the first time. We find the threshold of the minimal
similarity of the nodes in the network. If the minimal similarity of the nodes is bigger than the threshold, then the similar nodes
can achieve synchronization without controllers. Otherwise, adaptive synchronization method is adopted to synchronize similar
nodes in the network. Some new synchronization criteria are proposed based on the Lyapunov stability theory. Finally, numerical
simulations are given to illustrate the feasibility and the effectiveness of the proposed theoretical results.

1. Introduction

Complex dynamical networks have attracted increasing
attention in recent years, since they have been widely
exploited to model many complex systems in the science,
engineering, and society [1, 2]. Synchronization of complex
network has been found to be a universal phenomenon in
nature and it has important potential applications to real-
word dynamical systems. As an important and interesting
collective behavior, synchronization of complex network has
been studied extensively [3–8], such as complete synchro-
nization, projective synchronization [9], impulsive synchro-
nization [10, 11], exponential synchronization [12], adaptive
synchronization [13–15], and pinning synchronization [16–
21].

Most previous research assumes that the dynamics of
all nodes are identical. Consequently, the synchronization
problem is significantly simplified. However, the assumption

that the nodes are completely identical is not realistic inmany
real-world networks [22], such as in the neural networks,
where the internal neurons in the nervous system are impos-
sible to be completely identical due to the differences of the
parameters. And the authors of [23, 24] studied synchro-
nization of complex dynamical networks with nonidentical
nodes. While, in normal circumstances, the neurons are not
completely identical or completely nonidentical. They are
similar to each other and they will achieve synchronization to
transmit information which shows that the neural system has
certain robustness. At this time, we want to know the answers
of the following questions, which have a practicalmeaning for
us to analyze and controlmany realistic networkswith similar
nodes. How to depict the similarity of the similar nodes?
What is the condition that the similar nodes have to satisfy
in the network in order to achieve synchronization without
controllers? If there is a mutation or a pathological change,
then some neurons may have many different characteristics,
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and they can not synchronize with other neurons. When the
similarity of the similar nodes is broken, how to synchronize
the nodes in the network?

Furthermore, enormous works have been done on the
synchronization in complex networks with single-link, and
a lot of meaningful conclusions have been obtained. The
authors of [19] propose that single-link network is a special
case of multilinks network. Therefore, research on multi-
links networks are more representative. Multilinks means
that there is more than one link between two nodes and
each of them has its own property. For instance, there
are relationship networks, transportation networks, World
Wide Web, and so forth. The transportation network as an
example of a network with multilinks, which is made up
by combining the corresponding airline network, railway
network, and highway network. We can split the multilinks
networks intomany subnetworks based on the property of the
connections. For a transportation network, the transmission
speed is different among airline network, railway network,
and highway network. In our previous work [19], time-delay
was introduced to split complex dynamical networks into
subnetworks, upon which a model of complex networks with
multilinks has been constructed. However, the important
issue of synchronization for complex dynamical networks
with similar nodes and multilinks has so far received little
attention. The study of the synchronization problem with
similar nodes in the complex multilinks network becomes an
interesting and challenging topic.

In this paper, we give a model of complex multilinks
networks with similar nodes. A definition of similar nodes
is given and the minimal similarity of similar nodes in the
network is analyzed for the first time. We find a threshold
of the minimal similarity of similar nodes. If the minimal
similarity of similar nodes is bigger than the threshold in the
network, then the similar nodes can achieve synchronization.
Otherwise, we should add some controllers to the nodes
in order to get synchronization. Then some new adaptive
synchronization criteria are proposed. Finally, numerical
simulations of dynamical networks with similar nodes are
presented to demonstrate the feasibility and the effectiveness
of the results.

2. Model and Preliminaries

The model of complex multilinks network consisting of 𝑁

similar nodes with𝑚 kinds of properties can be described by

𝑥̇
𝑖 (𝑡) = 𝐴

𝑖
𝑥
𝑖 (𝑡) + 𝑓 (𝑥

𝑖 (𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗 (𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑥
𝑗
(𝑡 − 𝜏
𝑙
) , 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑁
(𝑡))
𝑇 is the state vector of

node 𝑖, 𝐴
𝑖
is a matrix, 𝑓(𝑥

𝑖
(𝑡)) is a smooth nonlinear vector

function, 𝑐 > 0 is the coupling strength, Γ
0
and Γ

𝑙
are the

inner-coupling matrices, 𝐵
𝑙
= (𝑏
(𝑙)𝑖𝑗

)
𝑁×𝑁

, 0 ≤ 𝑙 ≤ 𝑚 − 1

represents the topological structure of the 𝑙th subnetwork,

and 𝜏
𝑙
is the time-delay of the 𝑙th subnetwork compared with

the basic network (𝜏
0

= 0). We define 𝑏
(𝑙)𝑖𝑗

= 𝑏
(𝑙)𝑗𝑖

= 1 if
there is a connection between node 𝑖 and node 𝑗 (𝑗 ̸= 𝑖) in the
𝑙th subnetwork, otherwise 𝑏

(𝑙)𝑖𝑗
= 𝑏
(𝑙)𝑗𝑖

= 0. And we define
𝑏
(𝑙)𝑖𝑖

= −∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑏
(𝑙)𝑖𝑗

.
Network (1) is in a state of asymptotical synchronization,

if

𝑥
1 (𝑡) = 𝑥

2 (𝑡) = ⋅ ⋅ ⋅ = 𝑥
𝑁 (𝑡) 󳨀→ 𝑠 (𝑡) (2)

as 𝑡 → ∞ (1 ≤ 𝑖 ≤ 𝑁), where 𝑠(𝑡)𝜖𝑅
𝑛 is a synchronous

solution of the node system 𝑥̇
𝑖
(𝑡) = 𝐴

𝑖
𝑥
𝑖
(𝑡) + 𝑓(𝑥

𝑖
(𝑡)). We

define the error vectors as

𝑒
𝑖 (𝑡) = 𝑥

𝑖 (𝑡) − 𝑠
𝑖 (𝑡) . (3)

Hereafter, the definitions of similar nodes and the min-
imal similarity of the similar nodes are given, and a useful
assumption and two lemmas are introduced.

Definition 1. If 𝐴
𝑖
and 𝐴

𝑗
are matrices with the similar

element values, then the node 𝑖 and 𝑗 are similar nodes. In
the network (1), we define 𝐴 as the matrix of basic node and
𝐴
𝑖
(1 ≤ 𝑖 ≤ 𝑁 − 1) as matrices of other nodes. Because 𝐴

and 𝐴
𝑖
are matrices with similar element values, we define

𝛿
𝑖
= 1 − (‖𝐴 − 𝐴

𝑖
‖
𝐹
/‖𝐴‖
𝐹
), ] = min(𝛿

𝑖
), (1 ≤ 𝑖 ≤ 𝑁 − 1), and

] (0 < ] < 1) represents the minimal similarity of the nodes
in the network.Thenormofmatrix𝐴 is ‖𝐴‖

𝐹
= (∑
𝑁

𝑖,𝑗=1
𝑎
2

𝑖𝑗
)
1/2,

and 𝑎
𝑖𝑗
(1 ≤ 𝑖, 𝑗 ≤ 𝑁) are elements of matrix 𝐴.

Remark 2. From Definition 1, we know ] is an important
parameter.When ] approaches to 1, the nodes in the network
are similar. If ] satisfies a certain condition, then the similar
nodes of the network can achieve synchronization without
controllers. On the contrary, when ] is far away from 1, the
nodes in the network become not similar, so the nodes cannot
achieve synchronization without controllers. That is to say,
there exists a threshold, if ] is bigger than the threshold; then
the similar nodes in the network can get synchronization
without controllers. And the threshold is what we tried to find
in the following.

Assumption 3. The smooth nonlinear function 𝑓(⋅) satisfies
the following Lipschitz condition:

󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡))

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑠 (𝑡)

󵄩󵄩󵄩󵄩 , (4)

where 𝐿 is a positive constant.

Lemma 4. For any two vectors 𝑥 and 𝑦, and a matrix 𝑄 > 0

with compatible dimensions, one has

2𝑥
𝑇
𝑦 ≤ 𝑥

𝑇
𝑄𝑥 + 𝑦

𝑇
𝑄
−1
𝑦. (5)

Lemma 5. If 𝐴𝜖𝐶
𝑁×𝑁, the eigenvalues of 𝐴 are 𝜆

𝑖
(𝑖 =

1, 2, . . . , 𝑁), then max(𝜆
𝑖
) ≤ ‖𝐴‖, where ‖𝐴‖ is an arbitrary

matrix norm.

3. Synchronization Analysis

In this section, suppose there is not a control scheme to
synchronize a delayed complex multilinks network with
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similar nodes. According to system (1), the error dynamical
system can be derived as

̇𝑒
𝑖 (𝑡) = 𝐴

𝑖
𝑒
𝑖 (𝑡) + 𝑓 (𝑥

𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡)) + 𝑐

𝑁

∑
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(0)𝑖𝑗

Γ
0
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+ 𝑐
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∑
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∑
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𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑒
𝑗
(𝑡 − 𝜏
𝑙
) ,

(6)

where 𝐴
𝑖
= 𝐴 + Δ𝐴

𝑖
, 𝐴
𝑖
is the matrix of node 𝑖, and 𝐴 is

the matrix of basic node. Because𝐴 and𝐴
𝑖
are matrices with

similar element values, Δ𝐴
𝑖
= 𝐴
𝑖
−𝐴. It is easy to see that the

synchronization of the complex network (1) is achieved if the
zero solution of the error system (6) is globally asymptotically
stable, which is ensured by the following theorem. And we
find that the minimal similarity of the similar nodes satisfies
an inequality for synchronization.

Theorem 6. Consider network (1), if the minimal similarity of
the nodes ] is bigger than the threshold, where the threshold of
] is

(𝜆max (𝐴) + 𝐿 + 𝑐𝜆max (𝑃0) +
𝑐

2

𝑙=𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
)

+
𝑐

2
(𝑚 − 1) + ‖𝐴‖𝐹)(‖𝐴‖𝐹)

−1
,

(7)

and it also satisfies the following inequality:

𝜆max (𝐴) + 𝐿 + 𝑐𝜆max (𝑃0) + (𝑐/2)∑
𝑙=𝑚−1

𝑙=1
𝜆max (𝑃𝑙𝑃

𝑇

𝑙
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‖𝐴‖𝐹

+
(𝑐/2) (𝑚 − 1) + ‖𝐴‖𝐹

‖𝐴‖𝐹

< ] < 1,

(8)

then the system (1) is synchronized without controllers.

Proof. Construct the following Lyapunov function:
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(10)

Let 𝑒(𝑡) = (𝑒
1
(𝑡), 𝑒
2
(𝑡), . . . , 𝑒

𝑁
(𝑡)), then we get

𝑉̇ (𝑡) ≤ [𝑒(𝑡)
𝑇
𝐴𝑒 (𝑡) + 𝑒(𝑡)

𝑇
Δ𝐴
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𝑇
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+ 𝑐𝑒(𝑡)
𝑇
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0
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0
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1
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𝑇
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2
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2
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2
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+ ⋅ ⋅ ⋅ + 𝑐𝑒(𝑡)
𝑇
(𝐵
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⊗ Γ
𝑚−1
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𝑐

2
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𝑐
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1
)
𝑇
𝑒 (𝑡 − 𝜏

1
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𝑐
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2
)
𝑇
𝑒 (𝑡 − 𝜏

2
)

− ⋅ ⋅ ⋅ −
𝑐

2
𝑒(𝑡 − 𝜏

𝑚−1
)
𝑇
𝑒 (𝑡 − 𝜏

𝑚−1
) .

(11)

Let

𝑃
0
= 𝐵
0
⊗ Γ
0
,

𝑃
1
= 𝐵
1
⊗ Γ
1
,

𝑃
2
= 𝐵
1
⊗ Γ
2
,

...

𝑃
𝑚−1

= 𝐵
𝑚−1

⊗ Γ
𝑚−1

,

(12)

where ⊗ represents the Kronecker product. Then by
Lemma 4, we have

𝑉̇ (𝑡) ≤ 𝜆max (𝐴) 𝑒(𝑡)
𝑇
𝑒 (𝑡) + 𝜆max (Δ𝐴

𝑖
) 𝑒(𝑡)
𝑇
𝑒 (𝑡)

+ 𝐿𝑒(𝑡)
𝑇
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𝑇
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+
𝑐

2
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𝑇

1
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𝑇
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+
𝑐

2
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𝑇

2
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𝑇
𝑒 (𝑡)

+ ⋅ ⋅ ⋅ +
𝑐

2
𝜆max (𝑃𝑚−1𝑃

𝑇

𝑚−1
) 𝑒(𝑡)
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+
𝑐

2
(𝑚 − 1) 𝑒(𝑡)

𝑇
𝑒 (𝑡)

≤ [𝜆max (𝐴) +
󵄩󵄩󵄩󵄩Δ𝐴
𝑖

󵄩󵄩󵄩󵄩𝐹
+ 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1)] 𝑒(𝑡)

𝑇
𝑒 (𝑡)

≤ [𝜆max (𝐴) + (1 − ]) ‖𝐴‖𝐹 + 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1)] 𝑒(𝑡)

𝑇
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(13)

Therefore, if we have

𝜆max (𝐴) + (1 − ]) ‖𝐴‖𝐹 + 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1) < 0,

(14)

then 𝑉̇(𝑡) ≤ 0. So we get the synchronization criterion as
follows:

𝜆max (𝐴) + 𝐿 + 𝑐𝜆max (𝑃0) + (𝑐/2)∑
𝑙=𝑚−1

𝑙=1
𝜆max (𝑃𝑙𝑃

𝑇

𝑙
)

‖𝐴‖𝐹

+
(𝑐/2) (𝑚 − 1) + ‖𝐴‖𝐹

‖𝐴‖𝐹

< ] < 1.

(15)

If ] satisfies (15), the nodes are synchronized. Thus we
complete the proof.

Remark 7. Thematrix of basic node can be chosen at random
from 𝐴

𝑖
(1 ≤ 𝑖 ≤ 𝑁). No matter which one we choose,

Theorem 6 also holds.
Furthermore, noise plays an important role in the process

of synchronization. Here we consider the influence of the
noise. If there is an additive noise in the system (1) in the form
of

𝑥̇
𝑖 (𝑡) = 𝐴

𝑖
𝑥
𝑖 (𝑡) + 𝑓 (𝑥

𝑖 (𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗 (𝑡)

+ 𝑐
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∑

𝑙=1

𝑁
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𝑏
(𝑙)𝑖𝑗
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𝑙
𝑥
𝑗
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𝑙
) + 𝜂
𝑖 (𝑡) ,

𝑖 = 1, 2, . . . , 𝑁,

(16)

where 𝜂
𝑖
(𝑡)𝜖𝑅
𝑛 is the zeromean bounded noise. Using system

(16), we can easily get the following error system:

̇𝑒
𝑖 (𝑡) = (𝐴 + Δ𝐴

𝑖
) 𝑒
𝑖 (𝑡) + 𝑓 (𝑥

𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑒
𝑗 (𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑒
𝑗
(𝑡 − 𝜏
𝑙
) + 𝜂
𝑖 (𝑡) ,

(17)

then we get

𝐸 ( ̇𝑒
𝑖 (𝑡)) = (𝐴 + Δ𝐴

𝑖
) 𝐸 [𝑒
𝑖 (𝑡)] + 𝐸 [𝑓 (𝑥

𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡))]

+ 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝐸 [𝑒
𝑗 (𝑡)]

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝐸 [𝑒
𝑗
(𝑡 − 𝜏
𝑙
)] + 𝐸 [𝜂

𝑖 (𝑡)] .

(18)

Finally, we get the theorem as follows.

Theorem8. When there is a noise or perturbation, considering
the network (16), if the following condition holds

𝜆max (𝐴) + 𝐿 + 𝑐𝜆max (𝑃0) + (𝑐/2)∑
𝑙=𝑚−1

𝑙=1
𝜆max (𝑃𝑙𝑃

𝑇

𝑙
)

‖𝐴‖𝐹

+
(𝑐/2) (𝑚 − 1) + ‖𝐴‖𝐹

‖𝐴‖𝐹

< ] < 1,

(19)

then 𝐸[𝑒
𝑖
(𝑡)] approaches to zero.

The proof process of Theorem 8 is similar to the proof
process of Theorem 6, so here it is omitted.

4. Adaptive Synchronization

In this section, a control scheme is developed to synchronize
a delayed complex multilinks network with similar nodes,
which do not satisfy the synchronization criterion (15). And
the following adaptive controllers are used:

𝑢
𝑖
= −𝑑
𝑖
𝑒
𝑖 (𝑡) , 1 ≤ 𝑖 ≤ 𝑁. (20)

And the updating laws are

̇𝑑
𝑖
= 𝑘
𝑖
𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡) , 1 ≤ 𝑖 ≤ 𝑁, (21)

where 𝑘
𝑖
(1 ≤ 𝑖 ≤ 𝑁) are positive constants. The adaptive

controllers (20) are widely used in solvingmany synchronous
problems.
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Then the controlled network can be characterized as

𝑥̇
𝑖 (𝑡) = 𝐴

𝑖
𝑥
𝑖 (𝑡) + 𝑓 (𝑥

𝑖 (𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗 (𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑥
𝑗
(𝑡 − 𝜏
𝑙
) + 𝑢
𝑖
,

𝑖 = 1, 2, . . . , 𝑁.

(22)

According to system (22), the following error dynamical
system can be derived:

̇𝑒
𝑖 (𝑡) = (𝐴 + Δ𝐴

𝑖
) 𝑒
𝑖 (𝑡) + 𝑓 (𝑥

𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑒
𝑗(𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑒
𝑗
(𝑡 − 𝜏
𝑙
) − 𝑑
𝑖
𝑒
𝑖 (𝑡) .

(23)

It is clear to see that the synchronization of the controlled
complex network (22) is achieved if the zero solution of the
error system (23) is globally asymptotically stable, which is
ensured by the following theorem.

Theorem 9. Consider the network (22) under the actions of
the controllers (20) and the updating laws (21). If the following
condition holds:

𝜆max (𝐴) + (1 − ]) ‖𝐴‖𝐹 + 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑙=𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1) < 𝑑

∗
,

(24)

where 𝑑
∗ is a sufficiently large positive constant to be deter-

mined, then the system (1) is synchronized.

Proof. Construct the following Lyapunov function:

𝑉 (𝑡) =
1

2

𝑁

∑

𝑖=1

𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡)

+
𝑐

2

𝑚−1

∑

𝑙=1

∫

𝑡

𝑡−𝜏𝑙

𝑁

∑

𝑖=1

𝑒
𝑖(𝜃)
𝑇
𝑒
𝑖 (𝜃) 𝑑𝜃

+
1

2

𝑁

∑

𝑖=1

(𝑑
𝑖
− 𝑑
∗
)
2

𝑘
𝑖

.

(25)

Clearly, 𝑉(𝑡) is positive. Then the derivative of 𝑉(𝑡) is
obtained as

𝑉̇ (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑖(𝑡)
𝑇

̇𝑒
𝑖 (𝑡)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝑁

∑

𝑖=1

[𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡)

−𝑒
𝑖
(𝑡 − 𝜏
𝑙
)
𝑇
𝑒
𝑖
(𝑡 − 𝜏
𝑙
)]

+

𝑁

∑

𝑖=1

[𝑑
𝑖
𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡) − 𝑑

∗
𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡)]

=

𝑁

∑

𝑖=1

{𝑒
𝑖(𝑡)
𝑇
𝐴𝑒
𝑖 (𝑡) + 𝑒

𝑖(𝑡)
𝑇
Δ𝐴
𝑖
𝑒
𝑖 (𝑡) + 𝑒

𝑖 (𝑡)

× [𝑓 (𝑥
𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡))]

+ 𝑐𝑒
𝑖(𝑡)
𝑇

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑒
𝑗 (𝑡)

+ 𝑐𝑒
𝑖(𝑡)
𝑇

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑒
𝑗
(𝑡 − 𝜏
𝑙
)

− 𝑑
𝑖
𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡) +

𝑐

2

𝑚−1

∑

𝑙=1

𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡)

−
𝑐

2

𝑚−1

∑

𝑙=1

𝑒
𝑖
(𝑡 − 𝜏
𝑙
)
𝑇
𝑒
𝑖
(𝑡 − 𝜏
𝑙
)

+𝑑
𝑖
𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡) − 𝑑

∗
𝑒
𝑖(𝑡)
𝑇
𝑒
𝑖 (𝑡) } .

(26)

Let 𝑒(𝑡) = (𝑒
1
(𝑡), 𝑒
2
(𝑡), . . . , 𝑒

𝑁
(𝑡)), then we get

𝑉̇ (𝑡) ≤ [𝑒(𝑡)
𝑇
𝐴𝑒 (𝑡) + 𝑒(𝑡)

𝑇
Δ𝐴
𝑖
𝑒 (𝑡) + 𝐿𝑒(𝑡)

𝑇
𝑒 (𝑡)]

+ 𝑐𝑒(𝑡)
𝑇
(𝐵
0
⊗ Γ
0
) 𝑒 (𝑡)

+ 𝑐𝑒(𝑡)
𝑇
(𝐵
1
⊗ Γ
1
) 𝑒 (𝑡 − 𝜏

1
) + 𝑐𝑒(𝑡)

𝑇

× (𝐵
2
⊗ Γ
2
) 𝑒 (𝑡 − 𝜏

2
)

+ ⋅ ⋅ ⋅ + 𝑐𝑒(𝑡)
𝑇
(𝐵
𝑚−1

⊗ Γ
𝑚−1

) 𝑒 (𝑡 − 𝜏
𝑚−1

)

+
𝑐

2
(𝑚 − 1) 𝑒(𝑡)

𝑇
𝑒 (𝑡) −

𝑐

2
𝑒(𝑡 − 𝜏

1
)
𝑇
𝑒 (𝑡 − 𝜏

1
)

−
𝑐

2
𝑒(𝑡 − 𝜏

2
)
𝑇
𝑒 (𝑡 − 𝜏

2
)

− ⋅ ⋅ ⋅ −
𝑐

2
𝑒(𝑡 − 𝜏

𝑚−1
)
𝑇
𝑒 (𝑡 − 𝜏

𝑚−1
) − 𝑑
∗
𝑒(𝑡)
𝑇
𝑒 (𝑡) .

(27)
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Figure 1: Separate synchronous variables 𝑒
𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3

(1 ⩽ 𝑖 ⩽ 30) of different network models where 𝑒
𝑖1
are shown by the red line, 𝑒

𝑖2
are

shown by the blue line, and 𝑒
𝑖3
are shown by the green line. 𝑐 = 2; 𝜏 = 0.01. (a) 𝐵

0
and 𝐵

1
are small-world network models, and the rewiring

probability among nodes is 0.3 and 0.6. (b) 𝐵
0
and 𝐵

1
are scale-free network models, and their minimum degrees are 2 and 3. (c) 𝐵

0
and 𝐵

1

are random network models, and their connection probability among nodes is 0.1 and 0.3. (d) 𝐵
0
is a small-world network model, and the

rewiring probability among nodes is 0.3. 𝐵
1
is a scale-free network model, and the minimum degree is 2. Those similar nodes can achieve

synchronization without controllers (color online).

Let
𝑃
0
= 𝐵
0
⊗ Γ
0
,

𝑃
1
= 𝐵
1
⊗ Γ
1
,

𝑃
2
= 𝐵
1
⊗ Γ
2
,

...
𝑃
𝑚−1

= 𝐵
𝑚−1

⊗ Γ
𝑚−1

,

(28)

where ⊗ represents the Kronecker product. Then by
Lemma 4, we have

𝑉̇ (𝑡) ≤ 𝜆max (𝐴) 𝑒(𝑡)
𝑇
𝑒 (𝑡)

+ 𝜆max (Δ𝐴
𝑖
) 𝑒(𝑡)
𝑇
𝑒 (𝑡) + 𝐿𝑒(𝑡)

𝑇
𝑒 (𝑡)

+ 𝑐𝜆max (𝑃0) 𝑒(𝑡)
𝑇
𝑒 (𝑡)

+
𝑐

2
𝜆max (𝑃1𝑃

𝑇

1
) 𝑒(𝑡)
𝑇
𝑒 (𝑡)

+ ⋅ ⋅ ⋅ +
𝑐

2
𝜆max (𝑃𝑚−1𝑃

𝑇

𝑚−1
) 𝑒(𝑡)
𝑇
𝑒 (𝑡)

+
𝑐

2
(𝑚 − 1) 𝑒(𝑡)

𝑇
𝑒 (𝑡) − 𝑑

∗
𝑒(𝑡)
𝑇
𝑒 (𝑡)

≤ [𝜆max (𝐴) +
󵄩󵄩󵄩󵄩Δ𝐴
𝑖

󵄩󵄩󵄩󵄩𝐹
+ 𝐿

+ 𝑐𝜆max (𝑃0) +
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
)

+
𝑐

2
(𝑚 − 1) − 𝑑

∗
] 𝑒(𝑡)
𝑇
𝑒 (𝑡)

≤ [𝜆max (𝐴) + (1 − ]) ‖𝐴‖𝐹 + 𝐿

+ 𝑐𝜆max (𝑃0) +
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
)

+
𝑐

2
(𝑚 − 1) − 𝑑

∗
] 𝑒(𝑡)
𝑇
𝑒 (𝑡) .

(29)
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Figure 2: The similar nodes can achieve synchronization without controllers when the Brownian motion satisfies 𝐸𝜔(𝑡) = 0, 𝐷𝜔(𝑡) = 1.
And separate synchronous variables 𝑒

𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3
(1 ⩽ 𝑖 ⩽ 30) of different network models where 𝑒

𝑖1
are shown by the red line, 𝑒

𝑖2
are shown by

the blue line, and 𝑒
𝑖3
are shown by the green line. 𝑐 = 2; 𝜏 = 0.01. The network models of (a)–(d) are the same with Figures 1(a)–1(d) (color

online).

Therefore, if we have

𝜆max (𝐴) + (1 − ]) ‖𝐴‖𝐹 + 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1) < 𝑑

∗
,

(30)

then 𝑉̇(𝑡) ≤ 0. Here we complete the proof.

Remark 10. If there is not a nonlinear function in system (1),
then the network (1) is transferred into

𝑥̇
𝑖 (𝑡) = 𝐴

𝑖
𝑥
𝑖 (𝑡) + 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗(𝑡)

+ 𝑐

𝑚−1

∑

𝑙=1

𝑁

∑

𝑗=1

𝑏
(𝑙)𝑖𝑗

Γ
𝑙
𝑥
𝑗
(𝑡 − 𝜏
𝑙
) ,

𝑖 = 1, 2, . . . , 𝑁.

(31)

Likewise, we can design the controllers as in (20) and (21). If
the following condition holds:

𝜆max (𝐴) + (1 − ]) ‖𝐴‖𝐹 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
) +

𝑐

2
(𝑚 − 1) < 𝑑

∗
,

(32)

then the system (31) is synchronized, where 𝑑∗ is a sufficiently
large positive constant to be determined.

Remark 11. The single-link network is a special case of mul-
tilinks networks [19]. When there is not a delay, the network
(1) is transferred into the following single-link network:

𝑥̇
𝑖 (𝑡) = 𝐴

𝑖
𝑥
𝑖 (𝑡) + 𝑓 (𝑥

𝑖 (𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(33)
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Figure 3: Separate synchronous variables 𝑒
𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3
(1 ⩽ 𝑖 ⩽ 30) of different networkmodels where 𝑒

𝑖1
are shown by the red line, 𝑒

𝑖2
are shown

by the blue line, and 𝑒
𝑖3
are shown by the green line. 𝑐 = 2; 𝜏 = 0.01. The dynamics of nodes satisfy the Lü system. The nodes of the network

cannot achieve synchronization without controllers. The network models of (a)–(d) are the same with Figures 1(a)–1(d) (color online).

and the controllers are designed as in (20)-(21). If the
following condition holds:

𝜆max (𝐴) + (1 − ]) ‖𝐴‖𝐹 + 𝐿 + 𝑐𝜆max (𝑃0) < 𝑑
∗
, (34)

then the system (33) is synchronized, where𝑑∗ is a sufficiently
large positive constant to be determined.

5. Numerical Simulation

In this section, we use some examples to explain the influence
of the proposed criteria, andwe consider a network consisting
of 30 similar nodes.Themultilinks network with 2 properties
can be described as follows:

𝑥̇
𝑖 (𝑡) = 𝐴

𝑖
𝑥
𝑖 (𝑡) + 𝑓 (𝑥

𝑖 (𝑡)) + 𝑐

30

∑

𝑗=1

𝑏
(0)𝑖𝑗

Γ
0
𝑥
𝑗 (𝑡)

+ 𝑐

30

∑

𝑗=1

𝑏
(1)𝑖𝑗

Γ
1
𝑥
𝑗 (𝑡 − 𝜏) ,

(35)

where 1 ⩽ 𝑖 ⩽ 30, 𝐵
0
= (𝑏
(0)𝑖𝑗

)
30 × 30

, and 𝐵
1
= (𝑏
(1)𝑖𝑗

)
30 × 30

are symmetrically diffusive coupling matrixes with 𝑏
(0)𝑖𝑗

,

𝑏
(1)𝑖𝑗

= 0 or 1. Γ
0

= Γ
1

= diag(1, 1, 1), 𝑐 = 2, 𝜏 = 0.01,
𝑓(𝑥
𝑖
(𝑡)) = (0.6 sin(𝑥

𝑖1
), 0.6 sin(𝑥

𝑖2
), 0.6 sin(𝑥

𝑖3
))
𝑇. According

to Assumption 3, we can know that 𝐿 = 0.6:

𝐴
𝑖
= (

−10 + 0.1 ∗ rand 0.1 ∗ rand 0.1 ∗ rand
0.1 ∗ rand −10 + 0.1 ∗ rand 0.1 ∗ rand
0.1 ∗ rand 0.1 ∗ rand −10 + 0.1 ∗ rand

) ,

(36)

where the function of rand can produce a random number
between 0 and 1. According to the definition of similar nodes,
we know𝐴

𝑖
, 1 ⩽ 𝑖 ⩽ 30 arematrices of the similar nodes. And

𝐴 = (

−10 0 0

0 −10 0

0 0 −10

) (37)

is the matrix of the basic node. So

Δ𝐴
𝑖
= (

0.1 ∗ rand 0.1 ∗ rand 0.1 ∗ rand
0.1 ∗ rand 0.1 ∗ rand 0.1 ∗ rand
0.1 ∗ rand 0.1 ∗ rand 0.1 ∗ rand

) . (38)

According to the precise calculation, 𝜆max(𝐴) = −10,
𝜆max(𝑃0) = 0, 𝜆max(𝑃

𝑇

1
𝑃
1
) = 18.5139. Based on
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Figure 4: Separate synchronous variables 𝑒
𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3

(1 ⩽ 𝑖 ⩽ 30) of different network models where 𝑒
𝑖1
are shown by the red line, 𝑒

𝑖2
are

shown by the blue line, and 𝑒
𝑖3
are shown by the green line. 𝑐 = 2; 𝜏 = 0.01. The dynamics of nodes satisfy the Lü system. The nodes are

controlled by the adaptive controllers (20) and (21). The network models of (a)–(d) are the same with Figures 1(a)–1(d) (color online).

the stability analysis, we get (𝜆max(𝐴) + 𝐿 + 𝑐𝜆max(𝑃0) +

(𝑐/2)∑
𝑙=𝑚−1

𝑙=1
𝜆max(𝑃𝑙𝑃

𝑇

𝑙
) + (𝑐/2)(𝑚 − 1) + ‖𝐴‖

𝐹
)(‖𝐴‖
𝐹
)
−1

=

(−100 + 0.6 + 18.5139 + 1 + √30000)/√30000 = 0.5388.
According to (38), because 0 < rand < 1, the biggest changes
are

Δ𝐴
𝑖
= (

0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1

) . (39)

Then we compute the ] = 0.9983, 0.5388 < ] <

1, so the similar nodes can achieve synchronization which
satisfiesTheorem 6. From Figures 1(a)–1(d), we know that the
similar nodes in the network achieved synchronization under
different network models.

Furthermore, in order to verify Theorem 9, we choose
the model (16) as the second example, where the Brownian
motion satisfies 𝐸𝜔(𝑡) = 0, 𝐷𝜔(𝑡) = 1, and the parameters
are the same with the first example. Figures 2(a)–2(d) plot
the synchronous errors converge to 0 in finite time under

different network models with noise, which reflects that
similar nodes have a certain robustness. In our future work,
we will consider the model (35) with Gaussian noise [25]
or 1/𝑓 noise [26], and the stochastic bounded model like
[27] in the complex network with similar nodes will be
studied.

Next, another example as the third one describes the
controlled network using Lü systems and considers the
network consisting of 30 nodes. The node dynamical system
is 𝑥̇
𝑖

= (−36𝑥
𝑖1

+ 36𝑥
𝑖2
; 20𝑥

𝑖2
− 𝑥
𝑖1
𝑥
𝑖3
; −3𝑥
𝑖3

+ 𝑥
𝑖1
𝑥
𝑖2
),

for 𝑖 = 1, 2, . . . , 30. And Δ𝐴
𝑖
are the same with the first

example. Since Lü attractor is bounded, we suppose that all
nodes are running in the given bounded region. There exists
the constants 𝑀

1
= 25, 𝑀

2
= 30, 𝑀

3
= 45 satisfying

‖𝑥
𝑖𝑗
‖
2
, ‖𝑠
𝑗
‖
2
⩽ 𝑀
𝑗
for 1 ⩽ 𝑖 ⩽ 30 and 1 ⩽ 𝑗 ⩽ 3 [28]. Thus we

have
󵄩󵄩󵄩󵄩𝑓 (𝑥
𝑖
) − 𝑓 (𝑠)

󵄩󵄩󵄩󵄩 ≤ √2𝑀
2

1
+ 𝑀
2

2
+ 𝑀
2

3

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩2

≈ 64.6142
󵄩󵄩󵄩󵄩𝑒𝑖

󵄩󵄩󵄩󵄩2
,

(40)
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Figure 5: Separate synchronous variables 𝑒
𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3
(1 ⩽ 𝑖 ⩽ 30) of different network models where 𝑐 = 2, 𝜏 = 0.01, and 𝜏

1
= 0.01. (a) 𝐵

0
, 𝐵
1
,

and 𝐵
2
are small-world network models, the rewiring probability among nodes is 0.3, 0.6, and 0.7. (b) 𝐵

0
, 𝐵
1
, and 𝐵

2
are scale-free network

models, and their minimum degrees are 1, 2, and 3. (c) 𝐵
0
, 𝐵
1
, and 𝐵

2
are random network models, and their connection probability among

nodes is 0.1, 0.3, and 0.5. (d) 𝐵
0
is a small-world network model, and the rewiring probability among nodes is 0.3. 𝐵

1
is a scale-free network

model, and the minimum degree is 2. 𝐵
2
is a random network model, and the connection probability among nodes is 0.1. The dynamics of

nodes satisfy the Lü system. The multilinks network can achieve synchronization under the adaptive controllers (color online).

then we can know that 𝐿 = 64.6142. And other parameters
are the same with the first example. We have 𝜆max(𝐴) = 20,
and

(𝜆max (𝐴) + 𝐿 + 𝑐𝜆max (𝑃0)

+
𝑐

2

𝑙=𝑚−1

∑

𝑙=1

𝜆max (𝑃𝑙𝑃
𝑇

𝑙
)
𝑐

2
(𝑚 − 1) + ‖𝐴‖𝐹)(‖𝐴‖𝐹)

−1

=
20 + 64.6142 + 18.5139 + 1 + √3001

√3001
= 2.9008.

(41)

It does not satisfyTheorem 6. So the nodes cannot achieve
synchronization without controllers. Simulation results are
given in Figures 3(a)–3(d) which show the evolution process

of 30 state variables in three dimensions. And it verified that
the similar nodes cannot achieve synchronization without
controllers.

According to the adaptive synchronization criteria, we
add the adaptive controllers (20) and (21) to these similar
nodes of the network. 𝑘

1
= 𝑘
2
= 𝑘
3
= 1. The curves of error

vectors 𝑒
𝑖1
, 𝑒
𝑖2
, 𝑒
𝑖3
(𝑖 = 1, 2, 3) are shown in Figures 4(a)–4(d).

To be more persuadable, with the same calculation
method, Figures 5(a)–5(d) plot the synchronous errors of
networks with links owning 3 properties. Figures 5(a)–
5(d) have different network models, and 𝜏

1
= 0.01. This

demonstrates that our theorem is not only applicable to
multilinks network owning two links properties but also to
real networks with multiple links. From Figures 1(a)–1(d) to
Figures 5(a)–5(d), we attain that our theorems are feasible
in different network models under different conditions. This
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result is more helpful to real networks not just to model
networks. From the above simulation results, we can see that
these similar nodes can achieve synchronization under the
impacts of the adaptive controllers. In the future, we will
consider the possible application of this paper to packet delay
issue in computer communications.

6. Conclusion

In this paper, we present the definition of similar nodes
and analyze their minimal similarity in the network for the
first time. We find the threshold of the minimal similarity
of the similar nodes if it is bigger than the threshold,
then the similar nodes can achieve synchronization without
controllers. Otherwise, we have to add some controllers in
order to get synchronization. So some new adaptive synchro-
nization criteria are proposed to realize the synchronization
of multilinks networks with similar nodes. Finally, numerical
simulations are provided to show the effectiveness and the
correctness of the proposed criteria. The model and the
principles designed in this paper are very useful to analyze
and control the dynamical multilinks networks with similar
nodes, such as heart cells networks and neural networks.
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