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The blowup phenomenon of solutions is investigated for the initial-boundary value problem (IBVP) of the 𝑁-dimensional Euler
equations with spherical symmetry. We first show that there are only trivial solutions when the velocity is of the form 𝑐(𝑡)|x|𝛼−1x +
𝑏(𝑡)(x/|x|) for any value of 𝛼 ̸= 1 or any positive integer𝑁 ̸= 1. Then, we show that blowup phenomenon occurs when 𝛼 = 𝑁 = 1

and 𝑐
2

(0) + ̇𝑐(0) < 0. As a corollary, the blowup properties of solutions with velocity of the form (𝑎̇(𝑡)/𝑎(𝑡))x + 𝑏(𝑡)(x/|x|) are
obtained. Our analysis includes both the isentropic case (𝛾 > 1) and the isothermal case (𝛾 = 1).

1. Introduction and Main Results

In this paper, we consider the𝑁-dimensional Euler equations
for compressible fluid:

𝜌
𝑡
+ ∇ ⋅ (𝜌u) = 0,

𝜌 [u
𝑡
+ (u ⋅ ∇) u] + ∇𝑝 = 0,

𝑝 = 𝐾𝜌
𝛾

, 𝛾 ≥ 1

(1)

with boundary condition

u ⋅ n|
|x|=1 = 0, (2)

where 𝜌, u, and 𝑝 represent the density, velocity, and pressure
of the fluid, respectively. n is the unit normal vector on the
unit sphere.The 𝛾-law for 𝑝 is given by (1)

3
.The fluid is called

isentropic if 𝛾 > 1 and is called isothermal if 𝛾 = 1.
Euler equation (1) is one of the most important funda-

mental equations in inviscid fluid dynamics.Many interesting
fluid dynamic phenomena can be described by system (1)
[1, 2].TheEuler equations are also the special case of the noted
Navier-Stokes equations, whose problem of whether there is

a formation of singularity is still open and long-standing.
Thus, the singularity formation in fluid mechanics has been
attracting the attention of a number of researchers [3–11].

In particular, in [3, 4], the authors obtain blowup results
for the IBVP of the Euler equations, namely, system (1)
with boundary condition (2). By making use of the finite
propagation speed property [5, 6], they are able to apply
the integration method to derive differential inequalities and
show that if the initial weighted functionals of velocity or
momentum are large enough, then blowup occurs.

In [10], the authors consider the solutions of (1) with
velocity of the form

u (𝑡, 𝑥) = 𝑐 (𝑡) x (3)

and show that, by using the standard argument of phase
diagram, the solutions will be expanding if 𝑐(0) and ̇𝑐(0)

satisfy some inequalities. It is natural to consider the more
general velocity form:

u (𝑡, 𝑥) = 𝑐 (𝑡) x + 𝑏 (𝑡) x
|x| (4)

for the IBVP of system (1) in spherical symmetry, where 𝑏(𝑡)
is a time-dependent drifting function.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2016, Article ID 3781760, 6 pages
http://dx.doi.org/10.1155/2016/3781760

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194631399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 The Scientific World Journal

For solutions in spherical symmetry, namely, 𝜌(𝑡, 𝑥) =

𝜌(𝑡, 𝑟) and u(𝑡, 𝑥) = 𝑢(𝑡, 𝑟)(x/𝑟), system (1) together with (2)
is transformed to

𝜌
𝑡
+ 𝑢𝜌
𝑟
+ 𝜌𝑢
𝑟
+
𝑁 − 1

𝑟
𝜌𝑢 = 0, 𝑡 > 0, 𝑟 > 1,

𝜌 (𝑢
𝑡
+ 𝑢𝑢
𝑟
) + 𝑝
𝑟
= 0, 𝑡 > 0, 𝑟 > 1,

𝑝 = 𝐾𝜌
𝛾

, 𝛾 ≥ 1,

𝑢 (𝑡, 1) = 0,

(5)

where 𝑟 = |x| is the length of the spatial variable x.
Ourmain contributions in this paper are stated as follows.

Theorem 1. There are only trivial solutions to the 𝑁-
dimensional Euler system (5) of the form 𝑢 = 𝑐(𝑡)𝑟

𝛼

+ 𝑏(𝑡) for
any real 𝛼 and integer𝑁 in the isentropic and isothermal cases
except the case 𝛾 = 𝛼 = 𝑁 = 1. For 𝛾 = 𝛼 = 𝑁 = 1, one has
the following two cases.

(1) If 𝑐2(0) + ̇𝑐(0) > 0, then, for any 𝑡, 𝑐2(𝑡) + ̇𝑐(𝑡) > 0, and
𝑐(𝑡) → 0, (𝜌, 𝑢) → (0, 0) as 𝑡 → ∞.

(2) If 𝑐2(0) + ̇𝑐(0) < 0, then, for any 𝑡, 𝑐2(𝑡) + ̇𝑐(𝑡) < 0.
Moreover, in the region where 𝑐2(𝑡) + ̇𝑐(𝑡) < 0, 𝑐(𝑡) →
−∞ and (𝜌, 𝑢) → (∞, −∞) as 𝑡 → ∞.

As a corollary, we also obtain the following.

Corollary 2. Let (𝜌, 𝑢) be a solution for (5) with 𝑢 = (𝑎̇(𝑡)/

𝑎(𝑡))𝑟+𝑏(𝑡), 𝑎
0
fl 𝑎(0) > 0, and 𝛾 = 𝑁 = 1. Then 𝑎(𝑡) satisfies

𝑎̈ =
𝜆

𝑎
(6)

for some constant 𝜆 ∈ R. Furthermore, one has the following
five cases.

(1) If 𝜆 < 0, then the solution (𝜌, 𝑢) → (∞, −∞) as 𝑡 →
𝑇
∗ for some finite 𝑇∗ > 0.

(2) If 𝜆 > 0, then 𝜌 is bounded above and the solution
(𝜌, 𝑢) → (0, 0) as 𝑡 → ∞.

(3) If 𝜆 = 0 and 𝑎
1
> 0, 𝜌 is bounded above and the

solution (𝜌, 𝑢) → (0, 0) as 𝑡 → ∞.
(4) If 𝜆 = 0 and 𝑎

1
= 0, then the solution is trivial.

(5) If 𝜆 = 0 and 𝑎
1
< 0, then the solution (𝜌, 𝑢) →

(∞, −∞) as 𝑡 → −𝑎
0
/𝑎
1
.

2. Lemmas

It is well-known that 𝜌 is always positive if the initial datum
𝜌(0, 𝑟) is set to be positive. Thus, we suppose 𝜌(0, 𝑟) > 0 in
the following to avoid the trivial solutions 𝜌 ≡ 0.

Lemma 3. For 𝛾 > 1, one has

[
𝜌
𝛾−1

𝛾 − 1
]

𝑡

+ [
𝜌
𝛾−1

𝛾 − 1
]

𝑟

𝑢 + 𝜌
𝛾−1

[𝑢
𝑟
+
𝑁 − 1

𝑟
𝑢] = 0. (7)

Proof. From (5)
1
, one has

𝜌
𝑡
+ 𝜌
𝑟
𝑢 + 𝜌 (𝑢

𝑟
+
𝑁 − 1

𝑟
𝑢) = 0. (8)

Multiply both sides by 𝜌𝛾−2. Then, the result follows.

Lemma 4. For 𝛾 > 1, one has

[
𝜌
𝛾−1

𝛾 − 1
]

𝑟

= −
1

𝐾𝛾
[𝑢
𝑡
+ 𝑢𝑢
𝑟
] , (9)

𝜌
𝛾−1

= 𝜌
𝛾−1

(𝑡, 1) −
𝛾 − 1

𝐾𝛾
∫

𝑟

1

[𝑢
𝑡
+ 𝑢𝑢
𝑟
] (𝑡, 𝑠) 𝑑𝑠, (10)

[
𝜌
𝛾−1

𝛾 − 1
]

𝑡

=
𝑑

𝑑𝑡
(
𝜌
𝛾−1

(𝑡, 1)

𝛾 − 1
)

−
1

𝐾𝛾
∫

𝑟

1

[𝑢
𝑡
+ 𝑢𝑢
𝑟
]
𝑡
(𝑡, 𝑠) 𝑑𝑠.

(11)

Proof. From (5)
2
, one has

𝑢
𝑡
+ 𝑢𝑢
𝑟
+ 𝐾𝜌
𝛾−2

𝜌
𝑟
= 0,

𝑢
𝑡
+ 𝑢𝑢
𝑟
+ 𝐾[

𝜌
𝛾−1

𝛾 − 1
]

𝑟

= 0

(12)

and the results follow.

Similarly, we have the following two lemmas for 𝛾 = 1.

Lemma 5. For 𝛾 = 1, one has

[ln 𝜌]
𝑡
+ [ln 𝜌]

𝑟
𝑢 + (𝑢

𝑟
+
𝑁 − 1

𝑟
𝑢) = 0. (13)

Lemma 6. For 𝛾 = 1, one has

[ln 𝜌]
𝑟
= −

1

𝐾
[𝑢
𝑟
+ 𝑢𝑢
𝑟
] , (14)

ln 𝜌 = ln 𝜌 (𝑡, 1) − 1

𝐾
∫

𝑟

1

[𝑢
𝑟
+ 𝑢𝑢
𝑟
] (𝑡, 𝑠) 𝑑𝑠, (15)

[ln 𝜌]
𝑡
=

𝑑

𝑑𝑡
ln 𝜌 (𝑡, 1) − 1

𝐾
∫

𝑟

1

[𝑢
𝑟
+ 𝑢𝑢
𝑟
]
𝑡
(𝑡, 𝑠) 𝑑𝑠. (16)

Lastly, one has the following lemma that will be used to prove
that there are only trivial solutions when 𝑢(𝑡, 𝑟) = 𝑐(𝑡)𝑟 + 𝑏(𝑡)

and 𝛾 > 1.

Lemma 7. Consider the following dynamical system

𝑐
3

+ 𝐴
1
𝑐 ̇𝑐 + 𝐵

1
̈𝑐 = 0,

𝑐
3

+ 𝐴
2
𝑐 ̇𝑐 + 𝐵

2
̈𝑐 = 0

(17)

with 𝐴
1

̸= 𝐴
2
or 𝐵
1

̸= 𝐵
2
. If 𝐴 ̸= 0, 𝐵 ̸= 0, and

𝐴 (𝐴
1
𝐵
2
− 𝐴
2
𝐵
1
) = 2𝐵

2

, (18)
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then (17) is equivalent to

𝐴

2
𝑐
2

+ 𝐵 ̇𝑐 = 0, (19)

where

𝐴 fl 𝐴
2
− 𝐴
1
,

𝐵 fl 𝐵
2
− 𝐵
1
.

(20)

Otherwise, the solution to (17) is trivial.

Proof. If 𝐴
1
𝐵
2
− 𝐴
2
𝐵
1
= 0, then it is clear that 𝑐 = 0 is the

only solution. So we suppose𝐴
1
𝐵
2
−𝐴
2
𝐵
1

̸= 0. One has from
(17) that

𝐴𝑐 ̇𝑐 + 𝐵 ̈𝑐 = 0. (21)

If 𝐵 = 0 and 𝐴 ̸= 0, then 𝑐 = 0 is the only solution.
If 𝐴 = 0 and 𝐵 ̸= 0, then 𝑐 = 0 is the only solution.
So, we suppose both 𝐴 and 𝐵 are not zero.
From (21), one has

𝐴

2
𝑐
2

+ 𝐵 ̇𝑐 = 𝜉, (22)

for some constant 𝜉.
From (21) and (22), one has

̈𝑐 = −
𝐴

𝐵
𝑐 ̇𝑐,

̇𝑐 =
1

𝐵
(𝜉 −

𝐴

2
𝑐
2

) .

(23)

Thus, from (17)
1
, one has

𝑐 [(1 −
𝐴 (𝐴
1
𝐵
2
− 𝐴
2
𝐵
1
)

2𝐵2
) 𝑐
2

+
(𝐴
1
𝐵
2
− 𝐴
2
𝐵
1
)

𝐵2
𝜉]

= 0.

(24)

If 1−𝐴(𝐴
1
𝐵
2
−𝐴
2
𝐵
1
)/2𝐵
2

̸= 0, then 𝑐 = 0 is the only solution.
Sowe suppose it is zero; that is, (18) holds.Then, if 𝜉 ̸= 0, 𝑐 = 0

is the only solution. So we suppose 𝜉 = 0. Thus, we have

𝐴

2
𝑐
2

+ 𝐵 ̇𝑐 = 0. (25)

Conversely, if one has (18) and (19), then system (17) is
satisfied. The proof is complete.

3. Proofs of Main Results

Proposition 8. Assume 𝛾 > 1. Then there are only trivial
solutions to the 𝑁-dimensional Euler system (5) of the form
𝑢 = 𝑐(𝑡)𝑟

𝛼

+ 𝑏(𝑡) with 𝛼 ̸= 1.

Proof. First, we set

𝑢 (𝑡, 𝑟) = 𝑐 (𝑡) 𝑟
𝛼

+ 𝑏 (𝑡) . (26)

From (5)
4
, we have

𝑢 = 𝑐 (𝑡) [𝑟
𝛼

− 1] . (27)

Then,

𝑢
𝑡
+ 𝑢𝑢
𝑟
= ̇𝑐𝑟
𝛼

+ 𝛼𝑐
2

𝑟
2𝛼−1

− 𝛼𝑐
2

𝑟
𝛼−1

− ̇𝑐, (28)

[𝑢
𝑡
+ 𝑢𝑢
𝑟
]
𝑡
= ̈𝑐𝑟
𝛼

+ 2𝛼𝑐 ̇𝑐𝑟
2𝛼−1

− 2𝛼𝑐 ̇𝑐𝑟
𝛼−1

− ̈𝑐, (29)

𝑢
𝑟
+
𝑁 − 1

𝑟
𝑢 = [𝛼 + 𝑁 − 1] 𝑐𝑟

𝛼−1

− (𝑁 − 1) 𝑐𝑟
−1

. (30)

For 𝑁 > 1, if 𝛼 = 0, then 𝑢 = 0 from (27). It follows from
(7) and (9) that 𝜌(𝑡, 𝑟) is independent of 𝑡 and 𝑟, respectively.
Thus, 𝜌 is a constant.

For 𝛼 ̸= 0 and −1, after substituting (28), (29), and (30)
into (9), (11), and (7), respectively, we see that (7) becomes

𝐷
1
𝑟
3𝛼−1

+ 𝐷
2
𝑟
2𝛼

+ 𝐷
3
𝑟
2𝛼−1

+ 𝐷
4
𝑟
𝛼+1

+ 𝐷
5
𝑟
𝛼

+ 𝐷
6
𝑟
𝛼−1

+ 𝐷
7
𝑟
1

+ 𝐷
8
𝑟
0

+ 𝐷
9
𝑟
−1

= 0

(31)

for all 𝑟 ≥ 1, where𝐷
𝑘
are functions of 𝑡 only. More precisely,

one has

𝐷
1
= −

2𝛼 + (𝛾 − 1) (𝛼 + 𝑁 − 1)

2𝐾𝛾
𝑐
3

,

𝐷
2
= −

(𝛾 − 1) (𝛼 + 𝑁 − 1) + 2𝛼 + 2

𝐾𝛾 (𝛼 + 1)
𝑐 ̇𝑐,

𝐷
3
=
(𝛾 − 1) (2𝛼 + 3𝑁 − 3) + 4𝛼

2𝐾𝛾
𝑐
3

,

𝐷
4
= −

1

𝐾𝛾 (𝛼 + 1)
̈𝑐,

𝐷
5
= [(𝛾 − 1) (𝛼 + 𝑁 + 1) +

(𝛾 − 1) (𝑁 − 1)

𝛼 + 1
+ 4]

⋅
1

𝐾𝛾
𝑐 ̇𝑐,

𝐷
6
= −

𝛼 + (𝛾 − 1) (𝑁 − 1)

𝐾𝛾
𝑐
3

+ (𝛼 + 𝑁 − 1) 𝐹𝑐,

𝐷
7
=

1

𝐾𝛾
̈𝑐,

𝐷
9
= − (𝑁 − 1) 𝐹𝑐,

(32)

where

𝐹 fl 𝜌
𝛾−1

(𝑡, 1) −
𝛾 − 1

𝐾𝛾
[

𝛼

𝛼 + 1
̇𝑐 +

𝑐
2

2
] . (33)

Note that we omitted𝐷
8
as it is irrelevant in the proof.

If 𝛼 ∉ {0, 1/3, 1/2, 2/3, 1, 2}, then the powers 3𝛼 − 1 and
2𝛼 − 1 are different and unique among the powers in (31). In
this case, one has

𝐷
1
= 0,

𝐷
3
= 0.

(34)
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Table 1

𝛼 1/3 1/2 2/3 2

3𝛼 − 1 (𝐷
1
) 0 1/2 1 5

2𝛼 (𝐷
2
) 2/3 1 4/3 4

2𝛼 − 1 (𝐷
3
) −1/3 0 1/3 3

𝛼 + 1 (𝐷
4
) 4/3 3/2 5/3 3

𝛼 (𝐷
5
) 1/3 1/2 2/3 2

𝛼 − 1 (𝐷
6
) −2/3 −1/2 −1/3 1

1 (𝐷
7
) 1 1 1 1

0 (𝐷
8
) 0 0 0 0

−1 (𝐷
9
) −1 −1 −1 −1

As the two constants 2𝛼 + (𝛾 − 1)(𝛼 +𝑁− 1) and (𝛾 − 1)(2𝛼 +
3𝑁−3)+4𝛼 cannot be both zero for𝑁 ̸= 1, we conclude that
𝑐 = 0. Hence, 𝑢 = 0 and 𝜌 is a constant.

For 𝛼 ∈ {1/3, 1/2, 2/3, 2}, we have Table 1.
For 𝛼 = 1/3 or 2/3, as 2𝛼 − 1 is unique among other

powers, one has

𝐷
3
=
(𝛾 − 1) (2𝛼 + 3𝑁 − 3) + 4𝛼

2𝐾𝛾
𝑐
3

= 0. (35)

As (𝛾 − 1)(2𝛼 + 3𝑁 − 3) + 4𝛼 ̸= 0, we conclude that 𝑐 = 0.
Thus, 𝑢 = 0 and 𝜌 is a constant.

For 𝛼 = 1/2, as 𝛼 − 1 and −1 are different and unique
among other powers, one has

𝐷
6
= 0,

𝐷
9
= 0,

(36)

which is reduced to

−
𝛼 + (𝛾 − 1) (𝑁 − 1)

𝐾𝛾
𝑐
3

= 0 (37)

for𝑁 ̸= 1. As 𝛼 + (𝛾 − 1)(𝑁 − 1) ̸= 0, we conclude that 𝑐 = 0.
Thus, 𝑢 = 0 and 𝜌 is a constant.

For 𝛼 = 2, as 3𝛼 − 1 is unique among other powers, one
has

𝐷
1
= −

2𝛼 + (𝛾 − 1) (𝛼 + 𝑁 − 1)

2𝐾𝛾
𝑐
3

= 0. (38)

As 2𝛼 + (𝛾 − 1)(𝛼 +𝑁 − 1) ̸= 0, we conclude that 𝑐 = 0. Thus,
𝑢 = 0 and 𝜌 is a constant.

Next, we consider the case 𝛼 = −1.
For 𝛼 = −1, the corresponding equation of (31) is

𝐸
1
ln 𝑟 + 𝐸

2
𝑟
−1 ln 𝑟 + 𝐸

3
𝑟
−2 ln 𝑟 + 𝐸

4
𝑟 + 𝐸
5
𝑟
0

+ 𝐸
6
𝑟
−1

+ 𝐸
7
𝑟
−2

+ 𝐸
8
𝑟
−3

+ 𝐸
9
𝑟
−4

= 0

(39)

for all 𝑟 ≥ 1, where 𝐸
𝑘
are functions of 𝑡 only. As ln 𝑟 is not a

rational function, one has that all 𝐸
𝑘
= 0. In particular, one

has

𝐸
8
=
−4 + (𝛾 − 1) (3𝑁 − 5)

2𝐾𝛾
𝑐
3

= 0,

𝐸
9
=
2 − (𝑁 − 2) (𝛾 − 1)

2𝐾𝛾
𝑐
3

= 0.

(40)

As −4+ (𝛾− 1)(3𝑁−5) and 2− (𝑁−2)(𝛾− 1) cannot be both
zero for𝑁 ̸= 1, we conclude that 𝑐 = 0 and the solutions are
trivial.

For 𝑁 = 1 and 𝛼 ̸= 1, one can show that there are
only trivial solutions with similar procedures. The proof is
complete.

Using similar analysis as that given for the case 𝛾 > 1

in Proposition 8, we obtain the following proposition for the
case 𝛾 = 1.

Proposition 9. Assume 𝛾 = 1. Then there are only trivial
solutions to the 𝑁-dimensional Euler system (5) of the form
𝑢 = 𝑐(𝑡)𝑟

𝛼

+ 𝑏(𝑡) with 𝛼 ̸= 1.

Next, the crucial case 𝛼 = 1 will be analyzed as follows.

Proposition 10. Assume 𝛾 > 1. Then there are only trivial
solutions to the 𝑁-dimensional Euler system (5) of the form
𝑢 = 𝑐(𝑡)𝑟

𝛼

+ 𝑏(𝑡) with 𝛼 = 1.

Proof. For 𝛾 > 1 and 𝛼 = 1, one has

𝐷
1
+ 𝐷
2
+ 𝐷
4
= 0,

𝐷
3
+ 𝐷
5
+ 𝐷
7
= 0,

𝐷
6
+ 𝐷
8
= 0,

𝐷
9
= 0.

(41)

(41)
1
and (41)

2
are equivalent to

𝑐
3

+ 𝐴
1
𝑐 ̇𝑐 + 𝐵

1
̈𝑐 = 0,

𝑐
3

+ 𝐴
2
𝑐 ̇𝑐 + 𝐵

2
̈𝑐 = 0,

(42)

where

𝐴
1
=
(𝛾 − 1)𝑁 + 4

(𝛾 − 1)𝑁 + 2
,

𝐵
1
=

1

(𝛾 − 1)𝑁 + 2
,

𝐴
2
=
3 (𝛾 − 1) (𝑁 + 1) + 8

(𝛾 − 1) (3𝑁 − 1) + 4
,

𝐵
2
=

2

(𝛾 − 1) (3𝑁 − 1) + 4
.

(43)

Note that 𝐵
1
= 𝐵
2
is equivalent to 𝑁 = 1 and 𝐴

1
= 𝐴
2
is

equivalent to

𝛾 − 1 =
𝑁 − 5

2𝑁
, 𝑁 ≥ 6. (44)

Thus, we have either 𝐴
1

̸= 𝐴
2
or 𝐵
1

̸= 𝐵
2
. Moreover,

condition (18) is equivalent to

𝛾 − 1 = −
8

𝑁 (𝑁 + 3)
, (45)

which is impossible for 𝛾 > 1.Thus, we conclude by Lemma 7
that there are only trivial solutions.
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Next, we consider the remaining case 𝛾 = 𝛼 = 1.

Proposition 11. Assume 𝛾 = 1. Then there are only trivial
solutions to the 𝑁-dimensional Euler system (5) of the form
𝑢 = 𝑐(𝑡)𝑟

𝛼

+ 𝑏(𝑡) with 𝛼 = 1 and 𝑁 > 1. For 𝑁 = 𝛼 = 1,
one has the following two cases.

(1) If 𝑐2(0) + ̇𝑐(0) > 0, then, for any 𝑡, 𝑐2(𝑡) + ̇𝑐(𝑡) > 0, and
𝑐(𝑡) → 0, (𝜌, 𝑢) → (0, 0) as 𝑡 → ∞.

(2) If 𝑐2(0) + ̇𝑐(0) < 0, then, for any 𝑡, 𝑐2(𝑡) + ̇𝑐(𝑡) < 0.
Moreover, in the region where 𝑐2(𝑡) + ̇𝑐(𝑡) < 0, 𝑐(𝑡) →
−∞ and (𝜌, 𝑢) → (∞, −∞) as 𝑡 → ∞.

Proof. For 𝛾 = 𝛼 = 1, the corresponding system of (41) is

𝐺
1
+ 𝐺
2
+ 𝐺
4
= 0,

𝐺
3
+ 𝐺
5
+ 𝐺
7
= 0,

𝐺
6
+ 𝐺
8
= 0,

𝐺
9
= 0,

(46)

where

𝐺
1
= −

1

𝐾
𝑐
3

,

𝐺
2
= −

2

𝐾
𝑐 ̇𝑐,

𝐺
3
=
2

𝐾
𝑐
3

,

𝐺
4
= −

1

2𝐾
̈𝑐,

𝐺
5
=
4

𝐾
𝑐 ̇𝑐,

𝐺
6
= −

1

𝐾
𝑐
3

+ 𝑁𝑐,

𝐺
7
=
1

𝐾
̈𝑐,

𝐺
8
= −

1

𝐾
𝑐 ̇𝑐 +

𝑑

𝑑𝑡
ln 𝜌 (𝑡, 1) − 1

𝐾
(
1

2
̈𝑐 + 𝑐 ̇𝑐) ,

(47)

𝐺
9
= − (𝑁 − 1) 𝑐. (48)

It is clear that from (46)
4
and (48) we have only the trivial

solutions if 𝑁 ̸= 1. So we suppose 𝑁 = 1. Then (46) is
equivalent to

2𝑐
3

+ 4𝑐 ̇𝑐 + ̈𝑐 = 0,

𝑑

𝑑𝑡
ln 𝜌 (𝑡, 1) = −𝑐.

(49)

Note that (49)
1
is a special case of equation (7) in [10] when

we set the parameter𝑁 in (7) to be zero.Thus, byTheorem 2.1
in [10], the results (1) and (2) in the proposition follow.

Remark 12. From (49)
2
and (15), the density function 𝜌 is

given by

𝜌 (𝑡, 𝑟) = 𝜌 (0, 1) 𝑒
−∫

𝑡

0
𝑐(𝑠)𝑑𝑠

𝑒
−((𝑐
2
+ ̇𝑐)/𝐾)((1/2)𝑟

2
−𝑟+1/2)

. (50)

Thus, the total mass is finite if 𝑐2(0) + ̇𝑐(0) > 0 and is infinite
if 𝑐2(0)+ ̇𝑐(0) < 0. From (1) and (2) in the proposition, we see
that blowup can occur only when the total mass is infinite.

Proof of Theorem 1. Theorem 1 is followed from Propositions
8–11.

Finally, we are ready to present the proof of Corollary 2.

Proof of Corollary 2. Let 𝑐 = 𝑎̇/𝑎 in (49)
1
. One has

...
𝑎

𝑎
+
𝑎̇𝑎̈

𝑎2
= 0. (51)

It follows that

𝑑

𝑑𝑡
(𝑎𝑎̈) = 0,

𝑎𝑎̈ = 𝜆,

(52)

where 𝜆 fl 𝑎
0
𝑎̈(0). Thus, 𝑎 satisfies (6). Consider (6) with

initial conditions

𝑎
0
= 𝑎 (0) > 0,

𝑎
1
fl 𝑎̇ (0) .

(53)

Set

𝑇
∗ fl sup {𝑡 ≥ 0 : 𝑎 > 0 on [0, 𝑡)} > 0. (54)

First, note that if 𝑇∗ is finite, then the one-sided limit
lim
𝑡→𝑇

∗𝑎(𝑡) must be zero. More precisely, if 𝑇∗ is finite and
lim
𝑡→𝑇

∗𝑎(𝑡) > 0, then we can extend the solution by solving
(6) with initial condition 𝑎(𝑇

∗

) fl lim
𝑡→𝑇

∗𝑎(𝑡) > 0. This
contradicts the definition of 𝑇∗.

Next, suppose 𝜆 < 0, and then

𝑎̈ =
𝜆

𝑎
, (55)

𝑎̇𝑎̈ = 𝜆
𝑎̇

𝑎
,

𝑑

𝑑𝑡
(
1

2
(𝑎̇)
2

− 𝜆 ln 𝑎) = 0,

1

2
(𝑎̇)
2

− 𝜆 ln 𝑎 = 𝜇,

(56)

where 𝜇 fl (1/2)𝑎
2

1
− 𝜆 ln 𝑎

0
. It follows that

𝜇 + 𝜆 ln 𝑎 = 1

2
(𝑎̇)
2

≥ 0,

ln 𝑎 ≤ −
𝜇

𝜆
,

𝑎 ≤ 𝑒
−𝜇/𝜆

.

(57)
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From (55), one has

𝑎̈ ≤ 𝜆𝑒
𝜇/𝜆

,

𝑎 (𝑡) ≤
1

2
𝜆𝑒
𝜇/𝜆

𝑡
2

+ 𝑎
1
𝑡 + 𝑎
0
.

(58)

As the coefficient of 𝑡2 is negative, we see that 𝑎(𝑡) will be
negative if 𝑡 is sufficiently large. This implies that 𝑇∗ < (𝑎

1
+

√𝑎
2

1
− 2𝑎
0
𝜆𝑒𝜇/𝜆)/ − 𝜆𝑒

𝜇/𝜆 is finite.
On the other hand, from (55), one has

𝑎̇ = 𝑎
1
+ ∫

𝑡

0

𝜆

𝑎 (𝑠)
𝑑𝑠 ≤ 𝑎

1
+ 𝜆𝑒
𝜇/𝜆

𝑡,

lim
𝑡→𝑇

∗

𝑎̇ ≤ 𝑎
1
+ 𝜆𝑒
𝜇/𝜆

𝑇
∗

< −√𝑎
2

1
− 2𝑎
0
𝜆𝑒𝜇/𝜆 < 0.

(59)

Thus,

lim
𝑡→𝑇

∗

𝑎̇

𝑎
= −∞. (60)

Thus, 𝑢 → −∞ and 𝜌 → ∞ as 𝑡 → 𝑇
∗.

For 𝜆 > 0, one has

(i) 𝑎 ≥ 𝑒
−𝜇/𝜆

> 0,
(ii) 𝑇∗ = ∞,
(iii)

𝜌 (𝑡, 𝑟) =
𝑎
0
𝜌 (0, 1)

𝑎 (𝑡)
𝑒
−(𝜆/2𝐾𝑎

2
(𝑡))(𝑟−1)

2

. (61)

From (i), (ii), and (iii) above, we see that 𝜌 is bounded above
by

𝜌 (0, 1) 𝑎
0
𝑒
𝜇/𝜆

. (62)

Moreover, we have lim
𝑡→∞

𝑎(𝑡) = ∞. This is because if
lim
𝑡→∞

𝑎(𝑡) is finite, then 𝑎(𝑡) is bounded by some positive
number𝑀 > 0. But, from (6), one has

𝑎̈ ≥
𝜆

𝑀
,

𝑎 (𝑡) ≥
𝜆

2𝑀
𝑡
2

+ 𝑡𝑎
1
+ 𝑎
0
,

(63)

which implies that 𝑎 is unbounded as the coefficient of 𝑡2 is
positive.

Next, we show that

lim
𝑡→∞

𝑎̇

𝑎
= 0. (64)

If lim
𝑡→∞

𝑎̇ is finite, then (64) is clearly held. If lim
𝑡→∞

𝑎̇ is
not finite, then

lim
𝑡→∞

𝑎̇

𝑎
= lim
𝑡→∞

𝑎̈

𝑎̇
= lim
𝑡→∞

𝜆

𝑎𝑎̇
= 0. (65)

Thus, for 𝜆 > 0, (𝜌, 𝑢) → (0, 0) as 𝑡 → ∞.
As the cases for 𝜆 = 0 can be verified trivially, the proof is

complete.
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