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This paper investigates the problem of stability analysis for neural networks with time-varying delays. By utilizing the Wirtinger-
based integral inequality and constructing a suitable augmented Lyapunov-Krasovskii functional, two less conservative delay-
dependent criteria to guarantee the asymptotic stability of the concerned networks are derived in terms of linear matrix inequalities
(LMIs). Three numerical examples are included to explain the superiority of the proposed methods by comparing maximum delay
bounds with the recent results published in other literature.

1. Introduction

Since neural networks are generally recognized as one of the
simplified models of neural processing in the human brain
and can provide their good performance and strong capa-
bility of information processing, they have been successfully
applied in many fields such as image and signal processing,
pattern recognition, fixed-point computations, optimization,
feedback control, medical diagnosis, financial applications,
and other scientific areas [1–3]. Due to the finite switching
speed of amplifiers and the inherent communication time
between the neurons, it is well known that time delays exist
andmay cause oscillation or deteriorate system performance.
Therefore, during the last few decades, many researchers [4–
9] put their times and efforts into stability analysis of neural
networks with time delays because it is a prerequisite and
an important job to check whether the equilibrium point
of the concerned networks is stable or not due to the fact
that the application of these networks is heavily depen-
dent on the dynamic behavior of the equilibrium points.

Methodologically, the delay-derivative dependent [10], the
weighting-delay based [11], delay-slope dependent [12], and
delay-partitioning [13] analyses were taken by the use of
the information for time-delay. Also, Faydasicok and Arik
[14, 15] addressed the stability of neural networks with
multiple time delays. The asymptotic stability analysis was
dealt with in the aforesaid works, while, in [16–19], the
exponential stability analysis was studied. In addition to this,
the stochastic perturbation condition was considered in [20].
Furthermore, more attentions have been received in delay-
dependent stability analysis since time delays encountered in
neural networks are usually not very big [21].

One of the hot issues in delay-dependent stability analysis
for dynamic systems such as linear systems, neutral systems,
neural networks, and so on is to reduce the conservatism
of stability criteria or to enhance the feasible region of the
concerned criteria. To check the enhancement of the feasible
region of stability criteria, maximum delay bounds for guar-
anteeing the asymptotic stability of the concerned systems are
comparedwith the othermethods.The Jensen inequality [22],
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Park’s inequality [23], model transformation [24, 25], free-
weighting matrices techniques [26, 27], convex combination
technique [28], and reciprocally convex optimization [29] are
well recognized and have been utilized in many fields as tools
of reducing the conservatism of stability and stabilization
criteria. Very recently, Seuret and Gouaisbaut [30] proposed
the Wirtinger-based integral inequality and the advantages
of the proposed integral inequality were shown via the
comparison of maximum delay bounds for various systems
such as systems with constant and known delay, systems with
a time-varying delay, and sampled-data systems.

Another remarkable approach to reduce the conservatism
of stability criteria is the delay-partitioning idea which was
firstly proposed by Gu [22]. The advantage of this method
provides larger delay bounds when the delay-partitioning
number increases. The idea of the work [22] has been
utilized in stability analysis of neural networks with time
delays by many researchers [4, 6, 7, 9–11, 13, 21]. In [9],
with the recent techniques such as free-weighting matrices
techniques and reciprocally convex optimization, a delay-
partitioning approachwas presented by considering the time-
varying delay at each subinterval. Zhang et al. [11] proposed
a new delay-partitioning stability analysis by introducing a
tuning parameter adjusting delay interval. Zhang et al. [21]
proposed new Lyapunov-Krasovskii functionals and delay-
partitioning method to investigate the problem of delay-
dependent stability analysis for neural networks with two
additive time-varying delays and some discussions about
the recent works were described. However, when the delay-
partitioning number increases, the computational burden
and time-consumption increase while the increasing rate of
maximum delay bounds is decreased.

In addition to the techniques mentioned above, the
choice of Lyapunov-Krasovskii functional and augmented
state vectors also play important roles to enhance the feasible
region of stability criteria. Since the introduction of the triple
integral Lyapunov-Krasovskii functional [32, 33], some new
results in stability analysis of neural networks with time-
varying delays have been presented in [4, 19]. Furthermore,
in the authors’ previous works [5, 8] with the addition of
zero equalities [34], it was shown that larger delay bounds
can be obtained by constructing newly augmented Lyapunov-
Krasovskii functional and introducing some newmethods in
the activation function condition. However, the application
of the Wirtinger-based integral inequality to the terms
obtained by calculating the augmented Lyapunov-Krasovskii
functional has not been fully investigated yet, and thus
there is room for further improvements on the reduction of
conservatism.

With motivation mentioned above, in this paper, two
improved delay-dependent stability criteria for neural net-
works with time-varying delays will be proposed. First, in
Theorem 6, by constructing a suitable augmented Lyapunov-
Krasovskii functional, an improved stability condition such
that the considered neural networks are asymptotically
stable is derived in terms of linear matrix inequalities
(LMIs) by applying Wirtinger-based integral inequality to
the augmented quadratic integral term and utilizing the zero
equalities [34]. Second, based on the results of Theorem 6

and motivated by the works [35–37], a further improved
stability criterion will be proposed inTheorem 9 by ensuring
the positiveness of the Lyapunov-Krasovskii functional and
utilizing the Wirtinger-based integral inequality. Through
three numerical examples utilized in many previous works to
check the conservatism of stability criteria, it will be shown
that the proposed stability criteria can provide larger delay
bounds than the recent existing results. By extension, the
developedmethods can be applied into the networked control
[38, 39], the filtering problem [40, 41], the uncertain systems
of neutral type [42], and so on.

Notation.R𝑛 is the 𝑛-dimensional Euclidean space, andR𝑚×𝑛
means the set of all 𝑚 × 𝑛 real matrices. For symmetric
matrices 𝑋 and 𝑌, 𝑋 > 𝑌 (resp., 𝑋 ≥ 𝑌) means that the
matrix 𝑋 − 𝑌 is positive definite (resp., nonnegative). 𝑋⊥
denotes a basis for the null-space of𝑋. 𝐼

𝑛
, 0
𝑛
, and 0

𝑚⋅𝑛
denote

𝑛 × 𝑛 identity matrix and 𝑛 × 𝑛 and 𝑚 × 𝑛 zero matrices,
respectively. ‖ ⋅ ‖ refers to the Euclidean vector norm or the
induced matrix norm. diag{⋅ ⋅ ⋅ } denotes the block diagonal
matrix. For square matrix 𝑆, Sym{𝑆} means the sum of 𝑆 and
its symmetric matrix 𝑆

𝑇; that is, Sym{𝑆} = 𝑆+𝑆
𝑇. ⋆ represents

the elements below the main diagonal of a symmetric matrix.
𝑋
[𝑓(𝑡)]

∈ R𝑚×𝑛 means that the elements of matrix 𝑋
[𝑓(𝑡)]

include the scalar value of 𝑓(𝑡).

2. Problem Statement and Preliminaries

Consider the following neural networks with discrete time-
varying delays:

̇𝑦 (𝑡) = −𝐴𝑦 (𝑡) + 𝑊
0
𝑔 (𝑦 (𝑡)) + 𝑊

1
𝑔 (𝑦 (𝑡 − ℎ (𝑡))) + 𝑏, (1)

where 𝑦(𝑡) = [𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡)]
𝑇

∈ R𝑛 is the neuron state
vector, 𝑛 denotes the number of neurons in a neural
network, 𝑔(𝑦(𝑡)) = [𝑔

1
(𝑦
1
(𝑡)), . . . , 𝑔

𝑛
(𝑦
𝑛
(𝑡))]
𝑇

∈ R𝑛

denotes the neuron activation function, 𝑔(𝑦(𝑡 − ℎ(𝑡))) =

[𝑔
1
(𝑦
1
(𝑡 − ℎ(𝑡))), . . . , 𝑔

𝑛
(𝑦
𝑛
(𝑡 − ℎ(𝑡)))]

𝑇

∈ R𝑛, 𝐴 = diag{𝑎
𝑖
} ∈

R𝑛×𝑛 is a positive diagonal matrix, 𝑊
0

= (𝑤
0

𝑖𝑗
)
𝑛×𝑛

∈ R𝑛×𝑛

and 𝑊
1
= (𝑤
1

𝑖𝑗
)
𝑛×𝑛

∈ R𝑛×𝑛 are the interconnection matrices
representing the weight coefficients of the neurons, and 𝑏 =

[𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
]
𝑇

∈ R𝑛 represents a constant input vector.
The delay, ℎ(𝑡), is a time-varying continuous function

satisfying

0 ≤ ℎ (𝑡) ≤ ℎ
𝑈
,

̇
ℎ (𝑡) ≤ ℎ

𝐷
, (2)

where ℎ
𝑈
is a known positive scalar and ℎ

𝐷
is any constant

one.
The neuron activation functions satisfy the following

assumption.

Assumption 1. The neuron activation functions 𝑔
𝑖
(⋅), 𝑖 =

1, . . . , 𝑛, with 𝑔
𝑖
(0) = 0 are continuous, bounded, and they

satisfy

𝑘
−

𝑖
≤

𝑔
𝑖
(𝑢) − 𝑔

𝑖
(V)

𝑢 − V
≤ 𝑘
+

𝑖
, 𝑢, V ∈ R,

𝑢 ̸= V, 𝑖 = 1, . . . , 𝑛,

(3)

where 𝑘+
𝑖
and 𝑘
−

𝑖
are constants.
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Remark 2. In Assumption 1, 𝑘
+

𝑖
and 𝑘

−

𝑖
can be allowed

to be positive, negative, or zero. As mentioned in [12],
Assumption 1 describes the class of globally Lipschitz contin-
uous and monotone nondecreasing activation when 𝑘

−

𝑖
= 0

and 𝑘
+

𝑖
> 0. And the class of globally Lipschitz continu-

ous and monotone increasing activation functions can be
described when 𝑘

+

𝑖
> 𝑘
−

𝑖
> 0.

For simplicity, in stability analysis of the neural networks
(1), the equilibrium point 𝑦∗ = [𝑦

∗

1
, . . . , 𝑦

∗

𝑛
]
𝑇 whose unique-

ness has been reported in [17] is shifted to the origin by
utilizing the transformation 𝑥(⋅) = 𝑦(⋅) − 𝑦

∗, which leads the
system (1) to the following form:

�̇� (𝑡) = −𝐴𝑥 (𝑡) + 𝑊
0
𝑓 (𝑥 (𝑡)) + 𝑊

1
𝑓 (𝑥 (𝑡 − ℎ (𝑡))) , (4)

where 𝑥(𝑡) = [𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇

∈ R𝑛 is the state vector of the
transformed system, 𝑓(𝑥(𝑡)) = [𝑓

1
(𝑥
1
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡))]
𝑇,

and 𝑓
𝑗
(𝑥
𝑗
(𝑡)) = 𝑔

𝑗
(𝑥
𝑗
(𝑡) + 𝑦

∗

𝑗
) − 𝑔
𝑗
(𝑦
∗

𝑗
) with 𝑓

𝑗
(0) = 0 (𝑗 =

1, . . . , 𝑛).
It should be noted that the activation functions 𝑓

𝑖
(⋅) (𝑖 =

1, . . . , 𝑛) satisfy the following condition [16]:

𝑘
−

𝑖
≤

𝑓
𝑖
(𝑢) − 𝑓

𝑖
(V)

𝑢 − V
≤ 𝑘
+

𝑖
, 𝑢, V ∈ R,

𝑢 ̸= V, 𝑖 = 1, . . . , 𝑛;

(5)

𝑘
−

𝑖
≤

𝑓
𝑖
(𝑢)

𝑢

≤ 𝑘
+

𝑖
, ∀𝑢 ̸= 0, 𝑖 = 1, . . . , 𝑛. (6)

The objective of this paper is to investigate the delay-
dependent stability analysis of system (4) which will be
introduced in Section 3.

Before deriving our main results, the following lemmas
will be utilized in deriving the main results.

Lemma 3 (see [30]). Consider a given matrix 𝑅 > 0. Then,
for all continuous function 𝜔 in [𝑎, 𝑏] → R𝑛, the following
inequality holds:

∫

𝑏

𝑎

𝜔
𝑇

(𝑠) 𝑅𝜔 (𝑠) 𝑑𝑠

≥

1

𝑏 − 𝑎

(∫

𝑏

𝑎

𝜔 (𝑠) 𝑑𝑠)

𝑇

(∫

𝑏

𝑎

𝜔 (𝑠) 𝑑𝑠)

+

3

𝑏 − 𝑎

(∫

𝑏

𝑎

𝜔 (𝑠) 𝑑𝑠 −

2

𝑏 − 𝑎

∫

𝑏

𝑎

∫

𝑠

𝑎

𝜔 (𝑢) 𝑑𝑢 𝑑𝑠)

𝑇

× 𝑅(∫

𝑏

𝑎

𝜔 (𝑠) 𝑑𝑠 −

2

𝑏 − 𝑎

∫

𝑏

𝑎

∫

𝑠

𝑎

𝜔 (𝑢) 𝑑𝑢 𝑑𝑠) .

(7)

Lemma 4 (see [43]). Let 𝜁 ∈ R𝑛, Φ = Φ
𝑇

∈ R𝑛×𝑛, and 𝐵 ∈

R𝑚×𝑛 such that 𝑟𝑎𝑛𝑘(𝐵) < 𝑛. Then, the following statements
are equivalent:

(1) 𝜁𝑇Φ𝜁 < 0, 𝐵𝜁 = 0, 𝜁 ̸= 0,
(2) (𝐵⊥)𝑇Φ𝐵

⊥

< 0, where 𝐵
⊥ is a right orthogonal

complement of 𝐵.

Lemma 5 (see [44]). For the symmetric appropriately dimen-
sional matrices Ω > 0, Ξ, matrix Λ, the following two
statements are equivalent:

(1) Ξ − Λ
𝑇

ΩΛ < 0,

(2) there exists a matrix of appropriate dimension Ψ such
that

[
Ξ + Λ

𝑇

Ψ + Ψ
𝑇

Λ Ψ
𝑇

Ψ −Ω

] < 0. (8)

3. Main Results

In this section, two new stability criteria for system (4) will
be proposed. For the sake of simplicity of matrix and vector
representation, 𝑒

𝑖
(𝑖 = 1, 2, . . . , 14) ∈ R14𝑛×𝑛 which will be

used inTheorems 6 and 9 are defined as block entry matrices
(e.g., 𝑒

3
= [0
𝑛⋅2𝑛

, 𝐼
𝑛
, 0
𝑛⋅11𝑛

]
𝑇). The other notations for some

vectors and matrices are defined as follows:

𝜁 (𝑡)

= [𝑥
𝑇

(𝑡), 𝑥
𝑇

(𝑡 − ℎ (𝑡)), 𝑥
𝑇

(𝑡 − ℎ
𝑈
), �̇�
𝑇

(𝑡), �̇�
𝑇

(𝑡 − ℎ
𝑈
) ,

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑑𝑠,

1

ℎ
𝑈
− ℎ (𝑡)

∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑑𝑠,

𝑓
𝑇

(𝑥 (𝑡)) , 𝑓
𝑇

(𝑥 (𝑡 − ℎ (𝑡))) , 𝑓
𝑇

(𝑥 (𝑡 − ℎ
𝑈
)) ,

∫

𝑡

𝑡−ℎ(𝑡)

𝑓
𝑇

(𝑥 (𝑠)) 𝑑𝑠, ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑓
𝑇

(𝑥 (𝑠)) 𝑑𝑠,

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑠

𝑡−ℎ(𝑡)

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠,

1

ℎ
𝑈
− ℎ (𝑡)

∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

𝑥
𝑇

(𝑢) 𝑑𝑢 𝑑𝑠]

𝑇

,

Γ = [−𝐴, 0
𝑛⋅2𝑛

, −𝐼
𝑛
, 0
𝑛⋅3𝑛

,𝑊
0
,𝑊
1
, 0
𝑛⋅5𝑛

] ,

Ξ
1[ℎ(𝑡)]

= Sym {[𝑒
1
, 𝑒
3
, ℎ (𝑡) 𝑒

6
+ (ℎ − ℎ (𝑡)) 𝑒

7
, 𝑒
11

+ 𝑒
12
]

× R[𝑒
4
, 𝑒
5
, 𝑒
1
− 𝑒
3
, 𝑒
8
− 𝑒
10
]
𝑇

} ,

Ξ
2
= [𝑒
1
, 𝑒
4
, 𝑒
8
]N[𝑒

1
, 𝑒
4
, 𝑒
8
]
𝑇

− [𝑒
3
, 𝑒
5
, 𝑒
10
]N[𝑒

3
, 𝑒
5
, 𝑒
10
]
𝑇

+ Sym{[𝑒
8
− 𝐾
𝑚
𝑒
1
] Λ
1
𝑒
𝑇

4
} + Sym {[𝐾

𝑝
𝑒
1
− 𝑒
8
]Δ
1
𝑒
𝑇

4
}

+ Sym{[𝑒
10

− 𝐾
𝑚
𝑒
3
]Λ
2
𝑒
𝑇

5
}+Sym{[𝐾

𝑝
𝑒
3
− 𝑒
10
]Δ
2
𝑒
𝑇

5
} ,

Ξ
3
= [𝑒
1
, 𝑒
8
, 0
14𝑛⋅𝑛

]G [𝑒
1
, 𝑒
8
, 0
14𝑛⋅𝑛

]

− (1 − ℎ
𝐷
) [𝑒
2
, 𝑒
9
, 𝑒
1
− 𝑒
2
]G[𝑒
2
, 𝑒
9
, 𝑒
1
− 𝑒
2
]
𝑇

+ Sym {𝑒
11
𝐺
23
𝑒
𝑇

4
} ,
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Ξ
4
= ℎ
2

𝑈
[𝑒
4
, 𝑒
1
]Q
1
[𝑒
4
, 𝑒
1
]
𝑇

,

Ξ
5
= ℎ
2

𝑈
𝑒
8
𝑄
2
𝑒
𝑇

8
− [𝑒
11
, 𝑒
12
] [

𝑄
2

𝑆
2

𝑆
𝑇

2
𝑄
2

] [𝑒
11
, 𝑒
12
]
𝑇

,

Ξ
6
= ℎ
𝑈
(𝑒
1
𝑃
1
𝑒
𝑇

1
− 𝑒
2
𝑃
1
𝑒
𝑇

2
+ 𝑒
2
𝑃
2
𝑒
𝑇

2
− 𝑒
3
𝑃
2
𝑒
𝑇

3
) ,

Υ
[ℎ(𝑡)]

= Sym {𝑒
6
(ℎ (𝑡) 𝐺

13
) 𝑒
𝑇

4
+ [𝑒
1
− 𝑒
6
] (ℎ (𝑡) 𝐺

33
) 𝑒
𝑇

4
} ,

Π
[ℎ(𝑡)]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑒
𝑇

1
− 𝑒
𝑇

2

ℎ (𝑡) 𝑒
𝑇

6

𝑒
𝑇

1
+ 𝑒
𝑇

2
− 2𝑒
𝑇

6

ℎ (𝑡) 𝑒
𝑇

6
− 2𝑒
𝑇

13

𝑒
𝑇

2
− 𝑒
𝑇

3

(ℎ
𝑈
− ℎ (𝑡)) 𝑒

𝑇

7

𝑒
𝑇

2
+ 𝑒
𝑇

3
− 2𝑒
𝑇

7

(ℎ
𝑈
− ℎ (𝑡)) 𝑒

𝑇

7
− 2𝑒
𝑇

14

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Θ
1
= − Sym {[𝑒

8
− 𝑒
1
𝐾
𝑚
]𝐻
1
[𝑒
8
− 𝑒
1
𝐾
𝑝
]

𝑇

}

− Sym {[𝑒
9
− 𝑒
2
𝐾
𝑚
]𝐻
2
[𝑒
9
− 𝑒
2
𝐾
𝑝
]

𝑇

}

− Sym {[𝑒
10

− 𝑒
3
𝐾
𝑚
]𝐻
3
[𝑒
10

− 𝑒
3
𝐾
𝑝
]

𝑇

} ,

Θ
2
= − Sym {[𝑒

8
− 𝑒
9
− (𝑒
1
− 𝑒
2
)𝐾
𝑚
]

×𝐻
4
[𝑒
8
− 𝑒
9
− (𝑒
1
− 𝑒
2
)𝐾
𝑝
]

𝑇

}

− Sym {[𝑒
9
− 𝑒
10

− (𝑒
2
− 𝑒
3
)𝐾
𝑚
]

×𝐻
5
[𝑒
9
− 𝑒
10

− (𝑒
2
− 𝑒
3
)𝐾
𝑝
]

𝑇

} ,

QAug1 = Q
1
+ [

0
𝑛

𝑃
1

𝑃
1

0
𝑛

] , QAug2 = Q
2
+ [

0
𝑛

𝑃
2

𝑃
2

0
𝑛

] ,

Ω =

[

[

[

[

[

QAug1 0
2𝑛

0
2𝑛

3QAug1
] S

1

S𝑇
1

[

QAug2 0
2𝑛

0
2𝑛

3QAug2
]

]

]

]

]

,

Σ
[ℎ(𝑡)]

= Ξ
1[ℎ(𝑡)]

+ Ξ
2
+ Ξ
3
+ Ξ
4
+ Ξ
5

+ Ξ
6
+ Υ
[ℎ(𝑡)]

+ Θ
1
+ Θ
2
,

Φ
[ℎ(𝑡)]

= (Γ
⊥

)

𝑇

Σ
[ℎ(𝑡)]

(Γ
⊥

) + Sym {(Γ
⊥

)

𝑇

Π
𝑇

[ℎ(𝑡)]
Ψ} .

(9)

Now, the following theorem is given by the main result.

Theorem 6. For given scalars ℎ
𝑈

> 0, ℎ
𝐷
, and diagonal

matrices 𝐾
𝑝

= diag{𝑘+
1
, . . . , 𝑘

+

𝑛
} and 𝐾

𝑚
= diag{𝑘−

1
, . . . , 𝑘

−

𝑛
},

system (4) is asymptotically stable for 0 ≤ ℎ(𝑡) ≤ ℎ
𝑈
and

̇
ℎ(𝑡) ≤ ℎ

𝐷
, if there exist positive diagonal matrices Λ

𝑖
=

diag{𝜆
1𝑖
, . . . , 𝜆

𝑛𝑖
} (𝑖 = 1, 2), Δ

𝑖
= diag{𝛿

1𝑖
, . . . , 𝛿

𝑛𝑖
} (𝑖 = 1, 2),

and 𝐻
𝑖

= diag{ℎ
1𝑖
, . . . , ℎ

𝑛𝑖
} (𝑖 = 1, . . . , 5), positive definite

matrices R ∈ R4𝑛×4𝑛, N ∈ R3𝑛×3𝑛, G = [𝐺
𝑖𝑗
] ∈ R3𝑛×3𝑛,

Q
1

∈ R2𝑛×2𝑛, and 𝑄
2

∈ R𝑛×𝑛, any matrices S
1

∈ R4𝑛×4𝑛,
𝑆
2

∈ R𝑛×𝑛, and Ψ ∈ R8𝑛×13𝑛, and any symmetric matrices
𝑃
𝑖
∈ R𝑛×𝑛 (𝑖 = 1, 2) satisfying the following LMIs:

[
Φ
[ℎ(𝑡)=0]

Ψ
𝑇

Ψ −Ω

] < 0, (10)

[

Φ
[ℎ(𝑡)=ℎ𝑈]

Ψ
𝑇

Ψ −Ω

] < 0, (11)

[

𝑄
2

𝑆
2

𝑆
𝑇

2
𝑄
2

] > 0, (12)

whereΦ
[ℎ(𝑡)]

, Ψ, Ω, and other notations are defined in (9).

Proof. Let us consider the following candidate for the appro-
priate Lyapunov-Krasovskii functional:

𝑉 (𝑡) =

5

∑

𝑖=1

𝑉
𝑖
(𝑡) , (13)

where

𝑉
1
(𝑡) =

[

[

[

[

[

[

[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠

]

]

]

]

]

]

]

]

𝑇

R

[

[

[

[

[

[

[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠

]

]

]

]

]

]

]

]

,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−ℎ𝑈

[

[

𝑥 (𝑠)

�̇� (𝑠)

𝑓 (𝑥 (𝑠))

]

]

𝑇

N[

[

𝑥 (𝑠)

�̇� (𝑠)

𝑓 (𝑥 (𝑠))

]

]

𝑑𝑠

+ 2

𝑛

∑

𝑖=1

(𝜆
𝑖1
∫

𝑥𝑖(𝑡)

0

(𝑓
𝑖
(𝑠) − 𝑘

−

𝑖
𝑠) 𝑑𝑠

+ 𝛿
𝑖1
∫

𝑥𝑖(𝑡)

0

(𝑘
+

𝑖
𝑠 − 𝑓
𝑖
(𝑠)) 𝑑𝑠)

+ 2

𝑛

∑

𝑖=1

(𝜆
𝑖2
∫

𝑥𝑖(𝑡−ℎ𝑈)

0

(𝑓
𝑖
(𝑠) − 𝑘

−

𝑖
𝑠) 𝑑𝑠

+ 𝛿
𝑖2
∫

𝑥𝑖(𝑡−ℎ𝑈)

0

(𝑘
+

𝑖
𝑠 − 𝑓
𝑖
(𝑠)) 𝑑𝑠)

𝑉
3
(𝑡) = ∫

𝑡

𝑡−ℎ(𝑡)

[

[

[

[

𝑥 (𝑠)

𝑓 (𝑥 (𝑠))

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]

]

]

]

𝑇

G
[

[

[

[

𝑥 (𝑠)

𝑓 (𝑥 (𝑠))

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]

]

]

]

,

𝑉
4
(𝑡) = ℎ

𝑈
∫

𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

[

�̇� (𝑢)

𝑥 (𝑢)
]

𝑇

Q
1
[

�̇� (𝑢)

𝑥 (𝑢)
] 𝑑𝑢 𝑑𝑠,

𝑉
5
(𝑡) = ℎ

𝑈
∫

𝑡

𝑡−ℎ𝑈

∫

𝑡

𝑠

𝑓
𝑇

(𝑥 (𝑢)) 𝑄
2
𝑓 (𝑥 (𝑢)) 𝑑𝑢 𝑑𝑠.

(14)
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It should be noted that

[

[

[

[

[

[

[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
𝑈
)

ℎ (𝑡) (

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠) + (ℎ
𝑈
− ℎ (𝑡)) (

1

ℎ
𝑈
− ℎ (𝑡)

∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠)

∫

𝑡

𝑡−ℎ(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠 + ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠

]

]

]

]

]

]

]

]

= [𝑒
1
, 𝑒
3
, ℎ (𝑡) 𝑒

6
+ (ℎ
𝑈
− ℎ (𝑡)) 𝑒

7
, 𝑒
11

+ 𝑒
12
]
𝑇

𝜁 (𝑡) ,

[

[

[

[

�̇� (𝑡)

�̇� (𝑡 − ℎ
𝑈
)

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
𝑈
)

𝑓 (𝑥 (𝑡)) − 𝑓 (𝑥 (𝑡 − ℎ
𝑈
))

]

]

]

]

= [𝑒
4
, 𝑒
5
, 𝑒
1
− 𝑒
3
, 𝑒
8
− 𝑒
10
]
𝑇

𝜁 (𝑡) .

(15)

From (15), �̇�
1
(𝑡) can be represented as

�̇�
1
(𝑡) = 𝜁

𝑇

(𝑡) Ξ
1[ℎ(𝑡)]

𝜁 (𝑡) . (16)

The result of the time-derivative of 𝑉
2
(𝑡) is as follows:

�̇�
2
(𝑡) =

[

[

𝑥 (𝑡)

�̇� (𝑡)

𝑓 (𝑥 (𝑡))

]

]

𝑇

N[

[

𝑥 (𝑡)

�̇� (𝑡)

𝑓 (𝑥 (𝑡))

]

]

−
[

[

𝑥 (𝑡 − ℎ
𝑈
)

�̇� (𝑡 − ℎ
𝑈
)

𝑓 (𝑥 (𝑡 − ℎ
𝑈
))

]

]

𝑇

N[

[

𝑥 (𝑡 − ℎ
𝑈
)

�̇� (𝑡 − ℎ
𝑈
)

𝑓 (𝑥 (𝑡 − ℎ
𝑈
))

]

]

+ 2[𝑓 (𝑥 (𝑡)) − 𝐾
𝑚
𝑥 (𝑡)]
𝑇

Σ
1
�̇� (𝑡)

+ 2[𝐾
𝑝
𝑥 (𝑡) − 𝑓 (𝑥 (𝑡))]

𝑇

Δ
1
�̇� (𝑡)

+ 2[𝑓 (𝑥 (𝑡 − ℎ
𝑈
)) − 𝐾

𝑚
𝑥 (𝑡 − ℎ

𝑈
)]
𝑇

Σ
2
�̇� (𝑡 − ℎ

𝑈
)

+ 2[𝐾
𝑝
𝑥 (𝑡 − ℎ

𝑈
) − 𝑓 (𝑥 (𝑡 − ℎ

𝑈
))]

𝑇

Δ
2
�̇� (𝑡 − ℎ

𝑈
)

= 𝜁
𝑇

(𝑡) Ξ
2
𝜁 (𝑡) .

(17)

By calculating �̇�
3
(𝑡), it follows that

�̇�
3
(𝑡)

=

𝑑

𝑑𝑡

(∫

𝑡

𝑡−ℎ(𝑡)

[

[

[

[

𝑥 (𝑠)

𝑓 (𝑥 (𝑠))

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]

]

]

]

𝑇

G
[

[

[

[

𝑥 (𝑠)

𝑓 (𝑥 (𝑠))

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]

]

]

]

𝑑𝑠)

=

[

[

[

[

𝑥 (𝑠)

𝑓 (𝑥 (𝑠))

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]

]

]

]

𝑇

G
[

[

[

[

𝑥 (𝑠)

𝑓 (𝑥 (𝑠))

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]

]

]

]

















𝑠=𝑡

×

𝑑

𝑑𝑡

(𝑡)

−

[

[

[

[

𝑥 (𝑠)

𝑓 (𝑥 (𝑠))

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]

]

]

]

𝑇

G
[

[

[

[

𝑥 (𝑠)

𝑓 (𝑥 (𝑠))

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]

]

]

]

















𝑠=𝑡−ℎ(𝑡)

×

𝑑

𝑑𝑡

(𝑡 − ℎ (𝑡))

+ ∫

𝑡

𝑡−ℎ(𝑡)

𝑑

𝑑𝑡

(

[

[

[

[

𝑥 (𝑠)

𝑓 (𝑥 (𝑠))

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]

]

]

]

𝑇

G
[

[

[

[

𝑥 (𝑠)

𝑓 (𝑥 (𝑠))

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]

]

]

]

)𝑑𝑠

≤
[

[

𝑥 (𝑡)

𝑓 (𝑥 (𝑡))

0
𝑛

]

]

𝑇

G[

[

𝑥 (𝑡)

𝑓 (𝑥 (𝑡))

0
𝑛

]

]

− (1 − ℎ
𝐷
)
[

[

𝑥 (𝑡 − ℎ (𝑡))

𝑓 (𝑥 (𝑡 − ℎ (𝑡)))

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ (𝑡))

]

]

𝑇

G[

[

𝑥 (𝑡 − ℎ (𝑡))

𝑓 (𝑥 (𝑡 − ℎ (𝑡)))

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ (𝑡))

]

]

+ ∫

𝑡

𝑡−ℎ(𝑡)

2

[

[

[

[

𝑥 (𝑠)

𝑓 (𝑥 (𝑠))

∫

𝑡

𝑠

�̇� (𝑢) 𝑑𝑢

]

]

]

]

𝑇

G[

[

0
𝑛

0
𝑛

�̇� (𝑡)

]

]

𝑑𝑠

= 𝜁
𝑇

(𝑡) {[𝑒
1
, 𝑒
8
, 0
14𝑛⋅𝑛

]G[𝑒
1
, 𝑒
8
, 0
14𝑛⋅𝑛

]
𝑇

− (1 − ℎ
𝐷
)[𝑒
2
, 𝑒
9
, 𝑒
1
− 𝑒
2
]G[𝑒
2
, 𝑒
9
, 𝑒
1
− 𝑒
2
]
𝑇

}𝜁 (𝑡)
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+ 2(

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠) (ℎ (𝑡) 𝐺
13
�̇� (𝑡))

+ 2 (∫

𝑡

𝑡−ℎ(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠) (𝐺
23
�̇� (𝑡))

+ 2 (𝑥 (𝑡) −

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

(ℎ (𝑡) 𝐺
33
�̇� (𝑡))

= 𝜁
𝑇

(𝑡) (Ξ
3
+ Υ
[ℎ(𝑡)]

) 𝜁 (𝑡) .

(18)

Inspired by the work of [34], the following two zero equalities
with any symmetric matrices 𝑃

𝑖
(𝑖 = 1, 2) are considered:

0 = ℎ
𝑈
{𝑥
𝑇

(𝑡) 𝑃
1
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − ℎ (𝑡)) 𝑃
1
𝑥 (𝑡 − ℎ (𝑡))

− 2∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑃
1
�̇� (𝑠) 𝑑𝑠} ,

0 = ℎ
𝑈
{𝑥
𝑇

(𝑡 − ℎ (𝑡))𝑃
2
𝑥 (𝑡 − ℎ (𝑡)) − 𝑥

𝑇

(𝑡 − ℎ
𝑈
)𝑃
2
𝑥 (𝑡 − ℎ

𝑈
)

− 2∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑃
2
�̇� (𝑠) 𝑑𝑠} .

(19)

Summing the two zero equalities presented at (19) leads to

0 = 𝜁
𝑇

(𝑡) Ξ
6
𝜁 (𝑡) − 2ℎ

𝑈
∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑃
1
�̇� (𝑠) 𝑑𝑠

− 2ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑃
2
�̇� (𝑠) 𝑑𝑠.

(20)

The result of the �̇�
4
(𝑡) is given by

�̇�
4
(𝑡) = ℎ

2

𝑈
[

�̇� (𝑡)

𝑥 (𝑡)
]

𝑇

Q
1
[

�̇� (𝑡)

𝑥 (𝑡)
]

− ℎ
𝑈
∫

𝑡

𝑡−ℎ𝑈

[

�̇� (𝑠)

𝑥 (𝑠)
]

𝑇

Q
1
[

�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠.

(21)

The integral term−ℎ
𝑈
∫

𝑡

𝑡−ℎ𝑈

[
̇𝑥(𝑠)

𝑥(𝑠)
]

𝑇

Q
1
[
̇𝑥(𝑠)

𝑥(𝑠)
] 𝑑𝑠with the addi-

tion of the two integral terms at (20) can be described as

− ℎ
𝑈
∫

𝑡

𝑡−ℎ𝑈

[

�̇� (𝑠)

𝑥 (𝑠)
]

𝑇

Q
1
[

�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠

− 2ℎ
𝑈
∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑃
1
�̇� (𝑠) 𝑑𝑠

− 2ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑃
2
�̇� (𝑠) 𝑑𝑠

= − ℎ
𝑈
∫

𝑡

𝑡−ℎ(𝑡)

[

�̇� (𝑠)

𝑥 (𝑠)
]

𝑇

(Q
1
+ [

0
𝑛

𝑃
1

𝑃
1

0
𝑛

])

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

QAug1

[

�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠

− ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

[

�̇� (𝑠)

𝑥 (𝑠)
]

𝑇

(Q
1
+ [

0
𝑛

𝑃
2

𝑃
2

0
𝑛

])

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

QAug2

[

�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠.

(22)
Here, by applying Lemma 3, we have

− ℎ
𝑈
∫

𝑡

𝑡−ℎ(𝑡)

[

�̇� (𝑠)

𝑥 (𝑠)
]

𝑇

QAug1 [
�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠

≤ −

ℎ
𝑈

ℎ (𝑡)

(∫

𝑡

𝑡−ℎ(𝑡)

[

�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠)

𝑇

QAug1 (∫
𝑡

𝑡−ℎ(𝑡)

[

�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠)

−

3ℎ
𝑈

ℎ (𝑡)

(∫

𝑡

𝑡−ℎ(𝑡)

[

�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠

−

2

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑠

𝑡−ℎ(𝑡)

[

�̇� (𝑢)

𝑥 (𝑢)
] 𝑑𝑢 𝑑𝑠)

𝑇

× QAug1 (∫
𝑡

𝑡−ℎ(𝑡)

[

�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠

−

2

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑠

𝑡−ℎ(𝑡)

[

�̇� (𝑢)

𝑥 (𝑢)
] 𝑑𝑢 𝑑𝑠)

= −

ℎ
𝑈

ℎ (𝑡)

(
[

[

𝑥(𝑡) − 𝑥 (𝑡 − ℎ (𝑡))

ℎ(𝑡) (

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠)

]

]

)

𝑇

× QAug1(
[

[

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ (𝑡))

ℎ (𝑡) (

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠)

]

]

)

−

3ℎ
𝑈

ℎ (𝑡)

(
[

[

𝑥 (𝑡) + 𝑥 (𝑡 − ℎ (𝑡))

ℎ (𝑡) (

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠)

]

]

− 2

[

[

[

[

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑠

𝑡−ℎ(𝑡)

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

]

]

]

]

)

𝑇

× QAug1(
[

[

𝑥 (𝑡) + 𝑥 (𝑡 − ℎ (𝑡))

ℎ (𝑡) (

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠)

]

]

− 2

[

[

[

[

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑠

𝑡−ℎ(𝑡)

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

]

]

]

]

)

= −

ℎ
𝑈

ℎ (𝑡)

𝜁
𝑇

(𝑡) $
1[ℎ(𝑡)]

𝜁 (𝑡) ,

(23)
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where

$
1[ℎ(𝑡)]

= [𝑒
1
− 𝑒
2
, ℎ (𝑡) 𝑒

6
, 𝑒
1
+ 𝑒
2
− 2𝑒
6
, ℎ (𝑡) 𝑒

6
− 𝑒
13
]

× [

QAug1 0
2𝑛

0
2𝑛

3QAug1
]

× [𝑒
1
− 𝑒
2
, ℎ (𝑡) 𝑒

6
, 𝑒
1
+ 𝑒
2
− 2𝑒
6
, ℎ (𝑡) 𝑒

6
− 𝑒
13
]
𝑇

.

(24)

With the similar process presented in (23), it can be obtained
that

− ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

[

�̇� (𝑠)

𝑥 (𝑠)
]

𝑇

QAug2 [
�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠

≤ −

ℎ
𝑈

ℎ
𝑈
− ℎ (𝑡)

𝜁
𝑇

(𝑡) $
2[ℎ(𝑡)]

𝜁 (𝑡) ,

(25)

where

$
2[ℎ(𝑡)]

= [𝑒
2
− 𝑒
3
, (ℎ − ℎ (𝑡)) 𝑒

7
, 𝑒
2
+ 𝑒
3
− 2𝑒
7
,

(ℎ
𝑈
− ℎ (𝑡)) 𝑒

7
− 2𝑒
14
] [

QAug2 0
2𝑛

0
2𝑛

3QAug2
]

× [𝑒
2
− 𝑒
3
, (ℎ − ℎ (𝑡)) 𝑒

7
, 𝑒
2
+ 𝑒
3
− 2𝑒
7
,

(ℎ
𝑈
− ℎ (𝑡)) 𝑒

7
− 2𝑒
14
]
𝑇

.

(26)

With (23)–(26) and utilizing reciprocally convex optimiza-
tion [29], if Ω > 0 which is defined in (9), an upper bound
of the term (22) can be obtained as

− ℎ
𝑈
∫

𝑡

𝑡−ℎ(𝑡)

[

�̇� (𝑠)

𝑥 (𝑠)
]

𝑇

QAug1 [
�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠

− ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

[

�̇� (𝑠)

𝑥 (𝑠)
]

𝑇

QAug2 [
�̇� (𝑠)

𝑥 (𝑠)
] 𝑑𝑠

≤ −

ℎ
𝑈

ℎ (𝑡)

𝜁
𝑇

(𝑡) $
1[ℎ(𝑡)]

𝜁 (𝑡)

−

ℎ
𝑈

ℎ
𝑈
− ℎ (𝑡)

𝜁
𝑇

(𝑡) $
2[ℎ(𝑡)]

𝜁 (𝑡)

≤ −𝜁
𝑇

(𝑡) Π
𝑇

[ℎ(𝑡)]
ΩΠ
[ℎ(𝑡)]

𝜁 (𝑡) ,

(27)

where Π
[ℎ(𝑡)]

andΩ are defined in (9).
Thus, from (21) to (27), the following inequality holds:

�̇�
4
(𝑡) − 2ℎ

𝑈
∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑃
1
�̇� (𝑠) 𝑑𝑠

− 2ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑃
2
�̇� (𝑠) 𝑑𝑠

≤ 𝜁
𝑇

(𝑡) (Ξ
4
− Π
𝑇

[ℎ(𝑡)]
ΩΠ
[ℎ(𝑡)]

) 𝜁 (𝑡) .

(28)

By utilizing Jensen’s inequality [22] and reciprocally convex
optimization [29], if the inequality (12) holds, then the
estimation of �̇�

5
(𝑡) can be

�̇�
5
(𝑡)

= ℎ
2

𝑈
𝑓
𝑇

(𝑥 (𝑡)) 𝑄
2
𝑓 (𝑥 (𝑡))

− ℎ
𝑈
∫

𝑡

𝑡−ℎ(𝑡)

𝑓
𝑇

(𝑥 (𝑠)) 𝑄
2
𝑓 (𝑥 (𝑠)) 𝑑𝑠

− ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑓
𝑇

(𝑥 (𝑠)) 𝑄
2
𝑓 (𝑥 (𝑠)) 𝑑𝑠

≤ ℎ
2

𝑈
𝑓
𝑇

(𝑥 (𝑡)) 𝑄
2
𝑓 (𝑥 (𝑡))

−

ℎ
𝑈

ℎ (𝑡)

(∫

𝑡

𝑡−ℎ(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

𝑄
2
(∫

𝑡

𝑡−ℎ(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠)

−

ℎ
𝑈

ℎ
𝑈
− ℎ (𝑡)

(∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑓(𝑥(𝑠))𝑑𝑠)

𝑇

𝑄
2
(∫

𝑡

𝑡−ℎ(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠)

≤ ℎ
2

𝑈
𝑓
𝑇

(𝑥 (𝑡)) 𝑄
2
𝑓 (𝑥 (𝑡))

−

[

[

[

[

∫

𝑡

𝑡−ℎ(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠

∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠

]

]

]

]

𝑇

[

𝑄
2

𝑆
2

𝑆
𝑇

2
𝑄
2

]

[

[

[

[

∫

𝑡

𝑡−ℎ(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠

∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠

]

]

]

]

= 𝜁
𝑇

(𝑡) Ξ
5
𝜁 (𝑡) .

(29)

From (6), for any positive diagonal matrices 𝐻
𝑖

=

diag{ℎ
1𝑖
, . . . , ℎ

𝑛𝑖
} (𝑖 = 1, . . . , 3), the following inequality

holds:

0 ≤ −2

𝑛

∑

𝑖=1

ℎ
𝑖1
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑘

−

𝑖
𝑥
𝑖
(𝑡)] [𝑓

𝑖
(𝑥
𝑖
(𝑡)) − 𝑘

+

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

ℎ
𝑖2
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − ℎ (𝑡))) − 𝑘

−

𝑖
𝑥
𝑖
(𝑡 − ℎ (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − ℎ (𝑡))) − 𝑘

+

𝑖
𝑥
𝑖
(𝑡 − ℎ (𝑡))]

− 2

𝑛

∑

𝑖=1

ℎ
𝑖3
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − ℎ

𝑈
)) − 𝑘

−

𝑖
𝑥
𝑖
(𝑡 − ℎ

𝑈
)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − ℎ

𝑈
)) − 𝑘

+

𝑖
𝑥
𝑖
(𝑡 − ℎ

𝑈
)]

= 𝜁
𝑇

(𝑡) Θ
1
𝜁 (𝑡) ,

(30)

where Θ is defined in (9).
Inspired by the authors’ work of [5], from (5), the

following conditions hold:

𝑘
−

𝑖
≤

𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(𝑥
𝑖
(𝑡 − ℎ (𝑡)))

𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡 − ℎ (𝑡))

≤ 𝑘
+

𝑖
,

𝑘
−

𝑖
≤

𝑓
𝑖
(𝑥
𝑖
(𝑡 − ℎ (𝑡))) − 𝑓

𝑗
(𝑥
𝑖
(𝑡 − ℎ

𝑈
))

𝑥
𝑖
(𝑡 − ℎ (𝑡)) − 𝑥

𝑖
(𝑡 − ℎ

𝑈
)

≤ 𝑘
+

𝑖
,

𝑖 = 1, . . . , 𝑛.

(31)
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Therefore, for any positive diagonal matrices 𝐻
𝑖

=

diag{ℎ
1𝑖
, . . . , ℎ

𝑛𝑖
} (𝑖 = 4, 5), the following inequality

holds:

0 ≤ −2

𝑛

∑

𝑖=1

{ℎ
𝑖4
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(𝑥
𝑖
(𝑡 − ℎ (𝑡)))

− 𝑘
−

𝑖
(𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡 − ℎ (𝑡)))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(𝑥
𝑖
(𝑡 − ℎ (𝑡)))

− 𝑘
+

𝑖
(𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡 − ℎ (𝑡)))]}

− 2

𝑛

∑

𝑖=1

{ℎ
𝑖5
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − ℎ (𝑡))) − 𝑓

𝑖
(𝑥
𝑖
(𝑡 − ℎ

𝑈
))

− 𝑘
−

𝑖
(𝑥
𝑖
(𝑡 − ℎ (𝑡)) − 𝑥

𝑖
(𝑡 − ℎ

𝑈
))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − ℎ (𝑡))) − 𝑓

𝑖
(𝑥
𝑖
(𝑡 − ℎ

𝑈
))

− 𝑘
+

𝑖
(𝑥
𝑖
(𝑡 − ℎ (𝑡)) − 𝑥

𝑖
(𝑡 − ℎ

𝑈
))]}

= 𝜁
𝑇

(𝑡) Θ
2
𝜁 (𝑡) .

(32)

From (13) to (32) and by application of the 𝑆-procedure [45],
an upper bound of �̇�(𝑡) = ∑

5

𝑖=1
𝑉
𝑖
(𝑡)with the addition of (20)

can be written as

�̇� (𝑡) + 𝜁
𝑇

(𝑡) Ξ
6
𝜁 (𝑡) − 2ℎ

𝑈
∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑃
1
�̇� (𝑠) 𝑑𝑠

− 2ℎ
𝑈
∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑃
2
�̇� (𝑠) 𝑑𝑠

≤ 𝜁
𝑇

(𝑡)(Ξ
1[ℎ(𝑡)]

+

2

∑

𝑖=6

Ξ
𝑖
+ Υ
[ℎ(𝑡)]

+ Θ
1
+ Θ
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Σ[ℎ(𝑡)]

−Π
𝑇

[ℎ(𝑡)]
ΩΠ
[ℎ(𝑡)]

)𝜁(𝑡) .

(33)

By Lemma 4, 𝜁𝑇(𝑡)(Σ
[ℎ(𝑡)]

− Π
𝑇

[ℎ(𝑡)]
ΩΠ
[ℎ(𝑡)]

)𝜁(𝑡) < 0 with 0 =

Γ𝜁(𝑡) is equivalent to

(Γ
⊥

)

𝑇

(Σ
[ℎ(𝑡)]

− Π
𝑇

[ℎ(𝑡)]
ΩΠ
[ℎ(𝑡)]

) (Γ
⊥

) < 0. (34)

Then, by Lemma 5, condition (34) is equivalent to the
following inequality with any matrix Ψ ∈ R8𝑛×13𝑛:

[

[

[

(Γ
⊥

)

𝑇

(Σ
[ℎ(𝑡)]

) Γ
⊥

+ Sym {(Γ
⊥

)

𝑇

Π
𝑇

[ℎ(𝑡)]
Ψ}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Φ[ℎ(𝑡)]

Ψ
𝑇

Ψ −Ω

]

]

]

< 0.

(35)

The above condition is affinely dependent on ℎ(𝑡). Therefore,
if inequalities (10) and (11) hold, then inequality (35) is
satisfied, whichmeans that system (4) is asymptotically stable
for 0 ≤ ℎ(𝑡) ≤ ℎ

𝑈
and ̇

ℎ(𝑡) ≤ ℎ
𝐷
. It should be noted thatΩ > 0

holds if inequalities (11) and (12) are feasible. This completes
our proof.

Remark 7. As mentioned in the Introduction section,
Lemma 3 was first introduced in [30] to reduce the
conservatism of delay-dependent stability criteria.
In [30], an upper bound of the integral form of
−∫

𝑡

𝑡−ℎ𝑈

�̇�
𝑇

(𝑠)𝑄𝑥(𝑠)𝑑𝑠 (𝑄 > 0) was obtained by Lemma 3

with augmented vectors (1/ℎ(𝑡)) ∫

𝑡

𝑡−ℎ(𝑡)

𝑥(𝑠)𝑑𝑠 and

(1/(ℎ
𝑈

− ℎ(𝑡))) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

𝑥(𝑠)𝑑𝑠. However, unlike the pre-
sented method in [30], the augmented integral term of
−∫

𝑡

𝑡−ℎ𝑈

[
̇𝑥(𝑠)

𝑥(𝑠)
]

𝑇

Q
1
[
̇𝑥(𝑠)

𝑥(𝑠)
] 𝑑𝑠 (Q

1
> 0) was estimated in (23)–

(26) with the consideration of the two integral terms obtained
by zero equality (20).Thus, by utilizing the newly introduced
state vectors such as (1/ℎ(𝑡)) ∫

𝑡

𝑡−ℎ(𝑡)

∫

𝑠

𝑡−ℎ(𝑡)

𝑥(𝑢)𝑑𝑢 𝑑𝑠 and

(1/(ℎ
𝑈

− ℎ(𝑡))) ∫

𝑡−ℎ(𝑡)

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

𝑥(𝑢)𝑑𝑢 𝑑𝑠, more relaxed
conditions can be expected since more information
about the past history of states and some new cross-terms
which may play roles to reduce the conservatism of stability
condition were considered in Theorem 6. In the authors’
future works, this method will be extended to various
problems such as state estimation,𝐻

∞
performance analysis,

filtering, synchronization between two chaotic systems, and
stability and stabilization of other dynamic systems which
are receiving much attention in the control society.

Remark 8. Another novelty in Theorem 6 is 𝑉
3
(𝑡)

introduced in (13). In many works dealing with stability
of neural networks with time-varying delays, the proposed
Lyapunov-Krasovskii functionals having information
of time-varying delays have been of the form of
∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠)𝑄
1
𝑥(𝑠)𝑑𝑠 + ∫

𝑡

𝑡−ℎ(𝑡)

𝑓
𝑇

(𝑥(𝑠))𝑄
2
𝑥(𝑠)𝑑𝑠 (𝑄

𝑖
> 0)

or ∫

𝑡

𝑡−ℎ(𝑡)

[
𝑥(𝑠)

𝑓(𝑥(𝑠))
]

𝑇

𝑄[
𝑥(𝑠)

𝑓(𝑥(𝑠))
] 𝑑𝑠 (𝑄 > 0). However,

the proposed Lyapunov-Krasovskii functional is

∫

𝑡

𝑡−ℎ(𝑡)

[

𝑥(𝑠)

𝑓(𝑥(𝑠))

∫

𝑡

𝑠
̇𝑥(𝑢)𝑑𝑢

]

𝑇

G[

𝑥(𝑠)

𝑓(𝑥(𝑠))

∫

𝑡

𝑠
̇𝑥(𝑢)𝑑𝑢

]𝑑𝑠 which is different from

the previous works. Thus, the results of time-derivative of
the proposed 𝑉

3
(𝑡) contain some new cross-terms such

as

2 (

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠) (ℎ (𝑡) 𝐺
13
�̇� (𝑡)) ,

2 (∫

𝑡

𝑡−ℎ(𝑡)

𝑓 (𝑥 (𝑠)) 𝑑𝑠) (𝐺
23
�̇� (𝑡)) ,

2 (𝑥 (𝑡) −

1

ℎ (𝑡)

∫

𝑡

𝑡−ℎ(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

(ℎ (𝑡) 𝐺
33
�̇� (𝑡)) ,

(36)
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which were presented in (18) and does not be used in existing
works.

In the proposed Theorem 6, the positiveness of 𝑉(𝑡) is
included such asR > 0,N > 0, Σ

𝑖
> 0 (𝑖 = 1, 2), Δ

𝑖
> 0 (𝑖 =

1, 2), G > 0, Q
1
> 0, and 𝑄

2
> 0. These conditions guarantee

the positiveness of each𝑉
𝑖
(𝑡) (𝑖 = 1, . . . , 5). However, asmen-

tioned in [35–37], by incorporating some functional of 𝑉(𝑡),
the positiveness of 𝑉(𝑡) can be relaxed which will be intro-
duced inTheorem 9. For the sake of simplicity of matrix and
vector representation in Theorem 9, 𝑒

𝑖
(𝑖 = 1, . . . , 6) ∈ R6𝑛×𝑛

which will be used are defined as block entry matrices (e.g.,
𝑒
3
= [0
𝑛⋅2𝑛

, 𝐼
𝑛
, 0
𝑛⋅3𝑛

]
𝑇). Assume thatN > 0, Σ

𝑖
> 0 (𝑖 = 1, 2),

Δ
𝑖
> 0 (𝑖 = 1, 2), G > 0, Q

1
> 0, and 𝑄

2
> 0. Then, 𝑉(𝑡) has

a lower bound as follows:

𝑉 (𝑡) >

[

[

[

[

[

[

[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠

]

]

]

]

]

]

]

]

𝑇

R

[

[

[

[

[

[

[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠

]

]

]

]

]

]

]

]

+ ∫

𝑡

𝑡−ℎ𝑈

[

[

𝑥 (𝑠)

�̇� (𝑠)

𝑓 (𝑥 (𝑠))

]

]

𝑇

N[

[

𝑥 (𝑠)

�̇� (𝑠)

𝑓 (𝑥 (𝑠))

]

]

𝑑𝑠.

(37)

By Lemma 3, the lower bound of the second integral term at
the right side of the inequality (35) can be obtained as

∫

𝑡

𝑡−ℎ𝑈

[

[

𝑥 (𝑠)

�̇� (𝑠)

𝑓 (𝑥 (𝑠))

]

]

𝑇

N[

[

𝑥 (𝑠)

�̇� (𝑠)

𝑓 (𝑥 (𝑠))

]

]

𝑑𝑠

≥ (

1

ℎ
𝑈

)(∫

𝑡

𝑡−ℎ𝑈

[

[

𝑥 (𝑠)

�̇� (𝑠)

𝑓 (𝑥 (𝑠))

]

]

𝑑𝑠)

𝑇

N(∫

𝑡

𝑡−ℎ𝑈

[

[

𝑥 (𝑠)

�̇� (𝑠)

𝑓 (𝑥 (𝑠))

]

]

𝑑𝑠)

+ (

3

ℎ
𝑈

)(∫

𝑡

𝑡−ℎ𝑈

[

[

𝑥 (𝑠)

�̇� (𝑠)

𝑓 (𝑥 (𝑠))

]

]

𝑑𝑠 − (

2

ℎ
𝑈

)∫

𝑡

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

[

[

𝑥 (𝑢)

�̇� (𝑢)

𝑓 (𝑥 (𝑢𝑠))

]

]

𝑑𝑢 𝑑𝑠)

𝑇

×N(∫

𝑡

𝑡−ℎ𝑈

[

[

𝑥 (𝑠)

�̇� (𝑠)

𝑓 (𝑥 (𝑠))

]

]

𝑑𝑠 − (

2

ℎ
𝑈

)∫

𝑡

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

[

[

𝑥 (𝑢)

�̇� (𝑢)

𝑓 (𝑥 (𝑢𝑠))

]

]

𝑑𝑢 𝑑𝑠)

= (

1

ℎ
𝑈

)(

[

[

[

[

[

[

∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠

]

]

]

]

]

]

)

𝑇

N(

[

[

[

[

[

[

∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ
𝑈
)

∫

𝑡

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠

]

]

]

]

]

]

)

+ (

3

ℎ
𝑈

)
(

(

[

[

[

[

[

[

[

[

∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠 − (

2

ℎ
𝑈

)∫

𝑡

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

𝑥 (𝑡) + 𝑥 (𝑡 − ℎ
𝑈
) − (

2

ℎ
𝑈

)∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠 − (

2

ℎ
𝑈

)∫

𝑡

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑢)) 𝑑𝑢 𝑑𝑠

]

]

]

]

]

]

]

]

)

)

𝑇

×N(

(

[

[

[

[

[

[

[

[

∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠 − (

2

ℎ
𝑈

)∫

𝑡

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

𝑥 (𝑡) + 𝑥 (𝑡 − ℎ
𝑈
) − (

2

ℎ
𝑈

)∫

𝑡

𝑡−ℎ𝑈

𝑥 (𝑠) 𝑑𝑠

∫

𝑡

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑠)) 𝑑𝑠 − (

2

ℎ
𝑈

)∫

𝑡

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

𝑓 (𝑥 (𝑢)) 𝑑𝑢 𝑑𝑠

]

]

]

]

]

]

]

]

)

)

= 𝛼
𝑇

(𝑡) Π̃𝛼 (𝑡) ,

(38)
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where

𝛼 (𝑡) = [𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − ℎ
𝑈
) , ∫

𝑡

𝑡−ℎ𝑈

𝑥
𝑇

(𝑠) 𝑑𝑠,

∫

𝑡

𝑡−ℎ𝑈

𝑓
𝑇

(𝑥 (𝑠)) 𝑑𝑠, ∫

𝑡

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

𝑥
𝑇

(𝑢) 𝑑𝑢 𝑑𝑠,

∫

𝑡

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

𝑓
𝑇

(𝑥 (𝑢)) 𝑑𝑢 𝑑𝑠]

𝑇

,

(39)

Π̃ = (

1

ℎ
𝑈

) [𝑒
3
, 𝑒
1
− 𝑒
2
, 𝑒
5
]N[𝑒

3
, 𝑒
1
− 𝑒
2
, 𝑒
5
]
𝑇

+ (

3

ℎ

)[𝑒
3
−(

2

ℎ
𝑈

)𝑒
5
, 𝑒
1
+ 𝑒
2
−(

2

ℎ

)𝑒
3
, 𝑒
5
−(

2

ℎ
𝑈

) 𝑒
6
]

×N[𝑒
3
−(

2

ℎ
𝑈

) 𝑒
5
, 𝑒
1
+ 𝑒
2
−(

2

ℎ

) 𝑒
3
, 𝑒
5
−(

2

ℎ
𝑈

) 𝑒
6
]

𝑇

.

(40)

Therefore, if the following inequality holds

[𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
]R[𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
]
𝑇

+ Π̃ > 0, (41)

then the lower bound of 𝑉(𝑡) can be guaranteed to be of the
positiveness. Thus, by deleting the positiveness of the matrix
R and adding the inequality (40) into the stability condition
of Theorem 6, we have the following theorem.

Theorem 9. For given scalars ℎ
𝑈

> 0, ℎ
𝐷
, and diagonal

matrices 𝐾
𝑝

= diag{𝑘+
1
, . . . , 𝑘

+

𝑛
} and 𝐾

𝑚
= diag{𝑘−

1
, . . . , 𝑘

−

𝑛
},

system (4) is asymptotically stable for 0 ≤ ℎ(𝑡) ≤ ℎ
𝑈
and

̇
ℎ(𝑡) ≤ ℎ

𝐷
, if there exist positive diagonal matrices Λ

𝑖
=

diag{𝜆
1𝑖
, . . . , 𝜆

𝑛𝑖
} (𝑖 = 1, 2), Δ

𝑖
= diag{𝛿

1𝑖
, . . . , 𝛿

𝑛𝑖
} (𝑖 = 1, 2),

and 𝐻
𝑖

= diag{ℎ
1𝑖
, . . . , ℎ

𝑛𝑖
} (𝑖 = 1, . . . , 5), positive definite

matrices N ∈ R3𝑛×3𝑛, G = [𝐺
𝑖𝑗
] ∈ R3𝑛×3𝑛, Q

1
∈ R2𝑛×2𝑛,

and 𝑄
2

∈ R𝑛×𝑛, any matrices S
1

∈ R4𝑛×4𝑛, 𝑆
2

∈ R𝑛×𝑛,
and Ψ ∈ R8𝑛×13𝑛, and any symmetric matrices R ∈ R4𝑛×4𝑛,
𝑃
𝑖
∈ R𝑛×𝑛 (𝑖 = 1, 2) satisfying the LMIs (10)–(12) and (41).

Remark 10. Unlike Theorem 6, Theorem 9 does not require
the positiveness condition of R > 0. Instead, the condition
(41) was added. It should be noted that the positive definite-
ness of a chosen Lyapunov-Krasovskii functional does not
necessarily require all the involved symmetric matrices in the
Lyapunov-Krasovskii functional to be positive definite [36].
As presented in (39), by taking the states ∫𝑡

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

𝑥(𝑢)𝑑𝑢 𝑑𝑠

and ∫

𝑡

𝑡−ℎ𝑈

∫

𝑠

𝑡−ℎ𝑈

𝑓(𝑥(𝑢))𝑑𝑢 𝑑𝑠 as elements of the augmented
vector 𝛼(𝑡), Lemma 3 was applied to obtain a lower bound of
𝑉(𝑡) in (38) for the first time.Through three numerical exam-
ples, it will be shown that larger delay bounds comparingwith
the results of Theorem 6 can be obtained.

Remark 11. When information about the upper bound of
̇

ℎ(𝑡) is unknown, then Theorems 6 and 9 can provide delay-
dependent stability criteria for 0 ≤ ℎ(𝑡) ≤ ℎ

𝑈
by choosing

G = 0
3𝑛
.

Table 1: Delay bounds ℎ
𝑈
with different ℎ

𝐷
(Example 1).

Method ℎ
𝐷

0.8 0.9 Unknown or ≥1
[4] (𝑚 = 2)

∗ 3.0604 1.9956 1.7860
[19] (𝑚 = 2)

∗ 3.0640 2.0797 1.9207
[10] (𝑚 = 2)

∗ 3.1150 2.1153 1.3189
[13] (𝑚 = 2)

∗ 2.8991 2.0087 —∗∗

[9] (𝑚 = 2)
∗ 2.9541 1.9654 1.7839

[5] 3.7174 2.8339 2.8222
Theorem 6 4.8104 3.4716 3.4420
Theorem 9 5.0945 3.4978 3.4506
∗

𝑚 is the delay-partitioning number.
∗∗means that the corresponding result is not presented.

4. Numerical Examples

In this section, three numerical examples are introduced to
show the improvements of the proposed methods. In the
examples, MATLAB, YALMIP, and SeDuMi 1.3 are used to
solve LMI problems.

Example 1. Consider the neural networks (4)with the param-
eters as follows:

𝐴 = [

2 0

0 2
] , 𝑊

0
= [

1 1

−1 −1
] ,

𝑊
1
= [

0.88 1

1 1
] , 𝐾

𝑝
= diag {0.4, 0.8} ,

𝐾
𝑚

= diag {0, 0} .

(42)

When ℎ
𝐷

is 0.8, 0.9, and unknown, maximum delay
bounds for guaranteeing the asymptotic stability are listed in
Table 1which conducts the comparison of the previous results
[4, 5, 9, 10, 13, 19]. In spite of not employing delay-partitioning
approach, the obtained delay bounds by applyingTheorem 6
are larger than those of [4, 9, 10, 13, 19]which divided the delay
interval into two subintervals. Furthermore, comparing with
the results of Theorem 6, it can be confirmed thatTheorem 9
enhances the feasible region of stability criteria which shows
the effectiveness of the lower bound of Lyapunov-Krasovskii
functional as mentioned in Remark 10.

Example 2. Consider the neural networks (4) where

𝐴 =

[

[

[

[

1.2769 0 0 0

0 0.6231 0 0

0 0 0.9230 0

0 0 0 0.4480

]

]

]

]

,

𝑊
0
=

[

[

[

[

−0.0373 0.4852 −0.3351 0.2336

−1.6033 0.5988 −0.3224 1.2352

0.3394 −0.0860 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015

]

]

]

]

,
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Table 2: Delay bounds ℎ
𝑈
with different ℎ

𝐷
(Example 2).

Method ℎ
𝐷

0.1 0.5 0.9 Unknown or ≥1
[11] (𝜌 = 0.6) 3.3574 2.5915 2.1306 2.0779
[6] (𝑚 = 2)

∗ 3.5546 2.6438 2.1349 —∗∗

[7] (𝑚 = 2)
∗ 3.91 2.79 2.33 2.2047

[5] 3.7857 3.0546 2.6703 2.6575
[13] (𝑚 = 2)

∗ 3.9151 2.8049 2.5583 —∗∗

[9] (𝑚 = 2)
∗ 4.1840 2.8387 2.3423 —∗∗

Theorem 6 4.3711 3.2891 3.0482 3.0437
Theorem 9 4.3726 3.2899 3.0557 3.0526
∗

𝑚 is the delay-partitioning number.
∗∗means that the corresponding result is not presented.

Table 3: Delay bounds ℎ
𝑈
with different ℎ

𝐷
(Example 3).

Method ℎ
𝐷

0.4 0.45 0.5 0.55
[7] (𝑚 = 2)∗ 4.39 3.67 3.46 3.41
[4] (𝑚 = 2)∗ 5.2420 4.4301 4.1055 3.9231
[8] (Corollary 1) 4.8748 4.2702 4.0551 3.9369
[31] 7.6312 6.4033 5.9944 5.7963
Corollary 1 8.5174 7.5914 7.2411 7.0260
Theorem 6 9.3397 8.2439 7.7893 7.5068
Theorem 9 9.6800 8.5192 8.0535 7.7707
∗

𝑚 is the delay-partitioning number.

𝑊
1
=

[

[

[

[

0.8674 −1.2405 −0.5325 0.0220

0.0474 −0.9164 0.0360 0.9816

1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

]

]

]

]

,

𝐾
𝑝
= diag {0.1137, 0.1279, 0.7994, 0.2368} ,

𝐾
𝑚

= diag {0, 0, 0, 0} .
(43)

In Table 2, maximum delay bounds for guaranteeing the
asymptotic stability of system (43) are listed for various
conditions of ̇

ℎ(𝑡). As presented in Table 2, one can see that
Theorem 6 effectively reduces the conservatism of stability
criteria compared with the previous results [5–7, 9, 11, 13].
Also, it can be confirmed that Theorem 9 slightly enhances
the feasible region of Theorem 6.

Example 3. Consider the neural networks (4)with the follow-
ing parameters:

𝐴 = [

1.5 0

0 0.7
] , 𝑊

0
= [

0.0503 0.0454

0.0987 0.2075
] ,

𝑊
1
= [

0.2381 0.9320

0.0388 0.5062
] ,

𝐾
𝑝
= diag {0.3, 0.8} , 𝐾

𝑚
= diag {0, 0} .

(44)

For this example, one can see that maximum delay
bounds are much larger than those of [4, 7, 8] in Table 3

which shows maximum delay bounds when ̇
ℎ(𝑡) is 0.4, 0.45,

0.5, and 0.55. It can be also confirmed that the feasible
region of Theorem 9 is effectively enhanced compared with
those of Theorem 6, which also supports the effectiveness of
the statements in Remark 10. To explain the contribution of
𝑉
3
(𝑡) mentioned in Remark 8, let us refer Corollary 1 when

𝑉
3
(𝑡) in Theorem 6 is replaced by the traditional Lyapunov-

Krasovskii functional ∫𝑡
𝑡−ℎ(𝑡)

[
𝑥(𝑠)

𝑓(𝑥(𝑠))
]

𝑇

𝑄[
𝑥(𝑠)

𝑓(𝑥(𝑠))
] 𝑑𝑠 (𝑄 > 0).

From the results of Corollary 1 listed in Table 3, one can
confirm that the results of Corollary 1 is smaller than those of
Theorem 6.This means that the proposed𝑉

3
(𝑡) inTheorem 6

is effective in reducing the conservatismof stability condition.

5. Conclusion

In this paper, two improved delay-dependent stability criteria
for neural networks with time-varying delays have been
proposed by the use of the Lyapunov stability theorem and
LMI framework. In Theorem 6, by constructing the suitable
augmented Lyapunov-Krasovskii functional and utilizing
some novel Lyapunov-Krasovskii functionals and techniques
mentioned in Remarks 7 and 8, a delay-dependent sufficient
condition for asymptotic stability of the concerned network
was derived. Based on the results ofTheorem 6 and by taking
lower bound of Lyapunov-Krasovskii functional and utilizing
the property of its positiveness with the newly constructed
augmented vectors, the further improved stability condition
was derived in Theorem 9. Via three numerical examples
dealt with in many previous works to check the conservatism
of stability criteria, the improvements of the feasible region
of the three proposed stability criteria have been successfully
verified. Moreover, in [46], the triple integral forms of
Lyapunov-Krasovskii functional were shown effectiveness in
reducing the conservatism of stability sufficient conditions.
Thus, by grafting such an approach onto the proposed idea of
this paper, further improved results will be investigated in the
near future.
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