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Abstract

Background: Local renin-angiotensin system (RAS) activation has been shown to play an
important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). It has been reported
that angiotensin-converting enzyme 2 (ACE2) could inhibit RAS-mediated epithelial injury
and fibrogenesis and that ACE2 deficiency could aggravate acute and chronic lung injury.
Through research, it could be deduced that ACE2 could protect against pulmonary fibrosis
as a therapeutic target. Methods: Time-course analysis of the pathological characteristics
of bleomycin-induced lung fibrosis was undertaken in a mouse model, and the effect of
exogenous ACE2 on lung fibrosis was studied. Immunohistchemistry (IHC) staining and
western blot (WB) testing for AGT and ACE2 were performed to evaluate the regulation of local
RAS. TUNEL staining was used to observe epithelial apoptosis. Leukocyte common antigen
(LCA) and pulmonary surfactant-associated protein A (SP-A) IHC staining and WB testing
were performed to assess the inflammatory response and epithelial regeneration. Masson'’s
staining and a hydroxyproline assay were performed to examine collagen deposition. IHC
staining and WB testing for TGF-B1 and a-SMA were performed to investigate the regulation
of pro-fibrotic cytokines and the activation of fibroblasts. Results: Exogenous ACE2 attenuated
bleomycin-induced lung fibrosis by reversing the reduction of local ACE2 and by suppressing
the elevation of AGT. ACE2 decreased the apoptosis index and LCA levels and ameliorated the
dynamic change in SP-A level, thus protecting against epithelial injury. Reductions of TGF-1
and o-SMA were also found in ACE2-treated mice, indicating the inhibition of fibrogenesis.
Conclusion: ACE2 attenuated bleomycin-induced lung fibrosis as an anti-inflammatory, anti-
apoptotic and anti-fibrotic agent, and it might be a promising therapeutic target for IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal pulmonary interstitial
disease of unknown etiology. Patients suffer from deteriorating lung function, which usually
leads to respiratory failure and right-sided heart failure as lethal complications [1]. The
median survival with IPF is 3 to 5 years, comparable to lung cancer [2]. Moreover, practically
no effective therapy has yet been established. Because IPF incidence has been found to
be rising [3], there is a pressing need to explore new insights into the pathogenesis and
treatment of the disease.

Recurrent epithelial injury and subsequent fibrotic wound repair are key factors in
the pathogenesis of IPF [4]. Epithelial injury stimulates the release of pro-apoptotic, pro-
inflammatory and pro-fibrotic cytokines, such as angiotensin II (Angll), IL-1(, TGF-f31, etc.
[5, 6], which can further aggravate alveolar structure derangement, subsequently triggering
fibroblast activation and excessive collagen synthesis, which gradually result in fibrotic lung
remodeling [7].

The local renin-angiotensin system (RAS) of the lung has been indicated as a
determinant in the pathogenesis of IPF. The local RAS has a major impact on both epithelial
injury and the pro-fibrotic repair response. Angll and its precursor angiotensin (AGT), which
are produced through the activation of the local RAS, become abundant in IPF lungs [8].
AGT and Angll are excessively secreted from apoptotic alveolar epithelial cells in IPF [9],
and these cytokines are indispensable for epithelial cell apoptosis [10]. In addition, Angll
has been shown to stimulate pro-inflammatory chemokines, adhesion molecules, pro-
inflammatory transcription factors and superoxide production [11], and it is considered
to be a key mediator of inflammation, contributing to epithelial injury [12, 13]. Moreover,
overexpression of AGT and Angll in (myo)fibroblasts isolated from IPF lungs [9] was found
to interact with TGF-B1, which is the strongest pro-fibrotic factor, in an "AGT/ANGII-TGF-$1
autocrine loop" [14], to promote fibrogenesis.

Recent articles have revealed that activation of the local RAS is accompanied by
weakened negative feedback and is modulated by a key negative regulator: angiotensin
converting enzyme 2 (ACE2). As shown in Figure 1, ACE2 not only plays a protective role by
degrading local Angl], but its product Ang1-7 also exerts anti-apoptotic, anti-inflammatory
and anti-fibrotic effects through the ACE2-Angl-7-Mas pathway [15-17]. ACE2 is mainly
detected in the lung epithelium and vascular endothelium, while it is significantly decreased
in IPF lungs [18]. Therefore, to compensate for the deficiency in ACE2, negative control of
alveolar epithelium injury and fibrogenesis might be necessary, thus providing a potential
target for therapies for IPFE.

Materials and Methods

Chemicals and reagents

Bleomycin (BLM) was acquired from Nippon Kayaku Co. (Tokyo, Japan). A hydroxyproline (HYP)
analysis kit was acquired from Sigma-Aldrich (Shanghai, China). A hematoxylin-eosin staining (H&E) kit was
acquired from Lanbio (Beijing, China). A Trichrome stain (Masson) kit was acquired from Leagene (Beijing,
China). A streptavidin-peroxidase (SP) kit was acquired from Biostest Co. (Beijing, China). A terminal
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) kit was acquired from Roche (Indianapolis,
IN, USA). A Mammalian Cell Extraction Kit was acquired from Biovision (Los Angeles, CA, USA). PMSEF, TBS,
SDS-PAGE gel, TEMED, TBST, and BCA protein assay kit were acquired from Dorun Co. (Beijing, China). HRP-
conjugated goat anti-rabbit and anti-mouse IgG and HRP-conjugated mouse anti-goat IgG antibodies were
acquired from Abmart (Shanghai, China). Recombinant mouse ACE2 was acquired from Sino Biological Inc.
(Beijing, China). AGT, ACE2, pulmonary surfactant-associated protein A (SP-A), leukocyte common antigen
(LCA/CD45), TGF-B1, a-smooth muscle actin (a-SMA) antibodies were acquired from Abcam (Cambridge,
MA, USA).
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Fig. 1. The local lung renin-angiotensin system
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Table 1. Szapiel's scoring of alveolitis and fibrosis [19]
Score Grade Pathological features
Alveolitis 1 - No apparent alveolitis
2 + Mild alveolitis with pulmonary interstitial edema, inflammatory cell infiltration, and

alveolar septum thickening, with lesions only local or limited to the subpleural area,
which do not exceed 20% of the lung

3 ++ Moderate alveolitis with the subpleural area more obvious, with the involved area more
than 20% but less than 50% of the lung

4 +++  Severe alveolitis with lesions more than 50% of the lung, with inflammatory cells inside
the alveolar cavity and consolidation changes

Fibrosis 1 - No apparent fibrosis

2 + Mild fibrosis with minimal fibrous thickening of the alveolar septa, which is only local or
limited to the subpleural area and does not exceed 20% of the lung

3 ++ Moderate fibrosis with the subpleural area more serious, with fibrous bands or small
fibrous masses and an involved area more than 20% but less than 50% of the lung;

4 +++  Severe fibrosis with lesions more than 50% of the lung, distortion of the alveolar
structure, large fibrous areas, (myo)fibroblast foci and honeycomb changes might be
observed

Animal model

All of the experiments were performed in accordance with National Institutes of Health guidelines,
and the protocols were approved by the Medicine Subcommittee on Research Animal Care of Peking
University Health Science Center. One hundred twenty male C57BL/6] mice, eight weeks old and weighing
17-20 g upon arrival, were purchased from the Animal Center of Peking University (Beijing, China). The
mice were provided ad libitum access to food and water. The animals were randomly divided into 4 groups
as: (1) Saline group: 0.9% saline (200 pL) injection via the tail vein; (2) ACEZ group: a single intraperitoneal
injection of ACE2 (0.2 mg/kg); (3) BLM group: a single injection of bleomycin at 150 mg/kg via the tail
vein; and (4) BLM+ACEZ2 group: an injection of bleomycin at 150 mg/kg via the tail vein, followed by an
intraperitoneal injection of ACE2 at 0.2 mg/kg. After administration, ten animals randomly selected from
each group were euthanized on days 7, 14 and 28 by cervical dislocation.

Lung histopathology

Right lungs were removed and fixed overnight in 10% formalin and were embedded in paraffin and
cut into 5 um-thick sections. The H&E staining method was used to investigate alveolitis and fibrosis. The
Masson's trichrome staining method was performed to reveal collagen deposition (blue staining). The
severity of pathological changes was scored according to Szapiel's method (Table 1) [19]. Double-blind
evaluation of alveolitis and fibrosis was conducted by two pathologists, and the mean score was considered
as the alveolitis and fibrosis scores for each sample.

Measurement of hydroxyproline concentrations

Left lower lobes were harvested in liquid nitrogen. The lung tissue was hydrolyzed, followed by
derivation using the HYP analysis kit (Sigma). The collagen content was measured and analyzed by
ultraviolet spectrophotometry, using the procedure indicated by the manufacturer. The HYP content is
reported as pug/mg frozen tissue.

TUNEL assay
Paraffin-embedded lung sections were used for TUNEL staining, according to manufacturer's
instructions (Roche). The sections were stained with diaminobenzidine (DAB) and counterstained with
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hematoxylin. TUNEL-positive apoptotic cells exhibited brown nuclei. Five views were randomly selected on
each section (40x magnification) to calculate the number of apoptotic cells. The apoptotic index (Al) was
measured as a percentage of positive cells.

Immunohistochemistry

To achieve integrated detection of protein expression and quantification, sections obtained from
paraffin-embedded samples were immunoassayed using the SP kit (Biostest), following the manufacturer's
instructions (Biostest). Markers for the local RAS were detected by AGT and ACE2 immunolabeling.
Epithelial repair was marked by SP-A immunostaining. Inflammatory cell infiltration was marked by LCA
immunostaining. TGF-B1 and a-SMA were immunostained as markers of fibroblast activation. Sections were
stained with DAB and counterstained with hematoxylin. Brown-stained cells were considered positive.
Pictures were obtained, and the mean optical density (MOD) was measured using Image Pro Plus software,
version 6.0, for the semiquantitative analysis of protein expression [20]. Five views were randomly selected
on each section (400x magnification) using a high-power microscope, and "integrated optical density" (10D)
and "area sum" were measured. The results were recorded as MOD=I0D/area sum [21].

Western blot analyses

Left upper lungs were irrigated with saline. Quantitative western blot analysis was performed for the
measurement of AGT, ACE2, LCA, SP-A, a-SMA and TGF-$1 expression in lung tissue. Proteins were extracted
using the Mammalian Cell Extraction Kit, following the manufacturer's instructions (Biovision). The BCA
protein assay kit (Dorun) was used to determine protein concentrations. Samples of equal amounts of
protein were subjected to 12% SDS-PAGE on gel and then were transferred to PVDF membrane. After being
blocked by milk in TBST, the membranes were incubated with primary antibodies against the target protein.
After washing with TBST, the membranes were incubated in HRP-conjugated goat anti-rabbit and anti-
mouse IgG and then washed. Proteins were detected by enhanced chemiluminescence and were quantified
using density analysis normalized against GAPDH.

Statistical analysis

The data were analyzed using SPSS (Statistical Package for the Social Sciences) statistical software,
version 19.0. Descriptive results are expressed as the mean + SEM. The Kruskal-Wallis test was used to
analyze the ranked data of pulmonary alveolitis and pulmonary fibrosis. Quantitative data were analyzed
by one-way ANOVA for multiple comparisons, followed by post-hoc comparison with the LSD test (equal
variances assumed) or Dunnett's test (equal variances not assumed). p<0.05 was considered statistically
significant.

Results

ACE?2 attenuated bleomycin-induced alveolitis and fibrosis

As shown in Figure 2, a single injection of bleomycin at the dose of 150 mg/kg via the
tail vein in mice induced mild to moderate alveolitis (2.60+0.39) on day 7 (p<0.05 compared
with the Saline group). Lungs exhibited focal distribution of alveolitis that was predominantly
subpleural and perivascular, in which the alveolar septa were mildly thickened with
edema and inflammatory cell infiltration; no apparent fibrosis was observed. At the same
time, administration of ACE2 did not significantly alter the pathological changes on day
7 (BLM+ACEZ2 group vs. BLM group, p>0.05). On day 14, the BLM group showed disease
progression. Lungs exhibited moderate to severe alveolitis (3.15+0.63) and moderate
fibrosis (2.60+0.61) with patchy inflammatory consolidation and collagen deposition,
while the administration of ACE2 significantly attenuated both alveolitis (2.11£0.60) and
fibrosis (1.33+0.35) (BLM+ACE2 group vs. BLM group, p<0.05). On day 28, in the BLM group,
alveolitis (2.70+0.35) spontaneously resolved (p<0.05 compared with the BLM group at day
14); however, derangement of the alveolar architecture continued, and fibrosis (2.70+£0.48)
persisted (p>0.05 compared with the BLM group at day 14), characterized by diffuse, dense,
thick collagen bundles and fibroblast foci. ACE2 noticeably reflected a long-term therapeutic
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Fig. 2. The local lung renin-angiotensin system. ACE2 improved histological changes in bleomycin-induced
lung fibrosis. Recombinant mouse ACE2 and bleomycin were administered on day 0. (A) Dynamic mor-
phological changes in bleomycin-induced lung fibrosis are presented through H&E staining (magnification
200x). Additionally, Masson's trichrome (magnification 200x) staining highlights collagen deposition (blue
stained) appeared on day 14 and day 28 in BLM group. It has been proposed that ACE2 suppressed the
progression of fibrogenesis to a mild condition over time. (B) Szapiel's scoring was obtained to quantify the
degree of alveolitis and fibrosis and inhibitory potency of ACE2. (C) HYP concentration paralled pathological
scoring of fibrosis. HYP increased in BLM group on day14 and day28 (p<0.05), and significantly reduced in
BLM+ACE2 group (p<0.05). Data represent as means+*SEM. *p<0.05 when compared with the Saline group,
**p<0.01 when compared with Saline group, #p<0.05 when compared with BLM group, ##p<0.05 when

compared with BLM group. n=10 in each group.

Table 2. HYP concentration and Szapiel's score of fibrosis in four groups

Day7 Day14 Day28
Gl HYP(ug/mg) fibrosisscore  HYP(pg/mg)  fibrosisscore  HYP(pug/mg) fibrosis score
Saline 0.139+0.043 10 0.113+0.038 1+0 0.024+0.055 1+0
ACE2 0.123+0.022 10 0.141+0.012 10 0.143+0.044 1+0
BLM 0.165+0.014 1.2+0.35 0.252+0.014*  2.6£0.61"  0.246£0.030*  2.7+0.48
BLM+ACE2  0.156+0.024 1.33+0.71 0.160+0.022##  1.33+0.35%  0.143+0.019%  1.50+0.52##
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Fig. 3. ACE2 attenuated bleomycin-induced epithelial injury. In BLM group, cell density in lungs substan-
tially increased from 7 to 14 days and slightly reduced on day 28 under direct microscopic visualization.
(A) Apoptotic cells were brown stained by TUNEL assay (400x) and were widely distributed in distorted
alveolar epithelium as well as regional inflammatory and fibrotic lesions in BLM group. SP-A stained for type
II alveolar epithelial cells (400x), was enhanced during early stage of fibrogenesis and decreased during
late stage of lung fibrosis. ACE2 reduced bleomycin-induced epithelial apoptosis, excessive proliferation,
and progressive alveolar epithelial cell loss. (B) Apoptosis index (Al%) and semiquantitative study of SP-A
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expression revealed ACE2's anti-apoptotic effect and modulated alveolar epithelium repair. (C) LCA deter-
mined by IHC was evident in the membrane of neutrophils, macrophages and lymphocytes (400x). Inflam-
matory cell infiltration was significantly inhibited by ACE2 throughout pathogenesis of bleomycin-induced
lung fibrosis. (D) Western blot analysis of SP-A and LCA level in lung tissue. Quantitative studies comfir-
med that ACE2 inhibited BLM-induced inadequate alveolar repair response and lung inflammation.*p<0.05
when compared with Saline group, **p<0.01 when compared with Saline group, #p<0.05 when compared
with BLM group, ##p<0.05 when compared with BLM group.

effect on day 28, with sections in the BLM+ACE2 group presenting only mild alveolitis
(2.00+0.56, p<0.05 compared with BLM group) and significant attenuation of fibrosis
(1.50+0.52, p<0.01 compared with the BLM group). No signs of alveolitis or fibrosis were
found in the Saline group or the ACEZ group among the different time points. In accordance
with our pathological scoring of fibrosis (Table 2), the HYP concentration in the BLM group
increased significantly from day 14 to day 28 (p<0.05 compared with the Saline group), and
ACE2 significantly inhibited HYP deposition (p<0.05 compared with the BLM group at the
same time point).

Protective role of ACEZ in epithelium injury

Epithelial injury was recognized as an early feature of bleomycin-induced fibrosis
models characterized by epithelial apoptosis, followed by transient hyperplasia of type Il
alveolar epithelial cells and inflammatory cell infiltration (fig. 3). In the BLM group, apoptotic
cells stained by TUNEL assay were mainly distributed along distorted airspace walls and
in the areas of consolidation (Al 47.27%%10.7%, 47.07%%8.25%, and 47.73%+5.89% on
days 7, 14, and 28, respectively); at the same time, LCA-positive inflammatory cells in the
lung exhibited prolonged patchy interstitial inflammation. In the BLM+ACEZ group, the
apoptotic index (Al 31.78%+*4.03%, 18.8%+*5.88%, and 29.68%+3.61% on days 7, 14 and
28, respectively) dramatically decreased compared with the BLM group (all p<0.01 at each
time point), and LCA expression significantly decreased (p<0.05 compared with the BLM
group at the same time point) by both IHC and western blot study. Moreover, as a marker
specific to type Il alveolar epithelial cells, SP-A expression increased noticeably in the BLM
group on day 7 (p<0.05 compared with the Saline group) but tended to decrease on day 14
(p=0.052 compared with the BLM group on day 7) and significantly decreased on day 28
(p<0.05 compared with the BLM group on day14), while in the BLM+ACE2 group, the level
of SP-A was relatively low on day 7 but at a higher level than in the BLM group on days and
day28 (both p<0.05 compared at the same time point). The results demonstrated that ACE2
inhibited early excessive epithelial cell proliferation, as well as subsequent excessive cell
loss, as epithelial injury progressed. The findings together indicated that ACE2 had treatment
effects on bleomycin-induced epithelial cell apoptosis and inflammation.

ACE?2 inhibited pro-fibrotic cytokines and fibroblast activation of BLM-induced lung

fibrosis

Previous results have shown that ACE2 attenuated the late-stage progression of lung
fibrosis. Fibrogenesis was characterized by overexpression of pro-fibrotic cytokines and
(myo)fibroblast activation. As shown in Figure 4, on days 14 and 28, TGF-f1 expression
emerged strongly and diffusely in alveolar epithelial cells, inflammatory cells and (myo)
fibroblasts in the BLM group but was significantly weakened in the BLM+ACEZ2 group (p<0.05
compared with the BLM group at the same time point); otherwise, there were no significant
differences in protein expression on day 7 among all of the groups (p>0.05). Consistent with
the increase in TGF-[1, activation of fibroblasts was indicated in the BLM group on days 14
and 28, marked by densely clustered expression of a-SMA in the lung interstitium (p<0.05
compared with the Saline group), and it significantly decreased in the BLM+ACEZ group
(p<0.05 compared with the BLM group at the same time point). The results exhibited ACE2's
inhibitory effects on fibroblast proliferation and myofibroblast transdifferentiation.
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Fig. 4. ACE2 inhibited fibrotic repair in bleomycin-induced lung fibrosis. (A) In Saline group and ACEZ2 group,
positive staining of TGF-B1 in connective tissue and a-SMA which strongly expressed in smooth muscles
were mostly found underlying bronchial and vascular walls (400x). On day 14 and day 28 as fibrosis began
to appear, patchy staining of TGF-$1 and a-SMA emerged in fibrotic lesions, and were both attenuated by
ACE?2 though still scattered in lung interstitium. (B) Semiquantitative study of TGF-B1 and a-SMA expression
was obtained to reveal the degree of fibrogenesis. (C) Western blot analysis of TGF-f and a-SMA level in
lung tissue. Quantitative studies comfirmed that ACE2 inhibited BLM-induced fibrogenesis. *p<0.05 when
compared with Saline group, **p<0.01 when compared with Saline group, #p<0.05 when compared with
BLM group, ##p<0.05 when compared with BLM group.

ACE2 contributed to the counterregulation of the local RAS in bleomycin-induced lung

fibrosis

As shown in Figure 5, local AGT expression in the lung was mainly found in endothelial
cells and vascular smooth muscle cells in the Saline group. During bleomycin-induced
fibrogenesis, AGT was remarkably upregulated on days 14 and 28, localized at the sites of
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Fig. 5 ACE2 modulated local RAS in bleomycin-induced lung fibrosis (400x). (A) AGT was originally ex-
pressed in pulmonary vessels and bronchial smooth muscle. Over-expression of AGT in alveolar epitheli-
um during bleomycin-induced lung fibrosis was significantly inhibited by ACE2 administration. (B) ACE2
expressed predominantly in vascular and bronchial wall. Relatively weak expression of ACE2 in alveolar
epithelium was detected in normal lungs and was not altered by exogenous AEC2. Meanwhile loss of ACE2
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in alveolar epithelium in bleomycin-induced lung fibrosis seemed to be prevented by exogenous AEC2 in-
tervention. (C) Western blot analysis of AGT and ACE2 level in lung tissue. Quantitative studies comfirmed
that ACE2 down-regulated local RAS in lung.*p<0.05 when compared with Saline group, **p<0.01 when
compared with Saline group, #p<0.05 when compared with BLM group, ##p<0.05 when compared with
BLM group.

alveolar destruction and fibrotic foci (both p<0.05 compared with the Saline group). Local
ACE2 was immunoassayed mainly in the pulmonary vessel walls in the Saline group, and
there was weak positive expression in a small proportion of epithelial cells. In the BLM
group, ACE2 levels tended to decrease, especially on day 14 (p<0.05 compared with the
Saline group) and was scarcely stained in the parenchyma of fibrotic lungs. In the BLM+ACEZ2
group, AGT levels did not significantly change compared to the BLM group (p>0.05). ACE2
expression in the BLM+ACEZ group, in contrast, showed a relatively higher level than the
BLM group (compared to the BLM group, p<0.05 on day 7, and p<0.01 on days 14 and 28).
Exogenous ACE2 via the tail vein did not seem to alter the protein levels of the local RAS in
the ACE2 group (all p>0.05 compared with the Saline group at the same time point).

Discussion

IPF, a refractory and lethal disease, is a form of progressive lung fibrosis with an
unknown etiology and with no regimen to improve survival. It is the most common
interstitial lung disease (ILD), with the worst prognosis. The global epidemiology of IPF
remains unknown, with a prevalence of 14-42.7 per 100,000 estimated in the US and an
annual incidence of 7.44 per 100,000 in the U.K.,, which seem to be rising [3, 22]. Patients
suffer from unrelieved coughing and breathlessness, exhaustion, and a grave fear of
"conscious suffocation” [1], and the progressive clinical course ultimately leads to lethal
complications, such as respiratory failure, heart failure, bronchogenic carcinoma, ischemic
heart disease, infection and pulmonary embolism [23]. Thus, there is an urgent need for
novel therapies that can attenuate or reverse the disease process. The hallmark of IPF is
usual interstitial pneumonia (UIP), radiologically and pathologically featuring bilateral,
sub-pleural and basilar predominant abnormalities that are histologically characterized by
fibroblast accumulation, collagen deposition and fibroblast foci [24]. Risk factors (cigarette
smoking, gastroesophageal reflux disease [GERD], metal dust exposures, surfactant protein
C [SFTPC] mutations, etc.) [25] are commonly associated with alveolar injury, resulting in
inflammatory response, exaggerated apoptosis and the abnormal proliferation of alveolar
epithelial cell during the early alveolitis stage of IPF [4, 26-28] and gradually stimulating
fibrogenesis, fibroblast activation and massive collagen deposition during end-stage fibrosis.

According to the manifestations of IPF, bleomycin-induced lung fibrosis in the mouse
is the most common animal model that mimics the pathologic features of IPE. In our
study, we used a single dose of bleomycin injection via the tail vein to induce pulmonary
fibrosis, which resulted in an early stage of epithelial apoptosis, inflammatory response,
progression of fibrogenesis within 14 days and persistent fibrosis which peaked in 28 days.
The pathological manifestations were in accordance with the previous studies [29]; at the
same time, a more comprehensive overview was used in our study to identify the molecular
processes underlying the pathogenesis of IPF.

Although there have been quite a few interventions to attenuate bleomycin-induced
lung fibrosis, such as corticosteroids and immunosuppressants, it has been noted that
preventing the progression of fibrosis seems to be more essential than interfering with
inflammation in the early stages [30]. In our research, we assessed the treatment effects
of recombinant ACE2 on lung fibrosis and found that a single intraperitoneal injection of
ACE?2 in bleomycin-induced lung fibrosis in mice resulted in only mild fibrosis over time. We
found that ACE2 could ameliorate the progression of fibrosis, particularly from 14 to 28 days
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after administration. Our experiment indicated that ACE2 aimed to improve fibrotic tissue
remodeling, thus providing a promising therapeutic target in IPF.

The local RAS in the lungs, which is involved in the pathogenesis of IPF, acts in a
sophisticated paracrine/autocrine manner. Our research found that the effector proteins in
the local RAS were originally expressed in the vascular endothelium and bronchial smooth
muscle; in addition, AGT- or ACE2-positive cells were scattered in the alveolar walls, in
accordance with previous studies showing that AGT was excessively secreted by epithelial
cells in bleomycin-induced lungs, and exogenous ACE2, administered in the very early stage
of fibrogenesis, could combat the effects of AGT/Angll on the lungs, resulting in relatively
low levels of AGT expression in the lungs, although without statistical significance. Lo CS et
al. demonstrated that AGT expression negatively regulated ACE2 levels in a mouse model
[31]. Although the complete mechanism by which ACE2 affects AGT expression is not clear,
our experiment demonstrated this negative-feedback loop of the local RAS. Moreover, it was
detected thatin fibrotic lungs, loss of ACE2 expression in epithelial cells became progressively
obvious beginning on day 7, while upregulation of AGT was not evident until day 14. The
changes in AGT and ACE2 expression both emerged noticeably in the region of distorted
alveolar spaces and fibrotic lesions. Our findings reflected the unique condition that loss of
negative balance in the local RAS (ACE2 decrease) might be more sensitive to lung injury
than the activation of the positive axis (AGT increase). Therefore, this research emphasized
that negative modulation of the local RAS, such as with ACE2, might play a vital role in the
pathogenesis of IPF.

There is a large body of evidence from animal or cellular experiments demonstrating
that local RAS activation plays a critical role in lung fibrogenesis, and for patients in the
early stage of IPE, Couluris et al. proved that angiotensin receptor blockers (ARBs), such as
losartan, could stabilize lung function over 12 months [32], indicating clinical applications
for the inhibiting of RAS activation for IPF patients. However, medications such as angiotensin
converting-enzyme inhibitors (ACEIs) or ARBs still do not show solid beneficial clinical
effects on patients’ long-term survival [33], and there are still no medical therapies that can
slow the progression of the disease [34]. It was found that ACEIs only partially blocked Angll
via ACE-dependent generation of Angll, and ARB basically inhibited the AT ,R-dependent
pathway during local RAS activation [35]. However, ACE-independent generation of Angll
in chronic lung diseases has been found to be unaffected by ACE activity [9, 36]. Moreover,
AT R blockade by ARB has been associated with unopposed AT,R stimulation [37] and
further increases in AT,R expression [38], while ARBs ignore the pro-inflammatory and
pro-fibrotic effects in lung fibrosis via the AnglI-AT, R pathway [39]. In our experiment, we
stated that ACEZ2, as a "hub," radically modulated the aberrant activation of the local RAS,
and exogenous ACE2 was able to maintain relatively stable protein levels of local ACE2 and
AGT in a fibrotic stress environment, and it attenuated pathological changes in the lungs
over time. Consistent with our findings, Dong B et al. [40] found that overexpression of ACE2
was superior to losartan in improving collagen accumulation in a myocardial fibrosis model.
Similarly, a study conducted by Bruce D. Uhal et al. [41] indicated that ACE2's end products
Ang1-7 played more effective protective roles in apoptosis of alveolar epithelial cells than
saralasin. Therefore, we conclude that strengthening the negative feedback by ACE2, rather
than partially blocking the positive loop of the local RAS, might claim priority in treating IPF.

Because IPF occurs predominantly in middle age, it is presumed that the accumulation
of subclinical micro-injuries to the genetically susceptible alveolar epithelium gradually
triggers the disease [4]. It has been reported that epithelial injury promotes fibrogenesis
generally along two pathways: the epithelial cell pathway and the inflammation pathway
[42]. In the epithelial cell pathway, exaggerated epithelial apoptosis is induced, followed
by aberrant proliferation of type Il epithelial cells. Among these activated type Il alveolar
epithelial cells, some differentiate into type I alveolar epithelial cells for re-alveolarization,
and some cells, influenced by pro-fibrotic cytokines, undergo epithelial-mesenchymal
transitions (EMTs) to transform into fibroblast-like cells for fibrogenesis, while other cells
exhibit squamous metaplasia, together contributing to alveolar architecture destruction
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[43, 44]. In the inflammatory cell pathway, multiple cells, mainly macrophages, neutrophils,
and lymphocytes, infiltrate the alveolar septa and alveolar space; alveolitis can resolve
spontaneously during disease progression [6]. Although inflammation in IPF is non-specific,
pro-inflammatory cytokines (e.g., IL-1p, IL-6, IL-8, IL-18, TNG-q, etc.), released during the
alveolitis stage, also play pro-apoptotic and pro-fibrotic roles, contributing to fibrogenesis
[45, 46].

Local RAS activation in IPF is essential to the pathogenesis of epithelial injury in those
two ways. Angll is a pro-apoptotic cytokine for alveolar epithelial cells [47]. It was found
that epithelial apoptosis could be completely inhibited by neutralizing antibodies specific for
Angll [10]; Yuko Waseda et al. [39] indicated that ARBs for bleomycin-induced pulmonary
fibrosis could remarkably decrease both inflammatory cells and pro-inflammatory cytokines
in bronchoalveolar lavage fluid (BALF). In our research, the apoptosis index, assayed by
the TUNEL method in fibrotic lungs, increased and reached a plateau from day 7, and most
apoptotic cells were morphologically similar to epithelial cells. We observed that ACE2
inhibited cell apoptosis at all time points, which supported a role for ACE2 as an anti-
apoptotic agent for epithelial cells in bleomycin-induced lung fibrosis. However, TUNEL assay
could only detect non-specific DNA fragmentation due to necrosis [48, 49]. The apoptotic
cell population in the late stage of IPF could possibly include damaged epithelial cells,
inflammatory cells cleared during spontaneous resolution of inflammation, myofibroblasts
eliminated in repair processes, etc. [50]. We believe that our results preferably showed the
protective role of ACE2 in cell apoptosis in the early stage of IPF pathogenesis. Further study
of ACE2 therapy, measuring the rates of apoptosis of different cell types, is warranted.

In contrast, LCA (LCA/CD45) staining of inflammatory cells sustained high-level
expression in fibrotic lungs, associated with massive cell infiltration, which increased from
day 7 to day 14, and tended to decrease from day 14 to day 28, and ACE2 presented anti-
inflammatory effects. Because epithelial cell apoptosis could occur in the absence of an
inflammatory response [50], we proved that ACE2 possessed integrated protective effects
on both the epithelial cell pathway and the inflammation pathway which seemed relatively
independent. For further evaluation, we used surfactant protein A (SP-A) to identify type
I alveolar epithelial cells as a sensitive marker for the early detection of epithelial injury
[51, 52]. The proliferation response of type Il epithelial cells coincided with apoptosis in
bleomycin-induced mice and was attenuated by ACE2 in the early stage. In the sub-acute
phase, SP-A expression decreased over time, while apoptosis persisted. Because SP-A is also
considered a biomarker for the prediction of survival in IPF [53], our study revealed that
ACE2 was able to maintain more reserve epithelial cells in the late period of the disease,
which could hopefully provide beneficial effects on IPF prognosis.

It is the fibrogenesis that distinguishes IPF from other chronic lung diseases [7, 14]. It
is well known that TGF-B1 is one of the strongest pro-fibrotic cytokines. In the early stage of
lung fibrosis, inflammatory cells are the main source of TGF-B1 [54-57], and during disease
progression, fibroblasts mainly contribute to increasing accumulation of TGF-f31. Therefore,
TGF-1 has been indicated to be a fibrosis-associated biomarker [58]. Angll in the local RAS
plays a pro-fibrotic role through the "AGT-TGF-$1 autocrine loop," thus amplifying the effects
of TGF-B1 on EMT, fibroblast proliferation, fibroblast-to-myofibroblast transdifferentiation
and excessive collagen deposition. Qian YR et al. proposed that ACE2 could block TGF-
B1-induced EMT in alveolar epithelial cells [59], and Ying Meng et al. discovered that
overexpression of ACE2 could inhibit the expression of TGF-B1 from human fibroblasts,
and it suppressed cell proliferation and collagen synthesis [60]. Some in vivo experiments
resulted in similar findings that overexpression or administration of ACE2 could inhibit
bleomycin-induced lung fibrosis in animal models [18, 61]. Our experiment revealed that
ACE2 presented as an anti-fibrotic agent to weaken the overexpression of TGF-$1 in the late
stage of bleomycin-induced lung fibrosis. Moreover, myofibroblasts, the primary effector
cells responsible for increasing extracellular matrix deposition and traction bronchiectasis
[62, 63], were marked by a-SMA in our experiment and were discovered to be inhibited
by ACE2 administration. We believe that ACE2 might play a preventive role in severe lung
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structure derangement in end-stage fibrosis.

In conclusion, our research provided comprehensive evidence that ACE2 attenuated
bleomycin-induced lung fibrosis as an anti-inflammatory, anti-apoptotic and anti-fibrotic
agent and that ACE2 might be a promising therapeutic target for IPF.
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