
Hindawi Publishing Corporation
Clinical and Developmental Immunology
Volume 2013, Article ID 267971, 12 pages
http://dx.doi.org/10.1155/2013/267971

Review Article
IL-17A and Th17 Cells in Lung Inflammation: An Update on
the Role of Th17 Cell Differentiation and IL-17R Signaling in
Host Defense against Infection

Hsing-Chuan Tsai, Sharlene Velichko, Li-Yin Hung, and Reen Wu

Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA

Correspondence should be addressed to Reen Wu; rwu@ucdavis.edu

Received 16 March 2013; Accepted 27 June 2013

Academic Editor: Samuel Huber

Copyright © 2013 Hsing-Chuan Tsai et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The significance of Th17 cells and interleukin- (IL-)17A signaling in host defense and disease development has been demonstrated
in various infection and autoimmune models. Numerous studies have indicated that Th17 cells and its signature cytokine IL-17A
are critical to the airway’s immune response against various bacteria and fungal infection. Cytokines such as IL-23, which are
involved in Th17 differentiation, play a critical role in controlling Klebsiella pneumonia (K. pneumonia) infection. IL-17A acts on
nonimmune cells in infected tissues to strengthen innate immunity by inducing the expression of antimicrobial proteins, cytokines,
and chemokines. Mice deficient in IL-17 receptor (IL-17R) expression are susceptible to infection by various pathogens. In this
review, we summarize the recent advances in unraveling the mechanism behindTh17 cell differentiation, IL-17A/IL-17R signaling,
and also the importance of IL-17A in pulmonary infection.

1. Background and Overview of Th17 Cells
and IL-17A

CD4+ T cells are central mediators of cellular immunity.
For many years, CD4+ T cells were classified as either T
helper (Th)1 or Th2 cells by their effector cytokines and
functions [1, 2].Th1 cells, which express Interferon-𝛾 (IFN-𝛾),
are responsible for the control of cellular immune responses
and tissue inflammation, whereas Th2 cells, which express
IL-4, IL-5, and IL-13, are responsible for the regulation of
humoral immunity and allergic disease. The discovery of
Th17 cells revolutionized our concept of immunopathology
and immune regulation. Th17 cells produce proinflamma-
tory cytokines [3, 4] such as IL-17A, IL-17F, IL-22, IL-26,
tumor necrosis factor-𝛼 (TNF-𝛼), chemokine (C–C motif)
ligand 20 (CCL20) [5], and granulocyte macrophage colony-
stimulating factor (GM-CSF) [6]. Although these cytokines
all have proinflammatory features, they act on different
target cells and therefore contribute to different diseases
[7–9]. Th17 cells have been implicated in a wide variety
of inflammatory conditions, such as autoimmune diseases,
chronic inflammation, and pathogen infection [10].

The differentiation of naive T cells to Th17 cells is regu-
lated by multiple signals. The engagement of TCR receptors
(Signal 1) and costimulatory molecules (Signal 2) initiates
naive T cell differentiation, and then cytokines produced by
the innate immune system (Signal 3) direct the differentiation
to particular Th subsets. The proinflammatory cytokines
IL-1𝛽, IL-6, IL-21, and IL-23, and the anti-inflammatory
cytokine, transforming growth factor-𝛽 (TGF-𝛽), coordinate
to trigger Th17 cell differentiation in a RAR-related orphan
receptor-𝛾t (ROR𝛾t) dependent manner [11, 12].

IL-17A is the signature effector cytokine of Th17 cells
and contributes to Th17-mediated diseases. Although first
identified in CD4+ T cells, IL-17A can also be produced by
CD8+ T cells [13] and innate cells, such as 𝛾𝛿T cells [14,
15], NK1.1-iNKT cells [16], neutrophils [17], and also innate
lymphoid cells (ILCs) [18–20]. IL-17A appears to act primarily
on nonhematopoietic cells such as endothelial cells [21, 22],
epithelial cells [23–25], and fibroblasts [26, 27], due to the
restricted expression of one of its receptor subunits, IL-17RC
[28, 29]. Systemically, IL-17A and IL-17F have been reported
to play a pathogenic role in certain autoimmune diseases,
includingmultiple sclerosis and rheumatoid arthritis [30–32].
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However, its role at mucosal surfaces appears to be dualistic.
While high expression of IL-17A has been linked to inflam-
matory diseases of themucosal surface, such as asthma, cystic
fibrosis, and chronic obstructive pulmonary disease (COPD)
in the airway, as well as inflammatory bowel disease, it
appears to play an important protective role against infection,
particularly by extracellular bacterial pathogens [26, 33–
40]. Here, we will summarize recent studies on Th17 cell
differentiation as well as IL-17R signaling and highlight the
role of Th17/IL-17A in pulmonary infection. The roles of
innate IL-17A-producing cells in the pulmonary infectionwill
also be discussed.

2. Factors Involved in Th17 Cell Development

Although IL17A production by CD4+ T cells was first
described 20 years ago, Th17 cells were not recognized
as a distinct CD4+ cell lineage until 2005 [41, 42]. Th17
cell differentiation has primarily been characterized in the
murine system [4]. In mice, IL-6 and TGF-𝛽 initiate Th17
cell differentiation by activating STAT3 and inducing IL-
23R expression. IL-23 is then responsible for Th17 cell
maintenance and expansion [11, 43–45]. In addition, Th17
cells also secrete IL-21, an autocrine mechanism to sustain
and promote their own differentiation via a STAT3-mediated
manner [46, 47]. IL-1𝛽 was initially thought to play an
accessory role in mouse Th17 cell differentiation but recently
it has been demonstrated to play a critical role in the early
differentiation stages of mouseTh17 cells [48].

However, human Th17 cell differentiation is intrinsi-
cally different from murine Th17 because IL-23R is already
expressed on human naive T cells, prior to differentiation
[49]. IL-1𝛽 and IL-23 are sufficient to induce human Th17
cells from CD4+CD161+ cells derived from umbilical cord
blood [50], whereas the role of TGF-𝛽 has been controversial
[51, 52]. Recently, it has become clear that TGF-𝛽 plays
an auxiliary role in the suppression of Th1 and Th2 cells
[53]. TGF-𝛽 orchestrates with proinflammatory cytokines
to promote Th17 cell differentiation in a dosage-dependent
manner [54]. At low concentrations, TGF-𝛽 induces ROR𝛾t
expression and promotes the expression of ROR𝛾t-inducing
genes. However, at high concentrations, robust forkhead
box P3 (FOXP3) expression induced by TGF-𝛽 suppresses
Th17 cell differentiation by antagonizing ROR𝛾t function
[55]. In our laboratory, we also found that human naive T
cells responded differentially to the concentration of TGF-𝛽,
depending on the individual donor (Tsai, HC, unpublished
data).

Through cytokine signaling or environmental factors,
multiple transcription factors (TFs) are induced to driveTh17
differentiation [56], such as STAT3, Runt-related transcrip-
tion factor 1 (Runx1) [57], ROR𝛼, ROR𝛾t, aryl hydrocarbon
receptor (AHR), interferon regulatory factor 4 (IRF4), and
basic leucine zipper transcription factor (BATF) [58]. These
TFs not only regulate IL-17A expression but the expression
of other Th17-associated genes as well. The expression of
Th17-signature cytokines, such as IL-17A, IL-17F, and IL-22, is
differentially regulated by Th17-lineage transcription factors.

ROR𝛾t is the “master regulator” for Th17 differentiation and
also directly binds to cis-regulatory elements of the IL17A/F
gene [59, 60]. AHR responds to a physiological ligand, trypto-
phan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ),
to promote both IL17A and IL22 expression [61]. The expres-
sion of IL17A and IL22 is differentially regulated by TGF-
𝛽. IRF4 regulates not only IL17A expression [62, 63] but
also Th2 cytokine expression [64]. Thus, IRF4 may regulate
Th2 and Th17 differentiation by interacting with different
transcription factors. The STAT family also plays a vital role
inTh17 differentiation. STAT3 is activated byTh17 promoting
cytokines (IL-6, IL-21, and IL-23) and directly binds to the
promoter of the Il17a-Il17f locus, as well as the Il21 gene
[45]. On the other hand, other Stat molecules, including
Stat1, activated by IL-27 [65, 66], and Stat5a/b, activated
by IL-2 [67], play inhibitory roles in Th17 differentiation.
Recently, the reciprocal action of STAT3 and STAT5 on the
Il17a loci has been reported [68]. STAT3 and STAT5 have
been demonstrated to compete for the same binding sites of
the Il17a-Il17f locus [68]. The relative ratio of STAT3/STAT5
affects the intensity of IL-17A and IL-17F expression in Th17
cell differentiation [68].

The differential regulation of Th17 cytokines also reflects
their different roles in physiological conditions and disease
pathogenesis [7, 69]. For instance, Yang and colleagues [8]
suggested that IL-17A was required to induce EAE, whereas
IL-17F was required to induce airway neutrophilia in allergic
airway animalmodels. Additionally, it was demonstrated that
IL-22 but not IL-17A was required to protect mice from
Citrobacter rodentium infection [70].

The understanding of Th17 cell differentiation has been
applied to the development of therapies targeted to Th17-
mediated autoimmune diseases [71]. Synthetic or natural
forms of ROR𝛾t inverse agonists have been studied to sup-
press IL-17A expression. SR1001, one of the inverse agonists,
was shown to be efficacious in the experimental autoimmune
encephalomyelitis (EAE)model in rodents [72].The compre-
hensive regulation of different Th17-related gene expression
urgently needs to be studied for the development of more
specific therapy in diseases.

3. IL17 Family and Their Receptors

Interleukin-17A was first identified in activated rodent T
lymphomas, termed CTLA-8, and subsequently identified in
humans in 1995 [73, 74]. At the time, it was noted that IL-
17A had a unique structure among the interleukin cytokines.
Five related cytokines were subsequently discovered through
genome database searches and degenerative RT-PCR tech-
niques [75]. The IL-17A cytokine family members (IL-17A,
IL-17B, IL-17C, IL-17D, IL17E/IL-25, and IL-17F) share 20–
50% homology at the amino acid level [76]. IL-17F is the
most closely related member to IL-17A, and the IL-17F
gene is located in the same chromosomal region as Il17a in
humans (6p12). The resultant protein is approximately 44%
homologous to the IL-17A protein and forms as homodimers
and heterodimers with IL-17A, and binds a shared receptor
heterodimer, IL-17RA/IL-17RC [28, 77–81]. IL-25 is the most
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distantly related member of the IL-17 family, with only 20%
homology to the IL-17Aprotein. IL-25 also binds to a different
receptor heterodimer, IL-17RA/IL-17RB [82]. IL-17B, IL-17C,
and IL-17D are less well characterized. IL-17B and IL-17C
were reported to be associated with TNF-𝛼 production and
inflammatory arthritis [83]. In recent studies, IL-17Chas been
demonstrated to bind to IL-17RA/RE and has similar biolog-
ical functions to IL-17A [84–86]. Similar to IL-17A, Act1 acti-
vation is required for these IL-17C-induced responses [84].
In an EAE model, IL-17C deficient mice exhibited less severe
disease; this phenomenon demonstrates the pathogenic role
of IL-17C in EAE. IL-17C also promoted Th17 responses
via IL-17RE signaling in an EAE model [84]. IL-17C was
reported to induce the expression of cytokines, chemokines,
and antimicrobial peptides by epithelial cells. Overall, IL-17C
is important in host defenses against pathogens [85, 86]. IL-
17D is preferentially expressed by the nonimmune cells that
compose skeletal muscle, adipose and lung tissue. It induces
IL-6, IL-8, and GM-CSF expression in endothelial cells
and suppresses hematopoiesis [87]. Since Th17 cells express
only IL-17A and IL-17F, we will highlight their roles and
what is known regarding IL-17R signaling in the following
discussion.

3.1. IL-17R Signaling. The IL-17R family is composed of five
receptors (IL-17RA-IL-17RE) and the ligand-receptor pairing
is not completely understood for all members. Extensive
biochemical studies have been executed to characterize IL-
17 binding to its receptors [88]. Briefly, IL-17A and IL-17F can
form homodimers or heterodimers (IL-17A/A, IL-17A/F, IL-
17F/F) to bind to a heteromeric receptor complex composed
of IL-17RA and IL-17RC. Surface plasmon resonance (SPR)
studies revealed that the different dimers have different
affinities for the receptor subunits [28, 77, 89]. X-ray crys-
tallographic, fluorescence resonance energy transfer (FRET)
and SPR analyses suggest that IL-17RA homodimers are
preassembled as “inactive” receptors on the cell membrane in
the absence of ligand binding and that ligand binding shifts
the favorability towards the formation of an IL-17RA and IL-
17RC heterodimer [78, 79, 89].

In 2003, a bioinformatics approach was used to identify
a conserved domain present in IL-17RA and the other
IL-17 receptor family members, that was distantly related
to the TIR domain in Toll-like receptor (TLR) and IL-1
receptor (IL-1R) signaling [90]. Because of the similarity to
the TIR domain, this domain, termed the SEFIR (SEF/IL-
17R) domain, was proposed to belong to a superfamily with
the TIR domain, termed the STIR superfamily. In TLR
signaling, the TIR domain mediates the binding of adaptor
proteins such as MyD88 and Mal/TRAP to the receptor
via homotypic interactions between their respective TIR
domains [91, 92]. However, the SEFIR domain lacks the TIR
box 3 subdomain and the BB-loop [90], which are critical for
the protein-protein interaction of TLR signaling [93].MyD88
and Mal are not thought to be involved in IL-17 signaling.
Although lacking BB loop, a TIR-like loop (TILL) at the C-
terminal side of SEFIR domain in IL17RA, which sequence
is homologous to BB loop, may provide the surface for

protein-protein interaction [94, 95]. Another SEFIR-domain
containing protein, Act1 (also known as CIKS) was later
identified as an essential mediator of IL-17 signaling via its
interaction with IL-17R [28, 96]. The shRNA knockdown of
Act1 expression was shown to attenuate IL-17A signaling in
mouse embryonic fibroblasts (MEFs) [97]; likewise, Act1-null
mouse embryonic fibroblasts were shown to be unresponsive
to IL-17A stimulation [98]. The direct interaction of Act1 and
IL-17RA was demonstrated through coimmunoprecipitation
experiments and shown to be dependent on the SEFIR
domain [97, 98]. Act1 KO mice were shown to have reduced
EAE and DSS-colitis induced disease severity, similar to IL-
17A KO mice [98]. It was subsequently shown that Act1 can
also interact with IL-17RC, as well as IL-17RB, in a SEFIR
domain dependent manner [28, 96]. Act1 was also shown to
be an essential mediator of IL-25 signaling [96]. Now, it is
clear that the CC loop of the SEFIR domain is critical for the
SEFIR-SEFIR binding [99]. In addition to the SEFIR domain,
it has recently been shown that the C-terminal region beyond
the SEFIR domain, for both IL-17RA and IL-17RC, is also
necessary for the full activity of IL-17A [100].

Act 1 has a TNFR-associated-factor- (TRAF-) binding
domain at the amino terminus and a coiled-coil domain
containing the SEFIR domain at the carboxyl terminus.
TRAF3 and TRAF6 have both been shown to associate with
IL-17RA. TRAF6 associates indirectly with IL-17RA through
Act1 and, in most cases, positively mediates IL-17A signaling
[101]. Recently, TRAF3 has been shown to interact directly
with IL-17RA, via a TRAF-binding domain at the distal C-
terminus of the receptor’s intracellular domain, as well as with
the intracellular domain of IL-17RC [102]. Most intriguingly,
TRAF3 has been shown to inhibit IL-17A signaling and
IL-17 mediated EAE, the first demonstration of a negative
regulatory feedback mechanism for IL-17A. Although the
mechanism of this negative regulation is not completely clear,
it may in part be due to the fact that TRAF3 binding to
the distal domain of IL-17RA appears to interfere with Act1-
TRAF6 binding to the SEFIR domain of IL-17RA.

In addition, Act1 is also a U-box type E3 ubiquitin ligase
and it ubiquitinates TRAF6. The TRAF6 ubiquitination is
required for the IL-17A-induced activation of nuclear factor-
𝜅B (NF-𝜅B) [103]. The canonical NF-𝜅B pathway is the most
well-described downstream signaling pathway of IL-17A.
Indeed, IL-17A induces phosphorylation of p65 at Ser536; our
lab and others have demonstrated p65 and p50 translocation
into the nucleus following IL-17A stimulation [23, 104].
Mutation ofNF-𝜅Bbinding sites in the promoter region of the
IL-17A target gene, human beta defensin 4 (DEFB4), severely
attenuates promoter activation in response to IL-17A stimu-
lation in airway epithelial cells [105]. NF-𝜅B is also the major
pathway responsible for IL-17 induced early response genes
(<4 hours) [104]. However, NF-𝜅B cannot be the sole pathway
responsible for IL-17A’s effects. For example, in comparison to
“classical” NF-𝜅B activating cytokines such as TNF-𝛼 and IL-
1𝛽, activation of p65-p50 NF-𝜅B by IL-17A is relatively weak;
yet, induction of DEFB4 in airway epithelial cells by IL-17A is
much greater than either TNF-𝛼 or IL-1𝛽 [23]. It is plausible
that it is the synergistic induction of multiple transcription
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factors including NF-𝜅B, which is responsible for IL-17A’s
effects. Indeed, other transcription factors, such as AP-1 and
C/EBP𝛿 (CCAAT/enhancer binding protein 𝛿), have been
shown to be activated by IL-17A [94, 106]. In addition, all
threemitogen activated protein (MAP) kinase pathways, JNK
(JUN Ntermainal kinase), ERK (extracellular signal-related
kinase) and p38, have been described in the literature as being
activated by IL-17A [107]. The relative contribution of the
individual pathways appears to depend both on the cell type
being studied, as well as on the target gene being studied. In
airway epithelial cells specifically, our lab has demonstrated
that JAK1/2 and PI3-kinase, Act1/TRAF6/TAK1/NF-𝜅B, and
MEK1/2 (MAP kinase kinase1/2)-ERK are all involved in IL-
17 mediated gene expression, and that the pathway involved
varied depending on the target gene in question [23, 108–
110]. Other labs have shown the involvement in p38 in IL-17
mediated IL-6 and IL-8 gene expression by airway epithelial
cells as well [111, 112]. Act1 has been shown to be necessary
for IL-17A induced NF-𝜅B and C/EBP𝛿 activation, as well as
JNK andp38 activation [98]. Interestingly, IL-17 inducedERK
activation appears to be Act1 independent [98, 104].

IL-17A utilizes two different methods to increase target
gene expression. The first is by transcriptional activation;
we have previously demonstrated that this is the case for
DEFB4 and CCL20 induction by IL-17A in airway epithelial
cells using promoter-luciferase reporter assays [105, 109].
The second method of increasing gene expression is by
stabilization of the targetmRNAvia a tristetrapolin/AUUUA-
independent mechanism. This has been demonstrated in
HeLa cells for both IL-17A induced CXCL1 and NFIKBZ
expression [113–115]. The mRNA stabilization pathway
appears to be dependent on Act1, but independent of TRAF6,
the first demonstration of Act1-dependent, TRAF6-inde-
pendent IL-17 signaling.

More fine-tuned control of Act1 and IL-17R signaling
has been recently described. Act1 exists in multiple phos-
phorylated forms, which display different functions. In
2010, Act1 was found to be phosphorylated upon IL-17A
stimulation [116]. The inducible kinase IKKi (inducible
inhibitor of NF-𝜅B (I𝜅B) kinase; also known as IKK𝜀) forms
a complex with Act1 and IL-17R and catalyzes the phosphor-
ylation of Act1 at Ser311, adjacent to its putative TRAF-
bindingmotif [117].The phosphorylated form of Act1 appears
to have different affinities to various TRAF proteins. Muta-
tion of IKKi or substitution of S311A of Act1 abolished
Act1’s interaction with TRAF2 and TRAF5, but not TRAF6.
This phosphorylated form of Act1 has also been shown to
be important for IL17R-Act1-TRAF2/5-mediated mRNA
stability. Neither IKKi nor phosphorylation of Ser311 on Act1
is required for IL-17A-induced activation of NF-𝜅B. However,
IKKi is still responsible for the IL-17A-induced expression
of pro-inflammatory genes (Cxcl1, Cxcl2, Tnf, Il6, and Csf3),
resulting in neutrophilia and pulmonary inflammation. A
different story is found for other phosphorylated forms of
Act1. Three additional serines on human Act1 (Ser162 (not
phosphorylated by IKKi), Ser220, and Ser233) and mouse Act1
(Ser147, Ser209, and Ser222) are phosphorylated by IKKi and
TBK1 (TANK binding kinase 1, another IKK-related kinases)

[118]. TBK1 and IKKi play redundant roles in the phos-
phorylation of these three sites sites and act to suppress IL-
17A-induced activation of NF-𝜅B. In this study, the authors
reported that IL-17A-induced Act1 phosphorylation is
TRAF6-dependent and serves to suppress IL-17A-induced
gene production, such as ccl20, ccl3, cxcl2, and KC. Inter-
stingly, IKKi appears to regulate IL-17-induced Act1 phos-
phorylation at different sites via both TRAF6-dependent and
TRAF6-independent pathways. More research regarding
kinase-mediated Act1 phosphorylation and their specific
roles in IL-17A-induced inflammatory response is needed.

3.2. Beyond IL-17RA: IL17-RC and IL-17RD. IL-17RA serves
as the common receptor for IL-17 family members, in a
manner similar to that of gp130 in IL-6 family signaling. IL-
17RA is the most well-characterized IL-17R subunit because
of its critical role in IL-17 and IL-25 induced signaling.
However, in addition to IL-17RA, IL-17RC and IL-17RD have
also been shown to have distinct functions in IL-17-mediated
signaling.

IL-17RC was identified by a homology search of a
mammalian expressed sequence tag database and found
to share 22% sequence homology with IL-17RA [29, 119].
Unlike IL-17RA, IL-17RC has no obvious TILL structure
in its cytoplasmic domain; whether Act1, TRAF6, or other
signaling intermediates are recruited to IL-17RC are unclear
[88]. Although the CC loop, which is responsible for the
interaction of Act1/IL-17RA, is also conserved in IL-17RC
[99], no direct evidence supports the interaction of Act1 and
IL-17RC. Intriguingly, IL-17RA and IL-17RC have strikingly
distinct tissue expression patterns. In contrast to IL-17RA,
IL-17RC is preferentially expressed in nonimmune cells of
the prostate, liver, kidney, thyroid, joints, and lung [77, 119–
121]. In term of biological functions, IL-17RA and IL-17RC
have differential affinity to IL-17A and IL-17F [28, 77, 89]. In
humans, IL-17RA binds to IL-17F with extremely low affinity
but IL-17RChas higher affinity binding to IL-17F than IL-17A.
In mice, IL-17RA binds both IL-17A and IL-17F but IL-17RC
only binds to IL-17F. Therefore, both IL-17RA and IL-17RC
are required for IL-17F signaling. With the exception of IL-
17RA, IL-17RC has various spliced isoforms and the affinity
of IL-17RC splice variants to IL-17A and IL-17F are variable
[29, 77]. Since some IL-17RC variants have no affinity to both
IL-17A and IL-17F, it is possible that IL-17RC may have other
ligands aswell.The existence of soluble forms of IL-17RChave
been demonstrated in humans but their physiological roles
as well as that of the other variants are still unclear. Soluble
IL-17RC has been proposed as a decoy receptor to inhibit
IL-17R signaling but no evidence supporting this hypothesis
yet exists [119]. Although little is known about exactly how
IL-17RC participates in signaling, the cytoplasmic tail of the
extended SEFIR domain of IL-17RC is essential for functional
IL-17A-dependent signaling and IL-17RC knockout mice are
susceptible to Candida albicans [100]. IL-17RC has also been
reported to play a role in a number of human diseases. The
levels of IL-17A, IL-17F, IL-17RA, and IL-17RC are also high in
the sera and inflamed synovium of patients with rheumatoid
arthritis [122–124]. However, the specific role of IL-17RC in
these diseases has not been clarified.
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IL-17RDwas also known as SEF (similar expression to the
FGFR) due to its similar expression pattern to the fibroblast
growth factor receptor during zebrafish development [90].
The role of IL-17RD in FGF signaling and development is
beyond the scope of this review. Previous findings showed
that basal IL-17RD expression is higher than IL-17RA; in
addition, IL-17A stimulation enhances the expression of other
IL-17R family members, but not IL-17RD expression [125].
It has been indicated that IL-17RD may interact with IL-
17RA to mediate IL-17A signaling, but the mechanism by
which the interaction occurs has not yet been elucidated
[126]. Recently, it has been reported that the orphan receptor
IL-17RD differentially regulates IL-17A-induced NF-𝜅B and
p38 MAPK signaling. IL-17RD utilizes its SEFIR domain to
sequester Act1 from interacting with IL-17RA and TRAF6,
thereby negatively regulating NF-𝜅B signaling. IL-17RD may
therefore act as a basal braking system to prevent IL-17A
mediated NF-𝜅B activation. Conversely, IL-17RD promotes
IL-17A-induced activation of p38 MAPK to induce the
expression of the neutrophil-attractive chemokine, CXCL2,
so the net effect of IL-17RD in IL-17A-mediated neutrophilia
is unclear [127].

4. IL-17A-Induced Gene Expression
in the Airway

IL-17A acts on a variety of cell types [128]. The best charac-
terized IL-17A-targeted cells are nonimmune cells, such as
epithelial cells and mesenchymal cells. In addition, IL-17A
also acts on some immune cells. Immune cells express IL-
17RA but not IL-17RC, and some studies have described that
IL-17 synergized with B cell activation factor to promote B
cell survival and proliferation [129] and that IL-17A induced
matrix metalloproteinase 9 (MMP-9) expression in mono-
cytes/macrophages [130, 131]. Here, we focus our discussion
on the recent discoveries regarding IL-17A-mediated gene
expression in airway epithelial cells and other cells in the
airway.

In the context of airway epithelial cells, IL-17A-targeted
genes can be roughly divided in three different categories:
antimicrobial molecules, chemokines/cytokines, and adhe-
sion molecules. A number of proteins with antimicrobial
properties have been described as being upregulated by
IL-17A, including CCL20, DEFB4, MUC5B/AC, S100A7,
S100A8, and LCN2/24p3 (lipocalin 2) [25].These proteins are
important for the protective effect of IL-17 against extracellu-
lar pathogens. In addition, IL-17A stimulates the production
of a number of chemokines and cytokines by airway epithelial
cells. Some, such as CXCL1, CXCL2, IL-6, IL-8, KC, and
GM-CSF, play a critical role in IL-17A’s ability to recruit
neutrophils to the airway [118, 125, 132–134]. Others, such
as CCL20 and IL-19, have the ability to recruit or influence
the differentiation of cells of the adaptive immune system,
such as Th17 and Th2 cells, respectively [135, 136]. Addi-
tionally, in vitro studies showed that IL-17A induces CCL28
expression in the human airway epithelium, which causes the
migration of IgE-secreting B cells [137]. Finally, it has been
demonstrated that IL-17A can enhance the proliferation of

airway epithelial cells, although the target genes responsible
for this effect have yet to be identified [138]. IL-17A can
also increase the expression of ICAM-1 in airway epithelial
cells and claudin-1 and claudin-2 in intestinal epithelial cells,
important adhesion, and cell junction molecules [139, 140].

Besides airway epithelial cells, IL-17A also directly acts
on airway smooth muscle (ASM) [141] and lung microvas-
cular endothelial cells (LMVECs) [142–144]. IL-17A directly
enhances ASM contraction through the IL-17RA/RC com-
plex on the basis of a NF-𝜅B/RhoA/ROCK2 signal cascade in
murine models of house dust mite-induced and ovalbumin-
induced asthma. IL-17A mediated ASM contraction has also
been confirmed in human lung tissue [141]. IL-17RA and IL-
17RC are also expressed on the surface of LMVECs and IL-
17A significantly induces CXCL1 production in LMVECs. In
synergy with IL-1𝛽 and TNF-𝛼, IL-17 also enhances CXCL5
and CXCL8 expression in these cells [144].

One of the most striking features of IL-17A signaling is
its ability to synergize with other proinflammatory cytokines,
as well as with TLR signaling pathways. In the literature, it
has been reported that TNF-𝛼, IL-1𝛽, IL-22, Oncostatin M,
IFN𝛾, BAFF, and CD40L can all synergize with IL-17A to
upregulate IL-17A target genes or their respective target genes
[129, 139, 145–147]. In addition, IL-17A also synergizes with
TLR2 and TLR4 ligands to increase IL-8 production in a
human cystic fibrosis bronchial epithelial cell lines [148]. In
an in vivo context, this may be where IL-17A induces its most
potent effects, within the cytokine milieu of an inflammatory
setting to further potentiate the inflammatory response. The
mechanism by which this synergism occurs is not yet known,
but deserves further study.

5. IL-17A in Pulmonary Infection

Numerous studies have identified a protective role of IL-
17A in immunity against various infections, including the
infection of intracellular [133, 149–151] and extracellular
bacteria [152, 153], fungi [154, 155], and even parasites [156].
Inmurinemodels of airway infection, IL-17A has been shown
to play a critical role in the defense against extracellular
bacterial pathogens, such asK. pneumonia, and Pseudomonas
aeruginosa [152, 153, 157]. It has also been reported to play
a protective role against intracellular bacterial pathogens,
such as Chlamydia muridarum, and Mycoplasma pneu-
monia. Although the exact mechanism of this protection
is unclear, the deficiency of IL-17 signal or other Th17-
associated cytokines in various infection models has shown
that neutrophil recruitment is impaired in infected tissue,
which is also linked to the reduction of CXC chemokines
expression [133, 149–151]. Additionally, Th17 cell response
has also been reported to contribute to the mucosal vaccine
response against pathogens [158, 159]. Mice vaccinated with
antigen from Mycobacteria tuberculosis (Mtb) provoke a
Th17 response, and the CXCL-13 induction by IL-17A is
critical in the protection against Mtb infection [159]. IL-17A
has also been reported to play a protective role at other
mucosal surfaces, with other types of pathogens as well,
Candida albicans infection in the oral cavity and Salmonella
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dissemination in the intestines [155, 160]. Interestingly, one
intracellular respiratory pathogen, Chlamydia pneumoniae,
has developed a defense against IL-17A signaling. It encodes a
protein, CP0236, which binds to the essential IL-17 signaling
mediator protein Act1 (also known as CIKS and TRAF3IP2)
and sequesters it in bacterial inclusion bodies, leaving it
unavailable to mediate IL-17 signaling [161]. The adaption
of anti-IL-17 strategies by bacterial pathogens underlines the
importance of IL-17A signaling in host defense.

6. Innate IL-17A-Producing Cells in Host
Defense and Pulmonary Infection

The significance of IL-17A production by innate immune
cells in host defense against infection as well as develop-
ment of autoimmune diseases has been demonstrated and
reviewed [162–164]. Cells of the innate immune system are
abundant in the skin and at mucosal surfaces and respond
rapidly to pathogenic infection, providing the first line of
defense. Interestingly, innate IL-17A-producing cells share
some characteristics with Th17 cells. For instance,s 𝛾𝛿T cells
respond to IL-1𝛽, IL-18, and IL-23 [165–167] and share some
common transcription factors with Th17 cells, such as AHR,
ROR𝛾t, and STAT3 [59, 168, 169]. ILCs can be divided into
three functionally distinct types; ROR𝛾t is required for the
differentiation and maintenance of type 3 ILCs [170, 171].
These ROR𝛾t + ILCs express either IL-17A or IL-22, and some
of them express both IL-17A and IL-22 [18–20, 172, 173]. iNKT
cells constitutively express IL-23R and ROR𝛾t [174, 175] and
produce IL-17A upon stimulation by IL-1𝛽, IL-18, IL-23, and
TGF-𝛽 [174, 176, 177]; however, unlike Th17 cells, iNKT cells
do not respond to IL-6 stimulation [174].

Early IL-17A production by these innate cells provides an
initial response to pathogens to recruit neutrophils within
4–8 hours after infection. In the lung, 𝛾𝛿T cells have
been demonstrated to be the major source of early IL-
17A production in response to some infections, such as K.
pneumonia [178], M. tuberculosis [15, 179], and Mycobac-
terium bovis [180]. In the M. bovis-infected mouse model,
the IL-17A secretion by 𝛾𝛿T cells is essential for mature
granuloma formation and resolution of infection [180]. IL-
17A-producing iNKT cells comprise up to 40% of pulmonary
iNKT cells [16] and may also be responsible for the infection
with Streptococcus pneumonia [181]. In addition, early IL-17A
responses may also promote subsequent adaptive immune
responses. IL-17A has been reported to induce chemokines
to attractTh1 cells into the lung [182, 183], and this secondary
response may provide more efficient pathogen clearance. In
an EAE model, the depletion of 𝛾𝛿T cells is responsible for
the development of fewer antigen-specific Th17 cells [165].
Therefore, innate IL-17-producing cells may also enhance or
direct the development of later Th17 responses.

7. Summary and Perspectives

To summarize, Th17 effector cytokines such as IL-17 are
differentially regulated via multiple transcription factors and
play different roles in diseases. Through multiple IL-17R

subunits and the posttranslational modification of Act1, IL-
17A mediates tissue inflammation and host defense in many
facets of signaling regulation. IL-17A induced production of
pro-inflammatory cytokines, chemokines, and antimicrobial
peptides by multiple cell types in the airway is critical
for mounting successful host defense against pathogens.
Due to advances in Th17/IL17A research, efforts are now
underway to apply some of these findings to the clinical
setting, particularly in the setting of autoimmune diseases. A
delicate balance is needed to dampen the pathogenic effects
of Th17/IL-17A in inflammatory and autoimmune diseases
while maintaining the important role it plays in airway
host defense. A more comprehensive understanding of Th17
cell differentiation and their functions is urgently needed
to provide specific molecular targets to constrain disease-
specific cytokine production fromTh17 cells but retain other
functions of Th17 cells. In addition, the role of innate IL-
17A-producing cells in contributing to the resolution of
infection and the progression of inflammation cannot be
overlooked. Studies on the regulation mechanism of innate-
IL-17-producing cells and the clinical relevance of these cells
are still limited. A comprehensive understanding of these
innate IL-17 cells may be useful in the development of disease
therapy. Additionally, a thorough knowledge of cell-type
specific IL-17 signaling mechanism also provides alternative
therapeutic potentials in IL-17A-mediated diseases.
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