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Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with
important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization
methods: the total generalized variation (TGV) approach and adaptive dictionary learning (DL). In the proposed method, the
TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the
dictionary learning adaptively represents the image features sparsely and effectively recovers details of images.The proposedmodel
is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental
results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-
the-art approaches in terms of higher PSNR and lower HFEN values.

1. Introduction

Magnetic Resonance Imaging (MRI) plays an essential role
in medical diagnostic tool, which provides clinicians with
important anatomical information in the absence of ionizing
radiation. Despite its superiority in obtaining high-resolution
images and excellent depiction of soft tissues and acting as a
noninvasive and nonionizing technique, the imaging speed
inMR is limited by physical and physiological constraints. Its
long scanning time leads to artifacts caused by the motion
of patient’s discomfort. Therefore, it is necessary to seek
for a method to reduce the acquisition time. However, the
reduction of the acquired data which compromises with its
diagnostic value may result in degrading the image quality.
Considering these reasons, finding an approach for accurate
reconstruction from highly undersampled 𝑘-space data is
of great necessity for both quick MR image acquisition and
clinical diagnosis [1].

Generally, the existing regularization approaches fall into
two categories: the predefined transform and the adaptively
learned dictionary.The first category of predefined transform
methods is usually related to total variation and wavelet
transform. For example,Ma et al. employed the total variation

(TV) penalty and the wavelet transform for MRI reconstruc-
tion [2]. As for the TV regularization that only considers the
first-order derivatives, it is well known that it can preserve
shape edges but often leads to stair casing artifacts and results
in patchy, cartoon-like images which appear unnatural. In
[3–6], the total generalized variation (TGV) which involves
high-order derivatives was proposed. This regularization
preserves the high-order smoothness better. Actually, TGV
is equivalent to TV in terms of edge preservation and noise
removal, which can also be true of imaging situations where
the assumption of what TV is based on is not effective. It
is more precise in describing intensity variation in smooth
regions and thus reduces oil painting artifacts while still being
able to preserve sharp edges like TVdose [7, 8]. Recently, Guo
et al. proposed an outstandingmethod that combines shearlet
transform and TGV (SHTGV) [9], which is able to recover
both the texture and the smoothly varied intensities while
the other methods such as shearlet and TGV only models
either return a cartoon image or lose the textures. SHTGV
is able to preserve edges and fine features and provide more
“natural-looking” images. Although this work has improved
the reconstruction result, it is still an analytically designed
dictionary, which can be considered as only forcing the
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reconstructed image to be sparse with respect to spatial
differences, as well as having intrinsic deficiency and lacking
the adaptability to various images [10–12].

The second type of regularization method exploits the
nonlocal similarity and sparse representation. Most of the
existing DL models adopt a two-step iterative scheme, in
which on the one hand the sparse representation approxima-
tions are found with the dictionary fixed and on the other
hand the dictionary is subsequently optimized based on the
current sparse representation coefficients [13–15]. Numer-
ical experiments have indicated that these data-learning
approaches obtained considerable improvements compared
to previous predefined dictionaries-based methods [16, 17].
For instance, Ravishankar and Bresler assumed every image
patch has sparse representation and proposed an outstanding
two-step alternating method named dictionary learning-
based MRI (DLMRI) reconstruction [18]. The first step is
for adaptively learning dictionary; another step is for recon-
structing image from highly undersampled 𝑘-space data.
Nevertheless, most of existing methods fail to consider the
representation of the sharp edge, which may lead to the loss
of fine details. Motivated by this deficiency, we prefer to use
total generalized variation to compensate the insufficiency of
DL based methods [16–18].

In the proposed work, we exploit the strengths of both
total generalized variation and patch-based adaptive dictio-
nary for MR image reconstruction. This idea is motivated
by the proceeding work about dictionary learning-based
sparse representation and the second-order total generalized
variation regularization. The proposed algorithm integrates
the TGV regularizer and dictionary learning, which recovers
both edges and details of images and selectively regularizes
different image region at different levels. The solution of
the proposed algorithm is derived by the variable splitting
technique and the alternating direction method of multiplier
(ADMM) [19, 20], alternatively calculating the dictionary and
sparse coefficients of image patches and estimating the recon-
structed image. The main contribution of this paper is the
development of a more accurate and robust method. Firstly,
the introduction of adaptively learned dictionary alleviates
the artifacts caused by the piecewise smooth assumption and
allows an image with complex structure to be recovered accu-
rately. Secondly, the total generalized variation is equipped
with options to accommodate the high degrees of smoothness
that involved higher order derivatives and ismore appropriate
to represent the regularities of piecewise smooth images.

The remainder of this paper is organized as follows. We
start with a brief review on the applications of dictionary
learning and total generalized variation in Section 2. The
proposed model integrating the dictionary learning and
the TGV regularizer is presented and solved in detail in
Section 3. Many numerical simulation results are illustrated
in Section 4 to show the superiority of the proposed method,
using a variety of sampling schemes and noise levels. Finally,
conclusion is given in Section 5.

2. Background and Related Work

In this section, we review some classical models and algo-
rithms for image reconstruction in the context of sparse

representation. After the dictionary learning model and the
total generalized variation algorithm were briefly reviewed,
the proposed algorithm dictionary learning with total gen-
eralized variation (DLTGV) algorithm was derived in detail
by incorporating the dictionary learning into the plain TGV
algorithm. The following notation conventions are used
throughout the paper. Let 𝑢 ∈ C𝑛×𝑛 be the underlying image
reconstructed, and let 𝑏 ∈ C𝑄 represent the undersam-
pled Fourier measurements. The partially sampled Fourier
encoding matrix 𝐾 ∈ C𝑄×𝑛

2

projects 𝑢 to 𝑏 domain such
that 𝑏 = 𝐾𝑢 + 𝜉, with the 𝜉 error. MRI reconstruction
problem is formulated as the retrieval of the vector 𝑢 based
on the observation 𝑏 and given the partially sampled Fourier
encoding matrix𝐾.

2.1. Dictionary Learning Recovery Model. Besides predefined
sparsifying transform, sparse and redundant representations
of image patches based on learned dictionaries have drawn
considerable attention in recent years. Adaptive dictionary
updating can represent image better than preconstructed dic-
tionary. Owing to its adaptability to various image contents,
dictionary learning possesses strong capability in preserving
fine structures and details for image recovery problems.
The patch-based sparsity can efficiently capture local image
structures and can potentially alleviate aliasing artifacts.
Sparse coding and simple dictionary updating steps make
the algorithm converge in small iterations. The sparse model
𝐽(𝑢) = (𝜆

0
/2)[‖𝐴Γ − 𝑅𝑢‖

2

2
+ 𝜆
1
‖Γ‖
1
] is denoted as the

regularization term for MRI reconstruction and solves the
objective function as follows:

min 𝐽 (𝑢) = ‖𝐾𝑢 − 𝑏‖ ≤ 𝜉. (1)
Consequently, the present method solves the objective func-
tion (1) by reformulating it as follows:

𝑢 = Argmin
𝐷,Γ

∑
𝛽

2
‖𝐾𝑢 − 𝑏‖

2

2

+
𝜆
0

2
[‖𝐴Γ − 𝑅𝑢‖

2

2
+ 𝜆
1
‖Γ‖
1
] ,

(2)

where 𝐴 = [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝐽
] ∈ C𝑀×𝐽 and Γ = [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝐼
] ∈

C𝐽×𝐼. 𝑅𝑢 stands for the extracted patches. The MR image
is reconstructed as a minimizer of a liner combination
of two terms corresponding to the dictionary learning-
based sparse representation and least square data fitting.
The first term enforces data fidelity in 𝑘-space, while the
second term enforces sparsity of image with respect to an
adaptive dictionary. The parameter 𝜆

0
balances the sparse

level of the image patches and the approximation error in the
updating dictionary.The parameter 𝜆

1
balances the weight of

coefficient. For many natural or medical images, the value of
𝜆
1
can be determined empirically with robust performance in

our work. 𝐽 = 𝑇 ⋅ 𝑀, 𝑇 denotes the overcompleteness factor
of the dictionary. The classical method to solve model (2)
is DLMRI, through a two-step alternating manner. DLMRI
model has performed superiorly compared to those using
fixed basis.We exploit DL techniques to bemore effective and
efficient by adding high-order regularization of image, which
will be presented in Section 3.
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2.2. Total Generalized Variation. Image reconstruction using
method of TGV achieves better results in many practical
situations. The TGV of order 𝑘 is defined as follows:

TGV𝑘
𝛼
(𝑢) = sup {∫

Ω

𝑢 div𝑘V 𝑑𝑥 | V

∈ 𝐶
𝑘

𝑐
(Ω, Sym𝑘 (R𝑑)) , div

𝑙V
∞

≤ 𝛼
𝑙
, 𝑙 = 0, . . . , 𝑘

− 1} ,

(3)

where 𝐶𝑘
𝑐
(Ω, Sym𝑘(R𝑑)) is the space of compactly supported

symmetric tensor field and Sym𝑘(R𝑑) is the space of sym-
metric tensor on R𝑑. Choosing 𝑘 = 1 and 𝛼 = (1, 1) yields
the classical total variation. It constitutes a new image model
which can be interpreted to incorporate smoothness from the
first up to the 𝑘th derivative. Particularly, the second-order
TGV can be written as

TGV2
𝛼
(𝑢) = min

𝑝

𝛼
1

∇𝑢 − 𝑝
1 + 𝛼0

𝜀 (𝑝)
1 , (4)

where directional derivatives ∇
1
𝑢 and ∇

2
𝑢 can be approxi-

mated by𝐷
1
𝑢 and𝐷

2
𝑢 and𝐷

1
and𝐷

2
are the circulatematri-

ces corresponding to the forward finite difference operators
with periodic boundary conditions along the 𝑥-axis and 𝑦-
axis, respectively.Then ∇𝑢 is approximated by𝐷𝑢 and 𝜀(𝑝) is
approximated by

𝜀 (𝑝) =
[
[

[

𝐷
1
𝑝
1

1

2
(𝐷
2
𝑝
1
+ 𝐷
1
𝑝
2
)

1

2
(𝐷
2
𝑝
1
+ 𝐷
1
𝑝
2
) 𝐷

2
𝑝
2

]
]

]

. (5)

The proposed method derived another form of TGV2
𝛼

in terms of 𝑙
1
minimization so that the model can be

solved efficiently by ADMM. After discretization, (4) can be
efficiently solved byADMM. Image reconstructionwith TGV
regularization produces piecewise polynomial intensities.
The convexity of TGV makes it computationally feasible. It
refers to [3, 4] for further details and comparisons.

3. Proposed Algorithm DLTGV

In this work, we propose a new regularization scheme, com-
bining adaptive dictionary learning with the regularization
approach total generalized variation TGV2

𝛼
to reconstruct the

target image with a lot of directional features and high-order
smoothness. The dictionary learning is related to the image
patch-based coefficient matrix and dictionary. The proposed
method reconstructs the image simultaneously from highly
undersampled 𝑘-space data and consists of a variable splitting
solver alternating direction method of multiplier (ADMM).
In the smooth regions of image 𝑢, the second derivative is
locally small. Hence, using the generalized variation algo-
rithm to regularize the nonconvex function will perform
better, leading to amore faithful reconstruction ofMR image.
The proposed method recovers both edges and details of
images and selectively regularizes different image region at
different levels and thus largely avoids oil painting artifacts.

3.1. Proposed New Model. To reconstruct image 𝑢 using the
dictionary learning and total generalized variation regular-
ization, we propose a new model to reconstruct the MRI
images 𝑢 as follows:

min
𝑢

𝛽

2
‖𝐾𝑢 − 𝑏‖

2

2
+
𝜆
0

2
[‖𝐴Γ − 𝑅𝑢‖

2

2
+ 𝜆
1
‖Γ‖
1
]

+ TGV2
𝛼
(𝑢) ,

(6)

where the parameter 𝛽 > 0 is related to the noise level 𝜉.
We utilize the second-order TGV2

𝛼
in our proposed method.

With the new formulation of the discrete TGV2
𝛼
in (4), the

proposed model (6) turns to be

min
𝑢

𝛽

2
‖𝐾𝑢 − 𝑏‖

2

2
+
𝜆
0
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2

2
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1
]

+ 𝛼
1
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𝜀 (𝑝)
1 .

(7)

As in (5), the discrete version of (7) is

min
𝑢

𝛽

2
‖𝐾𝑢 − 𝑏‖

2

2
+
𝜆
0
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2

2
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1
]

+ 𝛼
1

𝐷𝑢 − 𝑝
1 + 𝛼0

𝜀 (𝑝)
1 .

(8)

3.2. Algorithm to Solve Model (8). As discussed in the previ-
ous section, dictionary updating and sparse coding to (2) are
performed sequentially. In the following, we investigate that
using TGV2

𝛼
as the regularization leads to an absence of the

staircasing effect which is often observed in total variation
regularization. To solve the proposed model, the first step
of this alternating scheme is solved, image 𝑢 is assumed
fixed, and the dictionary and the sparse representations of the
images are jointly updated. In the next step, the dictionary
and sparse representation are fixed, and image 𝑢 is updated
through ADMM algorithm to satisfy data consistency.

The minimization equation (8) with respect to image 𝑢 is
derived as follows. Noting that there are two 𝑙

1
terms in the

reformulated model in (8) besides the second term, we apply
ADMM to solve the optimization problem. We introduce
auxiliary variable 𝑦 and 𝑧 for each 𝑙

1
term:

𝑦 = [
𝑦
1

𝑦
2

] ,

𝑧 = [
𝑧
1
𝑧
3

𝑧
3
𝑧
2

] .

(9)

So (8) is equivalent to

min
𝑢,𝐴,Γ

𝛽

2
‖𝐾𝑢 − 𝑏‖

2

2
+
𝜆
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1
]

+ 𝛼
1

𝑦
1 + 𝛼0 ‖𝑧‖1

s.t 𝑦 = 𝐷𝑢 − 𝑝,

𝑧 = 𝜀 (𝑝) .

(10)
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After applying the ADMM, we achieve the following
algorithm:

𝑦
𝑛+1

= argmin
𝑦

𝑦
1 +

𝜇
2
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𝑛
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2
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+
𝛽
2
𝜇
3

2
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2

2

+
𝛽

2
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2

2
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𝑛
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𝑛+1

− 𝑝
𝑛+1

) − 𝑦
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) ,
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𝑛+1
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𝑛

+ 𝜇 (𝜀 (𝑝
𝑛+1

) − 𝑧
𝑛+1

) .

(11)

Similar to the above section, we apply ADMM and
decompose the optimization problem into five sets of sub-
problems as follows.

3.2.1. Solve 𝑦
𝑛+1 and 𝑧

𝑛+1. The first two subproblems are
similar and the solutions are given explicitly by shrinkage
operation. The solution to the 𝑦 subproblem is

𝑦
𝑛+1

(𝑙) = shrink
2
(𝐷𝑢
𝑛

(𝑙) − 𝑝
𝑛

(𝑙) + �̃�
𝑛

(𝑙) ,
1

𝜇
2

) ,

𝑙 ∈ Ω,

(12)

where 𝑦𝑛+1(𝑙) ∈ R2 represents the component of 𝑦𝑛+1 located
at 𝑙 ∈ Ω, and the isotropic shrinkage operator shrink

2
is

defined as

shrink
2
(𝑎, 𝜇) =

{{

{{

{

0, 𝑎 = 0,

(‖𝑎‖
2
− 𝜇)

𝑎

‖𝑎‖
2

, 𝑎 ̸= 0.
(13)

Likewise, we have the solution to the 𝑧 problem as

𝑧
𝑛+1

(𝑙) = shrink
𝐹
(𝜀 (𝑝
𝑛

) (𝑙) + �̃�
𝑛

(𝑙) ,
1

𝜇
3

) , 𝑙 ∈ Ω, (14)

where 𝑧𝑛+1(𝑙) ∈ 𝑠2×2 is the component of 𝑧𝑛+1 corresponding
to the pixel 𝑙 ∈ Ω and

shrink
𝐹
(𝑏, 𝜇) =

{{

{{

{

0, 𝑏 = 0,

(‖𝑏‖
𝐹
− 𝜇)

𝑏

‖𝑏‖
𝐹

, 𝑏 ̸= 0.
(15)

Note that 0 here is a 2 × 2 zero matrix and ‖ ⋅ ‖
𝐹
is the

Frobenius norm of matrix.

3.2.2. Update Dictionary and Coefficient. The minimization
equation (8) with respect to dictionary and coefficient thus
can be solved separately. Dictionary learning and coefficient
updating step: in this step, the problem is solved with fixed
image 𝑢, with the second term corresponding subproblem as
follows:

{𝐴, Γ} = argmin
𝐴,Γ

‖𝐴Γ − 𝑅𝑢‖
2

2

s.t ‖Γ‖
1
≤ 𝜏
1
.

(16)

The parameter 𝜏
1
in (16) is the required sparsity level.

The strategy to solve (16) is to alternatively update dictionary
𝐴 and sparsely represented coefficient Γ, the same as that
used in K-SVD and DLMRI model. Specifically, in the sparse
coding step, the solution of (16) is achieved by the orthogonal
matching pursuit with respect to a fixed dictionary 𝐴. While
at the dictionary updating step, the columns of the designed
dictionary (represented by 𝑎

𝑘
, 1 ≤ 𝑘 ≤ 𝐾) are updated

sequentially by using singular value decomposition (SVD)
to minimize the approximation error. The K-SVD algorithm
is used to learn the dictionary 𝐴. With the dictionary that
is learnt, sparse coding is performed on the image to get
the sparse represented coefficient Γ. Specifically, K-SVD is
exploited to train the sparsifying dictionary for removing
aliasing and noise, so that the target image 𝑢 is reconstructed
from learned dictionary and sparse representation.

3.2.3. Solve 𝑢𝑛+1 and 𝑝
𝑛+1. To solve the (𝑢, 𝑝) subproblem,

we obtain the second directional derivatives and the dis-
cretization with periodic boundary conditions, respectively,
and then define the Lagrangian function. Taking the partial
derivatives with respect to 𝑢, 𝑝

1
, 𝑝
2
, we get the normal

equations as
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1
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2
𝑢 + 𝑦
𝑛+1

2
− �̃�
𝑛

2
)

+ 𝛼
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𝑝
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+ 𝐷
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𝑝
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𝑛

3
)) = 0.

(17)

Depending on the formulation of 𝐾, many methods can
be used to solve (17) liner system. In this work, we illus-
trate the idea by means of solving the compressive sensing
reconstruction problem. In this section, we fix attention on
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incomplete Fourier measurements as they have a wide range
of applications in medical imaging and are very popular. We
denote 𝐾 = 𝐹

𝑝
= 𝑃𝐹, where 𝑃 is a selection matrix and 𝐹

is a 2D matrix representing the 2D Fourier transform. The
selection matrix 𝑃 keeps the identity matrix if the data is
sampled.

For incomplete Fourier transform, the subproblem equa-
tion (17) seems complicated. By the fact that it is easy to
solve as the circulate matrix diagonalized by 2D Fourier
transform 𝐹, next we demonstrate how to obtain the closed-
form solution to (17). After grouping the like terms in (17), we
get the following liner system:

[
[
[

[

𝑑
1
𝑑
𝑇

4
𝑑
𝑇

5

𝑑
4
𝑑
2
𝑑
𝑇
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𝑑
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𝑑
6
𝑑
3

]
]
]
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𝑝
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𝑝
2

]
]

]

=
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𝐵
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𝐵
2

𝐵
3

]
]

]
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where the block matrix is defined as
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Next we multiply a preconditioner matrix from the left
to linear system so that the coefficient matrix is block-wise
diagonal:

[
[

[

𝐹 0 0

0 𝐹 0

0 0 𝐹

]
]

]

[
[
[

[

𝑑
1
𝑑
𝑇

4
𝑑
𝑇

5

𝑑
4
𝑑
2
𝑑
𝑇

6

𝑑
5
𝑑
6
𝑑
3

]
]
]

]

[
[

[

𝐹 0 0

0 𝐹 0

0 0 𝐹

]
]

]

∗

[
[

[

𝐹𝑢

𝐹𝑝
1

𝐹𝑝
2

]
]

]

=
[
[

[

𝐹 0 0

0 𝐹 0

0 0 𝐹

]
]

]

[
[

[

𝐵
1

𝐵
2

𝐵
3

]
]

]

.

(20)

(1) Choose: 𝛼
0
, 𝛼
1
, 𝛽, 𝜆
0
, 𝜇
𝑗
, 𝑗 = 1, 2

(2) Initialize: 𝑢0, 𝑝0
1
, 𝑝
0

2
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𝑗
, �̃�
0

𝑗
, 𝑧
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𝑗
, �̃�
0

𝑗
(𝑗 = 1, 2)

(3) For 𝑛 = 0, 1, 2, . . . (until ‖𝑢𝑛 − 𝑢𝑛+1‖ ≤ tol)
(4) Update Dictionary and Coefficient {𝐴, Γ} by (16).
(5) 𝑦

𝑛+1
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2
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1

, 𝑝
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2
by (22)
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(10) End (For)

Algorithm 1: DLTGV.

The above operation can also be equivalently performed
by multiplying each equation in (17) from the left with 𝐹.
Denote
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Similar to the scalar case, 𝐹𝑢, 𝐹𝑝
1
, and 𝐹𝑝

2
can be

obtained by applying the Cramer’s rule. So 𝑢, 𝑝
1
, and 𝑝
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have

the following closed forms:
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where the division is component-wise and

denom =

[
[
[
[
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Now, we summarize our proposed method for MRI
reconstruction here, which we call dictionary learning with
total generalized variation (DLTGV). The detailed descrip-
tion of the proposed method is listed in Algorithm 1. The
proposed algorithm DLTGV alternatively updates image
patch related coefficients, auxiliary variables, and the target
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solution 𝑢. The difference between the plain SHTGV and the
DLTGV methods mainly lies on the difference of shearlet
transform and dictionary learning. In DLTGV, adaptively
learned dictionary alleviates the artifacts caused by the piece-
wise smooth assumption and allows an image with complex
structure to be recovered accurately. The performance of
DLTGV also depends on the selection of parameters, which
will be explained in Section 4.

4. Experiments Results

In this section, the performance of proposed method was
presented under a variety of sampling schemes and different
undersampling factors. The sampling schemes used in our
experiments include trajectory radial sampling, the 2D ran-
dom sampling, and Cartesian sampling with random phase
encoding (1D random). In the experiments, reconstruction
results were obtained in simulated MRI data and complex-
value data. The synthetic experiments used the images that
are in vivoMR scans of size 512× 512 (many of which are used
in [18]). The complex-valued image [21, 22] in Figures 5 and
6 is of size 512 × 512 and those in Figures 7 and 8 are of size
256 × 256. According to many prior works on the CS data
acquisition was simulated by subsampling the 2D discrete
Fourier transform of theMR images (except the test with real
acquired data).

In the experiments, our proposed method was compared
with the leading DLMRI and SHTGV methods that have
shown the substantial outperformance compared to other
CS-MRI methods.The implementation coefficients of dictio-
nary learning in DLMRI and our method DLTGV are the
same,which is solved byK-SVDalgorithm.Theparameters of
DLMRI and SHTGV methods were set to the default values.
We introduced the peak signal-to-noise ratio (PSNR) and
high-frequency error norm (HFEN) to quantify the quality
of our reconstruction. All experiments were implemented in
MATLAB 7.11 on a PC equipped with Intel core i7-3632QM
and 4GByte RAM.

4.1. Impact of Undersampling Schemes. In this subsection, we
evaluated the performance of DLTGV under different under-
sampling ratio at pseudo radial sampling trajectory. Figure 1
illustrates the reconstruction results with the pseudo radial
sampled 𝑘-space at a range of undersampling factors with 2.5,
4, 6, 8, 10, and 20. The PSNR and HFEN values for DLMRI,
SHTGV, and DLTGV at a variety of factors are presented in
Figures 1(b) and 1(c). For the subjective comparison, the con-
struction results and magnitude image of the reconstruction
error produced by the threemethods at 8-fold undersampling
are presented in Figures 1(d), 1(e), and 1(f) and Figures 1(g),
1(h), and 1(i), respectively. As can be seen in Figure 1, the
magnitude image of the reconstruction error for DLTGV
shows less pixel errors and detail information than those of
SHTGV (Figure 1(e)) and DLMRI (Figure 1(f), Table 1).

The results with 7.11-fold undersampling of three differ-
ent sampling schemes, including 2D random sampling, the
sampling of central 𝑘-space phase encoding lines, and spiral
sampling, are presented in Figure 2. The PSNR and HFEN
curves are plotted in Figures 2(b) and 2(c) corresponding to

DLMRI, SHTGV, and DLTGV. It can be seen that the more
irrelevant the acquisition is, the better the reconstruction
will be gained, and therefore the PSNRs obtained by 2D
random sampling get more improvements than those of
other sampling schemes. The results achieved by applying
2D random sampling are presented in Figures 2(d), 2(e), and
2(f). The magnitude error image for DLTGV shows that the
reconstructed result using the proposed algorithm is more
consistent than other methods. It can be seen that, under
the same undersampling rate, the improvements gained by
DLTGV outperform other methods at different trajectories.

4.2. Performance with Noise. To investigate the sensitivity of
DLTGV to different levels of complex white Gaussian noise,
DLMRI, SHTGV, and DLTGV were applied to reconstruct
image under pseudo radial sampling at 6.09-fold acceleration.
Figure 3 presents the reconstruction results of three methods
at different levels of complex white Gaussian noise, which
were added to the 𝑘-space samples. PSNRs of the recovered
MR images by DLMRI (blue curves), SHTGV (green curves),
and DLTGV (red curves) at a sequence of different standard
deviations (𝜎 = 2, 5, 8, 10, 12, 14) are shown in Figure 3(c).
In the case of 𝜎 = 2, the PSNR of the image obtained by
DLMRI is only 33.75 dB, SHTGV is 33.28 dB, and DLTGV
reached 35.67 dB.Obviously, the difference gap between three
methods is significant at low noise levels. The corresponding
magnitudes of the reconstruction errors with 𝜎 = 14 are
shown in Figures 3(d), 3(e), and 3(f). It can be observed
that the DLTGV reconstruction appears less obscured than
those in the DLMRI results. Meanwhile, the reconstruction
by DLTGV is clearer than that by DLMRI and SHTGV and
is relatively devoid of aliasing artifacts. It reveals that our
method provides a more accurate reconstruction of image
contrast and sharper anatomical depiction in noisy case.

4.3. Parameter Evaluation. Similar to the detail-preserving
regularity scheme, this section evaluates the sensitivity of
the proposed method to parameter settings by varying
one parameter at a time while keeping the rest fixed at
their nominal values. The parameter evaluation in Figure 4
was investigated in radial trajectory sampling with 8-fold
undersampling. The parameters 𝛽 and 𝜆

1
were observed to

work well at their normal value and hence are not studied
separately. The three parameters 𝜆

0
, 𝛼
1
, and 𝛼

0
are related to

the noise level as well as the sparsity of underlying image of
interest under dictionary leaning and TGV regularity. PSNRs
values are plotted in Figure 4 over these parameters. It is
obvious that more fine tuning of the parameters may lead
to better results, but the results with the parameters setting
are consistently promising.The plots of Figure 4 indicate that
the “nominal” parameter values work reasonably well. The
results demonstrate that the algorithm is not very sensitive
to parameters and can be used without tuning.

4.4. Reconstruction of Complex-Valued Data. Figure 5 dis-
played the comparison results under Cartesian sampling
on a physical phantom which is usually used to assess
the resolution of MRI system. Figures 5(b), 5(c), and 5(d)
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Figure 1: (a) The reference image. ((b), (c)) The PSNR and HFEN versus the downsampling factor. ((d), (e), (f)) The reconstruction results
under pseudo radial sampling trajectory of DLMRI, SHTGV, and DLTGV. ((g), (h), (i)) The corresponding reconstruction error magnitudes
of (d), (e), and (f).

Table 1: Reconstruction PSNR (dB) and HFEN values at different undersampling factors with the same pseudo radial sampling trajectories.

Downsampling factor 20-folder 10-folder 8-folder 6-folder 4-folder 2.5-folder
DLMRI 31.86 (1.56) 37.17 (0.66) 39.45 (0.40) 41.01 (0.26) 43.92 (0.12) 48.60 (0.05)
SHTGV 30.92 (1.70) 37.31 (0.71) 40.06 (0.44) 41.85 (0.31) 44.82 (0.18) 48.18 (0.12)
DLTGV 32.39 (1.48) 38.89 (0.51) 41.70 (0.27) 44.30 (0.14) 47.34 (0.06) 51.87 (0.03)
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Figure 2: Reconstruction of an axial T2-weighed brain image at 7–11-fold undersampling. (a) The reference image. ((b), (c)) The PSNR
and HFEN versus the number of iterations. ((d), (e), (f)) The reconstruction results under 2D random sampling by three methods DLMRI,
SHTGV, and DLTGV. ((g), (h), (i)) The corresponding reconstruction error magnitudes of (d), (e), and (f).

showed the results of DLMRI, SHTGV, and DLTGV, at 8-fold
undersampling.The PSNRs of DLMRI, SHTGV, and DLTGV
were 29.02 dB, 22.78 dB, and 33.05 dB. Our result surpassed
those of DLMRI and SHTGV, respectively, by 4.03 dB and
10.27 dB. The reconstruction with the three methods showed

obvious differences in visual quality. While the DLMRI and
SHTGV reconstructions displayed visible aliasing artifacts
along the horizontal direction, the DLTGV reconstruction
was more explicit and less artifacts at the same direction.The
zoom-in map was presented in Figure 5(e).
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Figure 3: (a) Reference image. (b) Sampling mask in 𝑘-space with 6.09-fold undersampling. (c) PSNR versus noise level for DLMRI, SHTGV,
and DLTGV. ((d), (e), (f)) Reconstructed images using DLMRI, SHTGV, and DLTGV. ((g), (h), (i)) Reconstruction error magnitudes for
DLMRI, SHTGV, and DLTGV with noise 𝜎 = 14.

Furthermore, we added the noise 𝜎 = 30 to investigate
the sensitivity of presented method on complex-valued data.
The PSNR values of 26.33 dB, 22.00 dB, and 31.55 dB were
obtained by DLMRI, SHTGV, and DLTGV, respectively. The
reconstruction results of the three methods were shown
in Figures 6(a), 6(b), and 6(c). The enlargements of two
region-of-interests were presented in Figures 6(d) and 6(e).

It indicates that the proposed method reflected the superior
denoising ability compared to the other two methods. More-
over, the illustrated red arrow in Figures 6(d) and 6(e) showed
that DLTGV exhibited less obscured phenomenon than that
in the DLMRI and SHTGV results.

In order to further verify the performance of pre-
sented method DLTGV, we utilized the datasets [21, 22]
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Figure 4: Parameter evaluation. (a) PSNR versus 𝜆
0
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. (c) PSNR versus 𝛼
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. (d) The reference image. (e) Reconstructions
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−6. (f) The reconstruction errors of (e).
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Figure 5: Reconstruction comparison of the physical phantom. (a) Fully sampled image. ((b), (c), (d)) Reconstruction results corresponding
to DLMRI, SHTGV, and DLTGV at 8-fold undersampling. (e) The local area of enlargements of (a), (b), (c), and (d).
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Figure 6: Comparison of reconstruction of a physical MR image with noise of 𝜎 = 30. ((a), (b), (c)) Reconstruction results of DLMRI,
SHTGV, and DLTGV at 8-fold undersampling. ((d), (e)) The area of enlargements corresponding to (a), (b), and (c).
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Figure 7: Reconstructed water phantom images at 35% undersampling. (a)The fully sampled image. ((b), (c), (d))The reconstruction images
corresponding to DLMRI, SHTGV, and DLTGV. (e) Mask data with 35% Cartesian sampling. ((f), (g), (h)) Reconstruction error magnitudes
for DLMRI, SHTGV, and DLTGV. ((i), (j)) Enlargements of (a), (b), (c), and (d).
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Figure 8: Reconstructed brain images at 40% undersampling. (a) The fully sampled image. ((b), (c), (d)) The reconstruction images using
DLMRI, SHTGV, and DLTGV. (e) Mask data with 40% Cartesian sampling. ((f), (g), (h)) Reconstruction error magnitudes for DLMRI,
SHTGV, and DLTGV. ((i), (j)) Enlargements of (a), (b), (c), and (d).

which included complex-valued water phantom image in
Figure 7(a) and T2-weighed brain image in Figure 8(a).
For the water phantom image tested in Figure 7, Cartesian
sampling trajectory with 35% undersampling was employed
in this experiment. For the visual comparison, the proposed
method produced better resolution and fewer artifacts than
the other two methods. For the quantitative comparison,
the PSNR values of DLMRI and SHTGV were 34.06 dB
and 26.16 dB, and at the same time the PSNR value of
DLTGV reached 36.56 dB. As can be observed in Figures
7(i) and 7(j), along the horizontal direction, the DLTGV
reconstruction contained less aliasing artifacts than the other
reconstructions.

The performance of using T2-weighed brain image was
displayed in Figure 8. Cartesian sampling trajectorywith 40%
undersampling was employed. The PSNRs were 33.70 dB,
29.02 dB, and 35.16 dB obtained by DLMRI, SHTGV, and
DLTGV, respectively. Figures 8(f) and 8(g) presented a
microscopic comparison between the reference image and
the results reconstructed by DLMRI, SHTGV, and DLTGV.
It can be observed that the DLTGV has provided a better
reconstruction of long object edge between tissues and

suppressed aliasing artifacts. In general, the proposedmethod
produced greater intensity fidelity to the image reconstructed
from the full data.

5. Conclusion

In this paper, we proposed a novel algorithm based on adap-
tive dictionary learning and TGV regularization to recon-
struct MR image simultaneously from highly undersampled
𝑘-space data.TheTGV algorithm leads to better performance
in the nonconvex function regularization and the dictionary
learning is related to the image patch-based coefficientmatrix
and dictionary. To figure out the nondifferential terms in
our model, we apply ADMM to solve the optimization
problem. The whole algorithm converges in a small num-
ber of iterations by means of the accelerated sparse cod-
ing and simple dictionary updating. The proposed method
recovers both edges and details of images and selectively
regularizes different image region at different levels, thus
largely avoiding oil painting artifacts. Numerical experiments
show that the proposed method converges quickly and the
performance is superior to other existing methods under
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a variety of sampling trajectories and 𝑘-space acceleration
factors. Particularly, it achieves better reconstruction results
than those by using SHTGV and DLMRI. It even provides
highly accurate reconstructions for severely undersampled
MR measurements.
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