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We are concerned with a 3D chemotaxis model arising from biology, which is a coupled hyperbolic-parabolic system. We prove
the global existence of a strong solution when H2-norm of the initial perturbation around a constant state is sufficiently small.
Moreover, if additionally, L1-norm of the initial perturbation is bounded; the optimal convergence rates are also obtained for such
a solution. The proofs are obtained by combining spectral analysis with energy methods.

1. Introduction

In this paper, we investigate global existence and optimal
convergence rates of strong solutions to the following 3D
chemotaxis model:

V
𝑡
− ∇𝑓 (𝑢) = 0, 𝑥 ∈ R

3
, 𝑡 > 0,

𝑢
𝑡
− ∇ ⋅ (𝑢V) = 𝐷Δ𝑢, 𝑥 ∈ R

3
, 𝑡 > 0,

(1)

with initial data

(V, 𝑢) (𝑥, 0) = (V
0
, 𝑢
0
) (𝑥) → (0, 𝑢) , as |𝑥| → ∞, (2)

where 𝑢 > 0 is a positive constant.The system (1) is one of the
models describing the chemotaxis phenomenon in biology
and is closely related to the following system:

𝜕𝑝

𝜕𝑡
= 𝐷∇ ⋅ (𝑝∇(ln

𝑝

Φ (𝑤)
)) ,

𝜕𝑤

𝜕𝑡
= Ψ (𝑝, 𝑤) ,

(3)

which is motivated by biological considerations and numer-
ical computations carried out by Othmer and Stevens in
[1] and Levine and Sleeman in [2]. Here, 𝑝(𝑥, 𝑡) denotes

the particle density and 𝑤(𝑥, 𝑡) is the concentration of
chemicals. 𝐷 > 0 is the diffusion rate of particles. The
function Φ is commonly referred to as the chemotactic
potential andΨ denotes the chemical kinetics. Depending on
the specificmodeling goals, the kinetic functionΨ(𝑝,𝑤) has a
wide variability. In this paper, we consider a class of nonlinear
kinetic functions Ψ(𝑝, 𝑤):

Ψ (𝑝, 𝑤) = 𝛽𝑓 (𝑝)𝑤, (4)
where 𝛽 is a positive constant and 𝑓 is a smooth function
satisfying

𝑓

(𝑢) > 0, (5)

for all 𝑢 under consideration.
In fact, as in [3, 4], letΦ(𝑤) = 𝑤

−𝛼 with 𝛼 being a positive
constant and Ψ(𝑝, 𝑤) is defined in (4); the system (3) can be
rewritten in the following form:

𝑝
𝑡
= 𝐷Δ𝑝 + 𝐷𝛼∇ ⋅ (𝑝

∇𝑤

𝑤
) ,

𝑤
𝑡
= 𝛽𝑓 (𝑝)𝑤.

(6)

Furthermore, by setting

𝑞 = ∇ (ln𝑤) =
∇𝑤

𝑤
, (7)
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we can rewrite the system (6) as

𝑝
𝑡
= 𝐷Δ𝑝 + 𝐷𝛼∇ ⋅ (𝑝𝑞) ,

𝑞
𝑡
= 𝛽∇𝑓 (𝑝) .

(8)

Finally, for positive constants 𝐴, 𝐵, and 𝑐
1
to be determined

below, let 𝜏 = 𝐴𝑡, 𝜉 = 𝐵𝑥, 𝑢 = 𝑝, and V = 𝑐
1
𝑞; then the system

(8) becomes

V
𝜏
=

𝛽𝐵𝑐
1

𝐴
∇
𝜉
𝑓 (𝑢) ,

𝑢
𝜏
=

𝐷𝐵
2

𝐴
Δ
𝜉
𝑢 +

𝐷𝛼𝐵

𝐴𝑐
1

∇
𝜉
⋅ (𝑢V) .

(9)

If we choose

𝛽𝐵𝑐
1

𝐴
= 1,

𝐵
2

𝐴
= 1,

𝐷𝛼𝐵

𝐴𝑐
1

= 1,

(10)

that is,

𝐴 = 𝐷𝛼𝛽 > 0, 𝐵 = √𝐷𝛼𝛽 > 0, 𝑐
1
= √

𝐷𝛼

𝛽
> 0,

(11)

then it is easy to see that 𝑢 and V satisfy

V
𝜏
− ∇
𝜉
𝑓 (𝑢) = 0,

𝑢
𝜏
− ∇
𝜉
⋅ (𝑢V) = 𝐷Δ

𝜉
𝑢.

(12)

If we replace the variables (𝜏, 𝜉) by (𝑥, 𝑡), (12) is exactly (1).
To go directly to the theme of this paper, we now only

review some former results which are closely related. For the
one-dimensional version of the chemotaxis model (1), the
existence and asymptotic behavior of smooth solutions have
been studied by several authors. When the kinetic function
is linear, that is, 𝑓(𝑢) = 𝜆𝑢 − 𝜇 with 𝜆(>0) and 𝜇(≥0) being
given constants, the corresponding system reads as follows:

V
𝑡
− 𝑢
𝑥
= 0,

𝑢
𝑡
− (𝑢V)

𝑥
= 𝑢
𝑥𝑥
.

(13)

The initial boundary value problem and Cauchy problem for
the system (13) were considered by [3, 5] and [4], respectively.
In [3], they considered the initial boundary value problem
for the system (13). When ‖𝑢

0
− 1‖
2

𝐻
2 + ‖V

0
‖
2

𝐻
2 is sufficiently

small, they proved the global existence of smooth solutions
to the system (13). The authors in [5] generalized the results
of [3] to the arbitrarily large initial data case. In [4], the
authors obtained the global existence of smooth solutions
to the Cauchy problem for the system (13) with large initial
data. Recently, the authors in [6–8] extended the results of
[3–5] to the nonlinear kinetic function case, respectively. For
high dimensions, the global well-posedness of smooth small
solution to (1) with 𝑓(𝑢) = 𝑢 was investigated in [5, 9]

for initial-boundary value problem and Cauchy problem,
respectively. For other related results, such as nonlinear
stability of waves in one dimension and so on, please refer
to [6–8, 10–31] and references therein.

However, to our knowledge, so far there is no result on
the optimal convergence rates of the strong solutions to the
Cauchy problem (1)-(2). The main motivation of this paper
is to give a positive answer to this question. In particular,
we prove the global existence of a strong solution when
𝐻
2-norm of the initial perturbation around a constant state

is sufficiently small. Moreover, if in addition, 𝐿1-norm of
the initial perturbation is bounded, the optimal convergence
rates are also obtained for such a solution. The proofs are
based on energy methods and spectral analysis which have
been developed in [32–35] and references therein.

Before stating our main results, we explain the notations
and conventions used throughout this paper. We denote
positive constants by 𝐶. Moreover, the character “𝐶” may
differ in different places. 𝐿𝑝 = 𝐿

𝑝
(R3) (1 ≤ 𝑝 ≤ ∞) denotes

the usual Lebesgue space with the norm

𝑔
𝐿𝑝

= (∫

R3

𝑔 (𝑥)


𝑝

𝑑𝑥)

1/𝑝

, 1 ≤ 𝑝 < ∞,

𝑔
𝐿∞

= sup
R3

𝑔 (𝑥)
 .

(14)

𝐻
𝑙
(R3) (𝑙 ≥ 0) denotes the usual 𝑙th-order Sobolev space

with the norm

𝑔
𝑙

= (

𝑙

∑

𝑗=0


∇
𝑗
𝑔


2

)

1/2

, (15)

where ‖ ⋅ ‖ = ‖ ⋅ ‖
0
= ‖ ⋅ ‖

𝐿
2 .

Now, we are ready to state our main results.

Theorem 1. Assume that ∇ × V
0

= 0 and ‖(V
0
, 𝑢
0
− 𝑢)‖
2
is

sufficiently small; then there exists a unique globally strong
solution (V, 𝑢) of the Cauchy problem (1)-(2) such that for any
𝑡 ∈ [0,∞), satisfying

V ∈ 𝐶
0
(0,∞;𝐻

2
(R
3
)) ∩ 𝐶

1
(0,∞;𝐻

1
(R
3
)) ,

𝑢 − 𝑢 ∈ 𝐶
0
(0,∞;𝐻

2
(R
3
)) ∩ 𝐶

1
(0,∞; 𝐿

2
(R
3
)) ,

‖(V, 𝑢 − 𝑢) (𝑡)‖
2

2
+ ∫

𝑡

0

(‖∇V (𝜏)‖2
1
+ ‖∇𝑢 (𝜏)‖

2

2
) 𝑑𝜏

≤ 𝐶
1

(V0, 𝑢0 − 𝑢)


2

2
,

(16)

where 𝐶
1
is a positive constant independent of 𝑡.

Moreover, if, in addition, ‖(V
0
, 𝑢
0
− 𝑢)‖
𝐿
1 is bounded, then

there is a positive constant𝐶
2
independent of 𝑡 such that for any

𝑡 ≥ 0, the solution (V, 𝑢) has the following decay properties:

‖∇ (V, 𝑢) (𝑡)‖1 ≤ 𝐶
2
(1 + 𝑡)

−5/4
, (17)

‖(V, 𝑢 − 𝑢) (𝑡)‖𝐿∞ ≤ 𝐶
2
(1 + 𝑡)

−5/4
, (18)

‖(V, 𝑢 − 𝑢) (𝑡)‖𝐿𝑞 ≤ 𝐶
2
(1 + 𝑡)

(−3/2)(1−1/𝑞)
, 2 ≤ 𝑞 ≤ 6, (19)

𝜕𝑡 (V, 𝑢) (𝑡)
 ≤ 𝐶
2
(1 + 𝑡)

−5/4
. (20)
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Remark 2. As compared to the classic results in [9, 17, 30],
where smallness conditions on 𝐻

3-norm of the initial data
were proposed, we are able to prove the global existence
and convergence rates for the strong solutions to the Cauchy
problem under only that 𝐻

2-norm of the initial data is
sufficiently small.

Remark 3. Similar ideas can be applied to study the initial
boundary value problem.This will be reported in a forthcom-
ing paper.

Remark 4. Here and in what follows, (V, 𝑢) denotes the
vector (V

1
, V
2
, V
3
, 𝑢) with V = (V

1
, V
2
, V
3
) and V ∈

𝐶
0
(0,∞;𝐻

2
(R3)) ∩ 𝐶

1
(0,∞;𝐻

1
(R3)) represents each com-

ponent V
𝑖
(𝑖 = 1, 2, 3) of the vector V belonging to the function

space 𝐶0(0,∞;𝐻
2
(R3)) ∩ 𝐶

1
(0,∞;𝐻

1
(R3)).

The proofs of Theorem 1 are based on energy methods
and spectral analysis. The key point for the proof of global
existence is to obtain some a priori estimates independent of
𝑡. Then, we can combine spectral analysis with the uniform
a priori estimates to prove our desired decay estimates (17)–
(20).

The rest of this paper is organized as follows. In Section 2,
we reformulate the problem. In Section 3, we give some
elementary facts on the decay-in-time estimates on (V, 𝑢) for
the linearized system. Sections 4 and 5 are dedicated to prove
Theorem 1.

2. Reformulated System

In this section, we will first reformulate the problem. Set

𝜆 = √
𝑓

(𝑢)

𝑢
, 𝜆

1
= √𝑢𝑓


(𝑢), 𝜆

2
= √

𝑢

𝑓

(𝑢)

.

(21)

Taking change of variables (V, 𝑢) → (𝜆V, 𝑢 + 𝑢) and
linearizing the system around (0, 𝑢), we can reformulate the
Cauchy problem (1)-(2) as

V
𝑡
− 𝜆
1
∇𝑢 = 𝐹

1
,

𝑢
𝑡
− 𝜆
1
∇ ⋅ V − 𝐷Δ𝑢 = 𝐹

2
,

(V, 𝑢) (𝑥, 0) = (V
0
, 𝑢
0
) (𝑥) → (0, 0) as |𝑥| → ∞,

(22)

where

𝐹
1
= 𝜆
2
(𝑓

(𝑢 + 𝑢) − 𝑓


(𝑢)) ∇𝑢,

𝐹
2
= 𝜆∇ ⋅ (𝑢V) .

(23)

Here and in the sequel, for the notational simplicity, we still
denote the reformulated variables by (V, 𝑢).

To prove the global existence of a solution to (22),
we will combine the local existence result together with a
priori estimates. To begin with, we state the following local
existence, the proof of which can be found in [4, 36–38].

Proposition 5 (local existence). Assume that (V
0
, 𝑢
0
) ∈

𝐻
2
(R3). Then, there exists a sufficiently small positive constant

𝑡
0
depending only on ‖(V

0
, 𝑢
0
)‖
2
such that the Cauchy problem

(22) admits a unique solution (V, 𝑢)(𝑥, 𝑡) ∈ 𝐶([0, 𝑡
0
],𝐻
2
(R3))

satisfying

sup
𝑡∈[0,𝑡0]

‖(V, 𝑢) (⋅, 𝑡)‖2 ≤ 2
(V0, 𝑢0)

2
. (24)

Proposition6 (a priori estimate). Let∇×V
0
= 0 and (V

0
, 𝑢
0
) ∈

𝐻
2
(R3). Assume that the Cauchy problem (22) has a solution

(V, 𝑢)(𝑥, 𝑡) on R3 × [0, 𝑇] for some 𝑇 > 0 in the same function
class as in Proposition 5. Then, there exist a small constant 𝛿 >

0 and a constant 𝐶
3
, which are independent of T, such that if

sup
0≤𝑡≤𝑇

‖(V, 𝑢) (𝑡)‖2 ≤ 𝛿, (25)

then for any 𝑡 ∈ [0, 𝑇], it holds that

‖(V, 𝑢) (𝑡)‖2
2
+ ∫

𝑡

0

(‖∇V (𝜏)‖2
1
+ ‖∇𝑢 (𝜏)‖

2

2
) 𝑑𝜏

≤ 𝐶
3

(V0, 𝑢0 − 𝑢)


2

2
.

(26)

Moreover, if, in addition, ‖(V
0
, 𝑢
0
)‖
𝐿
1 is bounded, then there is

a positive constant 𝐶
4
independent of 𝑇 such that for any 𝑡 ∈

[0, 𝑇], the solution (V, 𝑢) has the following decay properties:

‖∇ (V, 𝑢) (𝑡)‖
1
≤ 𝐶
4
(1 + 𝑡)

−5/4
, (27)

‖(V, 𝑢) (𝑡)‖𝐿∞ ≤ 𝐶
4
(1 + 𝑡)

−5/4
, (28)

‖(V, 𝑢) (𝑡)‖𝐿𝑞 ≤ 𝐶
4
(1 + 𝑡)

(−3/2)(1−1/𝑞)
, 2 ≤ 𝑞 ≤ 6, (29)


𝜕
𝑡
(V, 𝑢) (𝑡) ≤ 𝐶

4
(1 + 𝑡)

−5/4
. (30)

Theorem 1 follows from Propositions 5 and 6 and stan-
dard continuity arguments. The proof of Proposition 6 will
be given in Sections 4 and 5.

3. Linear Decay Estimates

In this section, we consider the Cauchy problem for the
linearized equations corresponding to (22)

1
-(22)
2
:

V
𝑡
− 𝜆
1
∇𝑢 = 0,

𝑢
𝑡
− 𝜆
1
∇ ⋅ V − 𝐷Δ𝑢 = 0,

(V, 𝑢) (𝑥, 0) = (V
0
, 𝑢
0
) (𝑥) → (0, 0) as |𝑥| → ∞.

(31)

The solutions (V, 𝑢) of the linear system (31) can be expressed
as

(V, 𝑢)𝑡 (𝑡) = 𝐺 (𝑡) ∗ (V
0
, 𝑢
0
)
𝑡

, 𝑡 ≥ 0. (32)

Here, 𝐺(𝑡) := 𝐺(𝑥, 𝑡) is the Green’s matrix for the system (31).
To derive the large time behavior of the solutions, we first

give an explicit expression for the Fourier transform 𝐺(𝜉, 𝑡)

of Green’s matrix 𝐺(𝑥, 𝑡).
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Lemma 7. The Fourier transform 𝐺 of Green’s matrix for the
linear system (31) is given by

𝐺 (𝜉, 𝑡) =

[
[
[
[

[

(
𝜆
+
𝑒
𝜆
−
𝑡
− 𝜆
−
𝑒
𝜆
+
𝑡

𝜆
+
− 𝜆
−

) 𝐼 𝑖𝜆
1
(
𝑒
𝜆
+
𝑡
− 𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

)𝜉
𝑡

𝑖𝜆
1
(
𝑒
𝜆
+
𝑡
− 𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

)𝜉
𝜆
+
𝑒
𝜆
+
𝑡
− 𝜆
−
𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

]
]
]
]

]

,

(33)

where

𝜆
±
(
𝜉
) = −

𝐷

2

𝜉


2

±
1

2

√𝐷
2𝜉



4

− 4𝜆
2

1

𝜉


2

. (34)

The representation above holds for |𝜉| ̸= ± 2𝜆
1
/𝐷.

Proof. The proof is in spirit of Hoff and Zumbrun [39, 40].
Applying the Fourier transform to the system (31), we have

V̂
𝑡
= 𝑖𝜆
1
𝜉�̂�, (35)

�̂�
𝑡
= −𝐷

𝜉


2

�̂� + 𝑖𝜆
1
𝜉 ⋅ V̂. (36)

From (35)-(36), we obtain the following initial value problem
for �̂�(𝜉, 𝑡):

�̂�
𝑡𝑡
+ 𝐷

𝜉


2

�̂�
𝑡
+ 𝜆
2

1

𝜉


2

�̂� = 0,

�̂� (𝜉, 0) = �̂�
0
(𝜉) ,

�̂�
𝑡
(𝜉, 0) = −𝐷

𝜉


2

�̂�
0
(𝜉) + 𝑖𝜆

1
𝜉 ⋅ V̂
0
(𝜉) .

(37)

The 𝜆
±
(𝜉) defined in (34) are exactly the eigenvalues of the

ODE (37); hence for 𝜆
+

̸= 𝜆
−
,

�̂� (𝜉, 𝑡) = 𝐴 (𝜉) 𝑒
𝜆
−
(𝜉)𝑡

+ 𝐵 (𝜉) 𝑒
𝜆
+
(𝜉)𝑡

. (38)

The initial conditions in (37) give

𝐴 =
−𝜆
−
�̂�
0
− 𝑖𝜆
1
𝜉 ⋅ V̂
0

𝜆
+
− 𝜆
−

, 𝐵 =
𝜆
+
�̂�
0
+ 𝑖𝜆
1
𝜉 ⋅ V̂
0

𝜆
+
− 𝜆
−

. (39)

Substituting (39) into (38), by a straightforward computation,
we obtain

�̂� (𝜉, 𝑡) =
𝜆
+
𝑒
𝜆
+
𝑡
− 𝜆
−
𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

�̂�
0
+ 𝑖𝜆
1
(
𝑒
𝜆
+
𝑡
− 𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

)𝜉 ⋅ V̂
0
.

(40)

To compute V̂, we substitute (40) into (35) to obtain

V̂ (𝜉, 𝑡) =
𝜆
+
𝑒
𝜆
−
𝑡
− 𝜆
−
𝑒
𝜆
+
𝑡

𝜆
+
− 𝜆
−

V̂
0
+ 𝑖𝜆
1
(
𝑒
𝜆
+
𝑡
− 𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

)𝜉�̂�
0
. (41)

Hence, (40)-(41) give (33) and the proof of Lemma 7 is
completed.

To derive the long-time decay rate of solutions in 𝐿
2-

framework, we need to verify the approximation of Green’s
function𝐺(𝜉, 𝑡) for both lower frequency and high frequency.

In terms of the definition of the eigenvalues (34), we are able
to obtain that it holds for |𝜉| ≪ 1 that

𝑒
𝜆
+
𝑡
− 𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

∼
sin (𝑏𝑡)

𝑏
𝑒
(−𝐷/2)|𝜉|

2
𝑡
,

𝜉
 ≪ 1,

𝜆
+
𝑒
𝜆
+
𝑡
− 𝜆
−
𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

∼ [cos (𝑏𝑡) + 𝐷

2

sin (𝑏𝑡)

𝑏

𝜉


2

] 𝑒
(−𝐷/2)|𝜉|

2
𝑡
,

𝜉
 ≪ 1,

𝜆
+
𝑒
𝜆
−
𝑡
− 𝜆
−
𝑒
𝜆
+
𝑡

𝜆
+
− 𝜆
−

∼ [cos (𝑏𝑡) − 𝐷

2

sin (𝑏𝑡)

𝑏

𝜉


2

] 𝑒
(−𝐷/2)|𝜉|

2
𝑡
,

𝜉
 ≪ 1,

(42)

where

𝑏 =
1

2

√4𝜆
2

1

𝜉


2

− 𝐷
2𝜉



4

∼ 𝑂 (
𝜉
) ,

𝜉
 ≪ 1. (43)

Next, we deal with the high frequency |𝜉| ≫ 1. From
the definitions of the eigenvalues (34), we can analyze the
eigenvalues for |𝜉| ≫ 1. Indeed, we have the leading orders
of the eigenvalues for |𝜉| ≫ 1 as

𝜆
+
∼ −

𝜆
2

1

𝐷
+ 𝑂(

𝜉


−1

) ,

𝜆
−
∼ −𝐷

𝜉


2

+
𝜆
2

1

𝐷
+ 𝑂(

𝜉


−1

) .

(44)

This approximation gives the leading order terms of the
elements of Green’s function as follows:

𝑒
𝜆
+
𝑡
− 𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

=
1

𝜆
+
− 𝜆
−

𝑒
𝜆
+
𝑡

× [1 − 𝑒
(𝜆
−
−𝜆
+
)𝑡
] ∼ 𝑂 (1) 𝑒

−𝜗𝑡
,

𝜉
 ≥ 𝑅,

𝜆
+
𝑒
𝜆
+
𝑡
− 𝜆
−
𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

=
𝜆
+

𝜆
+
− 𝜆
−

𝑒
𝜆
+
𝑡
[1 − 𝑒

(𝜆
−
−𝜆
+
)𝑡
]

+ 𝑒
𝜆
−
𝑡
∼ 𝑂 (1) 𝑒

−𝜗𝑡
,

𝜉
 ≥ 𝑅,

𝜆
+
𝑒
𝜆
−
𝑡
− 𝜆
−
𝑒
𝜆
+
𝑡

𝜆
+
− 𝜆
−

=
1

2
𝑒
𝜆
+
𝑡
[1 + 𝑒

(𝜆
−
−𝜆
+
)𝑡
] +

𝐷
𝜉


2

𝜆
+
− 𝜆
−

𝑒
𝜆
+
𝑡

× [1 − 𝑒
(𝜆
−
−𝜆
+
)𝑡
] ∼ 𝑂 (1) 𝑒

−𝜗𝑡
,

𝜉
 ≥ 𝑅,

(45)

where 𝜗 and 𝑅 are some positive constants.
With the help of the formula (33) for the Fourier trans-

form 𝐺 of Green’s matrix and the asymptotical analysis on
its elements, we are able to establish the 𝐿

2 time decay rate.
Indeed, we have the 𝐿2 time decay rate of the global solution
to the Cauchy problem for the linear problem (31) as follows.
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Lemma 8. Assume that (V, 𝑢) is the solution of the linear
problem (31) with the initial data (V

0
, 𝑢
0
) ∈ 𝐻

2
(R3) ∩ 𝐿

1
(R3);

then


∇
𝑘
(V, 𝑢) (𝑡)


≤ 𝐶(1 + 𝑡)

−3/4−𝑘/2

× (
(V0, 𝑢0)

𝐿1
+

∇
𝑘
(V
0
, 𝑢
0
)

) ,

(46)

for 0 ≤ 𝑘 ≤ 2.

Proof. From (33), (42), and (45), we have

V̂ (𝜉, 𝑡) =
𝜆
+
𝑒
𝜆
−
𝑡
− 𝜆
−
𝑒
𝜆
+
𝑡

𝜆
+
− 𝜆
−

V̂
0
+ 𝑖𝜆
1
(
𝑒
𝜆
+
𝑡
− 𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

)𝜉�̂�
0

∼ {
𝑂 (1) 𝑒

−(𝐷/2)|𝜉|
2
𝑡
(
V̂0

 +
�̂�0

) ,
𝜉
 ≪ 1,

𝑂 (1) 𝑒
−𝜗𝑡

(
V̂0

 +
�̂�0

) ,
𝜉
 ≫ 1,

(47)

with 𝜗 > 0 being a constant here and below, and

�̂� (𝜉, 𝑡) =
𝜆
+
𝑒
𝜆
+
𝑡
− 𝜆
−
𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

�̂�
0
+ 𝑖𝜆
1
(
𝑒
𝜆
+
𝑡
− 𝑒
𝜆
−
𝑡

𝜆
+
− 𝜆
−

)𝜉 ⋅ V̂
0

∼ {
𝑂 (1) 𝑒

−(𝐷/2)|𝜉|
2
𝑡
(
V̂0

 +
�̂�0

) ,
𝜉
 ≪ 1,

𝑂 (1) 𝑒
−𝜗𝑡

(
V̂0

 +
�̂�0

) ,
𝜉
 ≫ 1,

(48)

where here and below 𝑅 > 0 denotes a small but fixed
constant.

Therefore, to prove (46), we only need to deal with the
case for V since the case for 𝑢 can be proved similarly. By
virtue of the pointwise estimate (47), the Parseval theorem,
and Hausdorff-Young’s inequality, for 0 ≤ 𝑘 ≤ 3, we have


∇
𝑘V (𝑡)



2

= ∫

|𝜉|≤𝑅

𝜉


2𝑘V̂ (𝜉, 𝑡)


2

𝑑𝜉

+ ∫

|𝜉|≥𝑅

𝜉


2𝑘V̂ (𝜉, 𝑡)


2

𝑑𝜉

≤ 𝐶∫

|𝜉|≤𝑅

𝑒
−𝐷|𝜉|

2
𝑡𝜉



2𝑘

(
V̂0 (𝜉)



2

+
�̂�0 (𝜉)



2

) 𝑑𝜉

+ 𝐶∫

|𝜉|≥𝑅

𝑒
−𝜗𝑡𝜉



2𝑘

(
V̂0 (𝜉)



2

+
�̂�0 (𝜉)



2

) 𝑑𝜉

≤ 𝐶(1 + 𝑡)
−3/2−𝑘(V̂0, �̂�0)



2

𝐿
∞

+ 𝐶𝑒
−𝜗𝑡

∇
𝑘
(V
0
, 𝑢
0
)


2

≤ 𝐶(1 + 𝑡)
−3/2−𝑘

(
(V0, 𝑢0)



2

𝐿
1 +


∇
𝑘
(V
0
, 𝑢
0
)


2

) .

(49)

Thus, (49) gives (46) immediately, and the proof of Lemma 8
is completed.

4. A Priori Estimates

Throughout this section and the next section, we assume that
all conditions of Proposition 6 are satisfied. Moreover, we
make a priori assumption:

sup
0≤𝑡≤𝑇

‖(V, 𝑢) (𝑡)‖2 ≤ 𝛿, (50)

where 𝛿 is a sufficiently small positive constant.
In the following, a series of lemmas on the energy

estimates are given. Firstly, we will obtain the lower-order
energy estimate for (V, 𝑢) in the following lemma.

Lemma 9. There exists a positive constant 𝐷
1
, which is

sufficiently large and independent of 𝛿, such that

𝑑

𝑑𝑡
(𝐷
1‖(V, 𝑢) (𝑡)‖

2
+ ⟨∇𝑢, V⟩ (𝑡)) + 𝐶‖∇ (V, 𝑢) (𝑡)‖2

≤ 𝐶

∇
2
𝑢 (𝑡)



2

,

(51)

for any 0 ≤ 𝑡 ≤ 𝑇.

Proof. Multiplying (22)
1
-(22)
2
by V, 𝑢, respectively, then sum-

ming up and integrating the resultant equation, we obtain

1

2

𝑑

𝑑𝑡
‖(V, 𝑢)‖2 + 𝐷‖∇𝑢‖

2
= ⟨V, 𝐹

1
⟩ + ⟨𝑢, 𝐹

2
⟩ . (52)

Applying mean value theorem, Hölder’s inequality, and
Sobolev’s inequality, it is clear that the two terms on the right-
hand side of (52) can be estimated as follows:

⟨V, 𝐹1⟩
 +

⟨𝑢, 𝐹2⟩
 ≤ 𝐶∫

R3
|V𝑢∇𝑢| 𝑑𝑥

≤ 𝐶‖V‖𝐿3‖𝑢‖𝐿6 ‖∇𝑢‖

≤ 𝐶‖V‖1‖∇𝑢‖
2

≤ 𝐶𝛿‖∇𝑢‖
2
.

(53)

Combining (52) with (53) and using the fact that 𝛿 is
sufficiently small, we have

𝑑

𝑑𝑡
‖(V, 𝑢)‖2 + 𝐶‖∇𝑢‖

2
≤ 0. (54)

Next, we will estimate ‖∇V‖2. Multiplying (22)
2
by ∇ ⋅ V

and integrating the resulting equation over R3, we have

𝜆
1‖∇ ⋅ V‖2 = ⟨𝑢

𝑡
, ∇ ⋅ V⟩ + ⟨−𝐷Δ𝑢, ∇ ⋅ V⟩ + ⟨𝐹

2
, ∇ ⋅ V⟩ ,

(55)

where from (22)
1
, the first term on the right-hand side can be

written as

⟨𝑢
𝑡
, ∇ ⋅ V⟩ =

𝑑

𝑑𝑡
⟨𝑢, ∇ ⋅ V⟩ − ⟨𝑢, ∇ ⋅ V

𝑡
⟩

= −
𝑑

𝑑𝑡
⟨∇𝑢, V⟩ + ⟨∇𝑢, V

𝑡
⟩

= −
𝑑

𝑑𝑡
⟨∇𝑢, V⟩ + ⟨∇𝑢, 𝜆

1
∇𝑢 + 𝐹

1
⟩ .

(56)
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Then, it follows from (55)-(56), (23), Hölder’s inequality, and
Young’s inequality that

𝜆
1‖∇ ⋅ V‖2 +

𝑑

𝑑𝑡
⟨∇𝑢, V⟩

= ⟨∇𝑢, 𝜆
1
∇𝑢 + 𝐹

1
⟩ + ⟨−𝐷Δ𝑢, ∇ ⋅ V⟩ + ⟨𝐹

2
, ∇ ⋅ V⟩

≤ 𝐶

∇
2
𝑢


2

+
𝜆
1

4
‖∇ ⋅ V‖2 + 𝐶𝛿‖∇ ⋅ V‖2 + 𝐶‖∇𝑢‖

2
.

(57)

This together with the fact that 𝛿 is sufficiently small implies
that

𝑑

𝑑𝑡
⟨∇𝑢, V⟩ +

𝜆
1

2
‖∇ ⋅ V‖2 ≤ 𝐶(‖∇𝑢‖

2
+

∇
2
𝑢


2

) . (58)

Taking the curl for (22)
1
and noting that ∇ × V

0
= 0, we have

∇ × V = 0. (59)

Since ΔV = ∇(∇ ⋅ V) − ∇ × (∇ × V), we have from (59) that

ΔV = ∇ (∇ ⋅ V) , ‖∇V‖ ≤ 𝐶 ‖∇ ⋅ V‖ . (60)

Combining (58) with (60) yields

𝑑

𝑑𝑡
⟨∇𝑢, V⟩ + 𝐶‖∇V‖2 ≤ 𝐶(‖∇𝑢‖

2
+

∇
2
𝑢


2

) . (61)

Finally, multiplying (54) by𝐷
1
which is suitably large and

adding it to (61), one has (51) since 𝛿 > 0 is sufficiently small.
This completes the proof of Lemma 9.

The following lemma is concerned with the higher-order
energy estimate on (V, 𝑢).

Lemma 10. There exists a positive constant 𝐷
2
, which is

sufficiently large and independent of 𝛿, such that

𝑑

𝑑𝑡
(𝐷
2‖∇ (V, 𝑢) (𝑡)‖2

1
+ ⟨Δ𝑢, ∇ ⋅ V⟩ (𝑡))

+ 𝐶 (

∇
2V (𝑡)



2

+ ‖ ∇
2
𝑢 (𝑡) ‖

2

1
)

≤ 𝐶𝛿‖∇ (V, 𝑢) (𝑡)‖2,

(62)

for any 0 ≤ 𝑡 ≤ 𝑇.

Proof. Applying ∇ to (22)
1
-(22)
2
and multiplying them by

∇V, ∇𝑢, respectively, and then integrating them over R3, we
obtain

1

2

𝑑

𝑑𝑡
‖∇ (V, 𝑢)‖2 + 𝐷


∇
2
𝑢


2

= ⟨∇V, ∇𝐹
1
⟩ + ⟨∇𝑢, ∇𝐹

2
⟩ := 𝐽
1
+ 𝐽
2
.

(63)

Next, we estimate the terms 𝐽
1
and 𝐽

2
one by one. To

begin with, by using (23), (50), Hölder’s inequality, Cauchy’s

inequality, and Sobolev’s inequality, we can estimate the term
𝐽
1
as follows:

𝐽
1
≤ 𝐶 (‖∇𝑢‖ ‖∇𝑢‖𝐿6‖∇V‖𝐿3 + ‖𝑢‖𝐿∞


∇
2
𝑢

‖∇V‖)

≤ 𝐶 ‖∇𝑢‖

∇
2
𝑢

‖∇V‖
1
+ ‖𝑢‖2


∇
2
𝑢

‖∇V‖

≤ 𝐶𝛿 (

∇
2
𝑢


2

+ ‖∇ (V, 𝑢)‖2) .

(64)

Using similar arguments, we also have the following estimate
for the term 𝐽

2
:

𝐽
2
≤ 𝐶𝛿 (


∇
2
𝑢


2

+ ‖∇ (V, 𝑢)‖2) . (65)

Substituting (64) and (65) into (63) and noting that 𝛿 is
sufficiently small, we have

𝑑

𝑑𝑡
‖∇ (V, 𝑢)‖2 + 𝐶


∇
2
𝑢


2

≤ 𝐶𝛿‖∇ (V, 𝑢)‖2. (66)

For higher-order derivatives of (V, 𝑢), we can apply the similar
arguments used in obtaining (66) to get

𝑑

𝑑𝑡


∇
2
(V, 𝑢)



2

+ 𝐶

∇
3
𝑢


2

≤ 𝐶𝛿

∇
2
(V, 𝑢)



2

. (67)

Combining (66) and (67) and using the fact that 𝛿 is
sufficiently small, we have

𝑑

𝑑𝑡
‖∇ (V, 𝑢)‖2

1
+ 𝐶


∇
2
𝑢


2

1
≤ 𝐶𝛿 (‖∇ (V, 𝑢)‖2 +


∇
2V


2

) .

(68)

Next, we estimate ‖∇
2V‖
2. To begin with, applying ∇ to

(22)
2
and thenmultiplying by∇(∇⋅V), we have fromCauchy’s

inequality that

𝜆
1

2
‖∇ (∇ ⋅ V)‖2 ≤ ⟨∇𝑢

𝑡
, ∇ (∇ ⋅ V)⟩ + 𝐶


∇
3
𝑢


2

+ 𝐶
∇𝐹2



2

.

(69)

By integrating by parts several times, we estimate the first
term on the right-hand side of (69) as follows:

⟨∇𝑢
𝑡
, ∇ (∇ ⋅ V)⟩ = −

𝑑

𝑑𝑡
⟨Δ𝑢, ∇ ⋅ V⟩ + ⟨Δ𝑢, ∇ ⋅ V

𝑡
⟩

= −
𝑑

𝑑𝑡
⟨Δ𝑢, ∇ ⋅ V⟩ + ⟨Δ𝑢, 𝜆

1
Δ𝑢 + ∇ ⋅ 𝐹

1
⟩

≤ −
𝑑

𝑑𝑡
⟨Δ𝑢, ∇ ⋅ V⟩ + 𝐶


∇
2
𝑢


2

.

(70)

From (23), (50), Hölder’s inequality, Cauchy’s inequality, and
Sobolev’s inequality, we have

∇𝐹2
 ≤ 𝐶 {‖∇V‖

𝐿
3‖∇𝑢‖𝐿6 + ‖V‖𝐿∞


∇
2
𝑢


+‖𝑢‖𝐿∞

∇
2V

}

≤ 𝐶𝛿

∇
2
(V, 𝑢)


.

(71)
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Substituting (70) and (71) into (69) yields

𝑑

𝑑𝑡
⟨Δ𝑢, ∇ ⋅ V⟩ (𝑡) + 𝐶‖∇ (∇ ⋅ V)‖2

≤ 𝐶(

∇
2
𝑢


2

1
+ 𝛿


∇
2V


2

) .

(72)

Due to (60), we have

∇
2V


2

≤ 𝐶‖∇ (∇ ⋅ V)‖2. (73)

Substituting (73) into (72) and using the fact that 𝛿 is
sufficiently small, we obtain

𝑑

𝑑𝑡
⟨Δ𝑢, ∇ ⋅ V⟩ (𝑡) + 𝐶


∇
2V


2

≤ 𝐶

∇
2
𝑢


2

1
. (74)

Finally, since 𝛿 is sufficiently small, multiplying (68) by a
suitably large positive constant 𝐷

2
and adding it to (74) give

(62), and this completes the proof of Lemma 10.

5. Global Existence and Convergence Rate

In this section, we devote ourselves to prove Proposition 6. To
begin with, we give the following lemma which is concerned
with the a priori decay-in-time estimates on (V, 𝑢).

Lemma 11. Let 𝐾
0
= ‖(V
0
, 𝑢
0
)‖
𝐻
2
∩𝐿
1 , then

‖∇ (V, 𝑢) (𝑡)‖ ≤ 𝐶𝐾
0
(1 + 𝑡)

−5/4

+ 𝐶𝛿∫

𝑡

0

(1 + 𝑡 − 𝜏)
−5/4

‖∇ (V, 𝑢) (𝜏)‖1𝑑𝜏,

(75)

for any 0 ≤ 𝑡 ≤ 𝑇.

Proof. From Duhamel’s principle and Lemma 8, we have

‖∇ (V, 𝑢) (𝑡)‖ ≤ 𝐶𝐾
0
(1 + 𝑡)

−5/4

+ 𝐶𝛿∫

𝑡

0

(1 + 𝑡 − 𝜏)
−5/4

×
(𝐹1, 𝐹2) (𝜏)

𝐻1∩𝐿1
𝑑𝜏.

(76)

From (23), (50), Hölder’s inequality, and Sobolev’s inequality,
we have

(𝐹1, 𝐹2) (𝑡)
𝐻1∩𝐿1

≤ 𝐶𝛿‖∇ (V, 𝑢) (𝑡)‖
1
. (77)

Therefore, (75) follows from (76) and (77) immediately, and
this completes the proof of Lemma 11.

Now, we are in position to prove Proposition 6.

5.1. Proof of Proposition 6. We will do it in two steps.

Step 1. Since 𝛿 > 0 is suitably small, from Lemmas 9 and 10,
we can choose a suitably large positive constant𝐷

3
such that

𝑑

𝑑𝑡
(𝐷
3‖(V, 𝑢) (𝑡)‖

2

2
+ ⟨∇𝑢, ∇ ⋅ V⟩ + ⟨Δ𝑢, ∇ ⋅ V⟩)

+ 𝐶 (‖∇V (𝑡)‖2
2
+ ‖∇𝑢 (𝑡)‖

2

2
) ≤ 0,

(78)

for any 0 ≤ 𝑡 ≤ 𝑇. Notice that the expression under 𝑑/𝑑𝑡

in (78) is equivalent to ‖(V, 𝑢)(𝑡)‖2
2
. Hence, by integrating (78)

directly in time, we obtain (26).

Step 2. Define the temporal energy functional

E (𝑡) = 𝐷
2‖∇ (V, 𝑢) (𝑡)‖2

1
+ ⟨Δ𝑢, ∇ ⋅ V⟩ (𝑡) , (79)

for any 0 ≤ 𝑡 ≤ 𝑇, where it should be mentioned that E(𝑡) is
equivalent to ‖∇(V, 𝑢)‖2

1
since𝐷

2
is sufficiently large.

By virtue of Lemma 10, we have

𝑑E (𝑡)

𝑑𝑡
+ 𝐶


∇
2
(V, 𝑢) (𝑡)



2

≤ 𝐶𝛿‖∇ (V, 𝑢) (𝑡)‖2. (80)

Adding ‖∇(V, 𝑢)(𝑡)‖2 to both sides of (80) yields

𝑑E (𝑡)

𝑑𝑡
+ 𝐷
4
E (𝑡) ≤ 𝐶‖∇ (V, 𝑢) (𝑡)‖2, (81)

where 𝐷
4
is a positive constant independent of 𝛿. As [7, 17],

we define

G (𝑡) = sup
0≤𝜏≤𝑡

(1 + 𝜏)
5/2

E (𝜏) . (82)

Notice that

‖∇ (V, 𝑢) (𝜏)‖
1
≤ 𝐶√E (𝜏)

≤ 𝐶(1 + 𝜏)
−5/4

√G (𝑡), 0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑇.

(83)

Then, from (75) and (83), we have

‖∇ (V, 𝑢) (𝑡)‖

≤ 𝐶𝐾
0
(1 + 𝑡)

−5/4

+ ∫

𝑡

0

(1 + 𝑡 − 𝜏)
−5/4

(1 + 𝜏)
−5/4

√G (𝑡)𝑑𝜏

≤ 𝐶(1 + 𝑡)
−5/4

(𝐾
0
+ 𝛿√G (𝑡)) ,

(84)

which together with Gronwall’s inequality and (81) implies

E (𝑡) ≤ E (0) 𝑒
−𝐷
4
𝑡
+ 𝐶∫

𝑡

0

𝑒
−𝐷
4
(𝑡−𝜏)

‖∇ (V, 𝑢) (𝜏)‖2𝑑𝜏

≤ E (0) 𝑒
−𝐷
4
𝑡
+ 𝐶 (𝐾

2

0
+ 𝛿
2
G (𝑡))

× ∫

𝑡

0

𝑒
−𝐷
4
(𝑡−𝜏)

(1 + 𝜏)
−5/2

𝑑𝜏

≤ 𝐶(1 + 𝑡)
−5/2

(E (0) + 𝐾
2

0
+ 𝛿
2
G (𝑡)) .

(85)

Since G is nondecreasing, we have from (85) that

G (𝑡) ≤ 𝐶 (E (0) + 𝐾
2

0
+ 𝛿
2
G (𝑡)) , (86)

for any 0 ≤ 𝑡 ≤ 𝑇, which together with the fact that 𝛿 > 0 is
small enough implying that

G (𝑡) ≤ 𝐶 (E (0) + 𝐾
2

0
) ≤ 𝐶𝐾

2

0
. (87)
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Thus, (82) and (87) yield

‖∇ (V, 𝑢) (𝑡)‖
1
≤ 𝐶𝐾
0
(1 + 𝑡)

−5/4
, 0 ≤ 𝑡 ≤ 𝑇, (88)

which together with Sobolev’s inequality gives

‖(V, 𝑢) (𝑡)‖𝐿∞ ≤ 𝐶‖∇ (V, 𝑢) (𝑡)‖1

≤ 𝐶𝐾
0
(1 + 𝑡)

−5/4
, 0 ≤ 𝑡 ≤ 𝑇.

(89)

Therefore, we have proved (27) and (28).
Next, we turn to prove (29). To begin with, by using

Sobolev’s inequality and (27), we have

‖(V, 𝑢) (𝑡)‖𝐿6 ≤ 𝐶 ‖∇ (V, 𝑢) (𝑡)‖ ≤ 𝐶𝐾
0
(1 + 𝑡)

−5/4
. (90)

On the other hand, applying Duhamel’s principle and
Lemma 8 again, we have from (26) and (28) that

‖(V, 𝑢) (𝑡)‖ ≤ 𝐶𝐾
0
(1 + 𝑡)

−3/4

+ 𝐶∫

𝑡

0

(1 + 𝑡 − 𝜏)
−3/4(𝐹1, 𝐹2) (𝜏)

𝐿2∩𝐿1
𝑑𝜏

≤ 𝐶𝐾
0
(1 + 𝑡)

−3/4

+ 𝐶𝛿∫

𝑡

0

(1 + 𝑡 − 𝜏)
−3/4

‖∇ (V, 𝑢) (𝜏)‖
1
𝑑𝜏

≤ 𝐶𝐾
0
(1 + 𝑡)

−3/4

+ 𝐶𝐾
0
𝛿∫

𝑡

0

(1 + 𝑡 − 𝜏)
−3/4

(1 + 𝜏)
−5/4

𝑑𝜏

≤ 𝐶𝐾
0
(1 + 𝑡)

−3/4
,

(91)

for any 0 ≤ 𝑡 ≤ 𝑇.
Hence, by the interpolation, it holds that for any 2 ≤ 𝑞 ≤

6,

‖(V, 𝑢) (𝑡)‖𝐿𝑞 ≤ ‖(V, 𝑢) (𝑡)‖𝜃‖(V, 𝑢) (𝑡)‖1−𝜃
𝐿
6

≤ 𝐶
0
(1 + 𝑡)

(−3/2)(1−1/𝑞)
,

(92)

for any 0 ≤ 𝑡 ≤ 𝑇, where 𝜃 = (6−𝑞)/2𝑞.Thus, we have proved
(29).Therefore, (30) follows from (22)-(23) and (27)–(29) and
this completes the proof of Proposition 6.
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