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A procedure is described that can be used to reconstruct the quantum state of a molecular ensemble from time-dependent
internuclear probability density functions determined by time-resolved electron diffraction.Theproceduremakes use of established
techniques for evaluating the density matrix and the phase-space joint probability density, that is, the Wigner function. A novel
expression for describing electron diffraction intensities in terms of the Wigner function is presented. An approximate variant of
the method, neglecting the off-diagonal elements of the density matrix, was tested by analyzing gas electron diffraction data for
N
2
in a Boltzmann distribution and TRED data obtained from the 193 nm photodissociation of CS

2
to carbon monosulfide, CS, at

20, 40, and 120 ns after irradiation. The coherent changes in the nuclear subsystem by time-resolved electron diffraction method
determine the fundamental transition from the standard kinetics to the dynamics of the phase trajectory of the molecule and the
tomography of molecular quantum state.

1. Introduction

In accordance with basic quantum principles, the state of
an individual molecule cannot be determined experimentally
[1]. However, for an ensemble of similarly prepared systems,
it is possible to determine their state operator, the so-
called density matrix. Knowing the state of a system means
having the maximum possible information about all physical
quantities of interest available [2]. The density matrix and
the joint phase-space probability density, orWigner function,
[3, 4] have a one-to-one correspondence [5] that describes
the maximal statistical information available. Thus, in the
following text, when the term molecular quantum state is
used, we mean the quantum state of an ensemble of similarly
prepared molecular species.

In 1933 it was demonstrated by Freenberg [6] (see also
[1, page 71]) that, in principle, a pure quantum state |Ψ⟩

can be reconstructed from the time-dependent coordinate
probability density 𝑃(𝑟, 𝑡) = |Ψ(𝑟, 𝑡)|

2 and its derivative
𝜕𝑃(𝑟, 𝑡)/𝜕𝑡. It was shown by Weigert [7] that a pure quantum
statemay also be reconstructed bymeasuring the distribution
𝑃(𝑟, 𝑡) at time 𝑡 andmonitoring its evolution after a short time
interval Δ𝑡; that is, 𝑃(𝑟, 𝑡 + Δ𝑡) = |Ψ(𝑟, 𝑡 + Δ𝑡)|

2.

For mixed quantum states, the method of optical homo-
dyne tomography to measure the Wigner function (and
density matrix) was first demonstrated by Smithey et al. [8, 9]
for both vacuum and squeezed vacuum states of a single
spatial-temporalmode in an applied electromagnetic field. (A
number of investigations into the preparation and measure-
ment of the quantum state of light may be found in [10].)

In experiments of Kurtsiefer et al. [11, 12], it is demon-
strated that Wigner’s function can be reconstructed from
double-slit experiments involving a coherent beam of helium
atoms. Their result [11, 12] shows that the joint phase-space
probability density 𝑊(𝑟, 𝑝), where 𝑝 is the momentum,
exhibits negative areas indicating purely nonclassical behav-
ior, such as what might be expected of a particle in an atomic
interferometer when it is in a linear superposition of states at
two separate locations (see also comments in [13]).

In studies of molecular states, measurements of time-
dependent fluorescence spectra make it possible to recon-
struct Wigner’s function for single molecular vibrational
modes excited by short optical pulses. This technique is
referred to as Molecular Emission Tomography (MET) [14]
andwas used byDunn et al. in studies of electronically excited
Na
2
wave packets, moving in a suggested harmonic potential.
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In the current paper, it is described how time-resolved
electron diffraction (TRED) may be used in tomographic
studies of the molecular state. TRED [15–17] provides exper-
imental observations having a direct correspondence to
the molecular time-dependent probability density function
𝑃(𝑟, 𝑡). In TREDexperiments, a pulsed electron source is used
to probe an ensemble of similarly prepared species through-
out a sequence in time.The diagnostic electron pulses and the
concomitant exciting laser pump pulses are synchronized in
such way that stroboscopic diffraction pictures are obtained.
In this way, time is introduced as a new variable into the
otherwise conventional diffraction technique [15–17]. Thus,
reacting laser-excited species, transient states of chemical
reactions, or molecular wave packets can be investigated
[15–20]. The dynamics of wave packets, as the coherent
superposition of quantum states created by short, phase-
controlled optical pulses [21–24], can also be probed. Coher-
ent nuclear dynamics can be followed in this way [15, 25–27]
because the elastic scattering of fast electrons proceeds on an
ultrashort (ultimately attosecond) time scale and represents a
nondestructive probing technique [15, 25, 26].

2. Theory

2.1. General Aspects. TRED experiments yield time-depend-
ent molecular scattering intensity functions, 𝑀(𝑠, 𝑡) [15, 25,
26], where |s| = 2|k| sin(𝜃/2), k is the momentum vector of
the scattered electrons, and 𝜃 is the scattering angle:

𝑀(𝑠, 𝑡) = (
𝐼
0

𝑅2
)𝑔 (𝑠) ∫𝑃 (𝑟, 𝑡) exp (𝑖sr) 𝑑𝑟. (1)

In (1), 𝐼
0
is the incident electron beam profile, 𝑅 is the scatter-

ing distance, 𝑔(𝑠) are the scattering functions [28], and sr is
the dot product of the scattering vector s and internuclear
distance vector r. Integration in (1) and in the following
equations is over the infinite space if not indicated otherwise.

In classical mechanics, there are no equations that
describe the evolution of the probability densities 𝑃(𝑟, 𝑡)

(or 𝑃(𝑝, 𝑡), where 𝑝 is momentum); only joint probability
densities, 𝑊cl(𝑝, 𝑟, 𝑡), can be expressed by the Liouville
equation. Therefore, corresponding quantum equations for
𝑃(𝑟, 𝑡), as used in (1), and 𝑃(𝑝, 𝑡) cannot exist. However, the
well known Wigner-Liouville equation [4] can be used to
describe the evolution of the Wigner function, 𝑊(𝑝, 𝑟, 𝑡).
In order to derive an equation that expresses the time-
dependent molecular intensities 𝑀(𝑠, 𝑡) in terms of the
Wigner function, the marginal properties of 𝑊(𝑝, 𝑟, 𝑡) [3, 4]
must be considered. That is,

∫𝑊(𝑝, 𝑟, 𝑡) 𝑑𝑝 = 𝑃 (𝑟, 𝑡) , (2)

∫𝑊(𝑝, 𝑟, 𝑡) 𝑑𝑟 = 𝑃 (𝑝, 𝑡) . (3)

Hence, (1) can be expressed as follows:

𝑀(𝑠, 𝑡) = (
𝐼
0

𝑅2
)𝑔 (𝑠) ∫ 𝑑𝑝∫𝑊(𝑝, 𝑟, 𝑡) exp (𝑖sr) 𝑑𝑟. (4)

Equation (4) is the most general representation of TRED
molecular intensities in terms of the Wigner function. In
this representation, 𝑀(𝑠, 𝑡) can be interpreted as the fil-
tered projection of the Wigner function, with the scattering
operator exp(𝑖sr) as the filter, modified by the scattering
functions 𝑔(𝑠). For a number of problems, 𝑊(𝑝, 𝑟, 𝑡) can
be evaluated analytically (see, e.g., the review in [4]) or
by solving the Wigner-Liouville equation numerically with
appropriate molecular potential functions.

In (1) and (2), 𝑃(𝑟, 𝑡) = |Ψ(𝑟, 𝑡)|
2. The wave function

Ψ(𝑟, 𝑡) can be expanded in terms of the orthonormal basis
functions 𝜓

𝑛
(𝑟) in the following way [1, 2]:

Ψ (𝑟, 𝑡) = ∑
𝑛

𝐶
𝑛
𝜓
𝑛
(𝑟) exp (−𝑖𝜔

𝑛
𝑡) , (5)

where 𝑛 is the quantum number of the state energy 𝐸
𝑛
, 𝜔
𝑛
is

the oscillator frequency, and 𝐶
𝑛
is the amplitude. Then, (1).

can be written as

𝑀(𝑠, 𝑡) = (
𝐼
0

𝑅2
)𝑔 (𝑠)

× ∑
𝑚,𝑛

𝜌
𝑚𝑛

exp (𝑖 (𝜔
𝑚
− 𝜔
𝑛
) 𝑡)

× ⟨𝜓
𝑚
(𝑟)

󵄨󵄨󵄨󵄨exp (𝑖sr)
󵄨󵄨󵄨󵄨 𝜓𝑛 (𝑟)⟩ ,

(6)

where the 𝜌
𝑚𝑛

are the density matrix elements.
From (6) it is seen that UEDmolecular intensities depend

explicitly on the quantum state of a molecular system.
Likewise, the 𝑃(𝑟, 𝑡) obtained from TRED data, that is, the
Fourier transform of (1),

𝑃 (𝑟, 𝑡) = (
2

𝜋
)
1/2

(
𝑅
2

𝐼
0

)∫𝑀(𝑠, 𝑡) [𝑔 (𝑠)]
−1 exp (−𝑖sr) 𝑑𝑠,

(7)

depends on both the position 𝑟 and the time 𝑡 and con-
tains implicitly all information on the quantum state of
the system, being a projection or “shadow” [29] of the
Wigner function. A simple sequence of TREDmeasurements
of the position-dependent probability density provides the
necessary information for tomographic reconstruction of
the Wigner function. For this purpose, the inverse Radon
transformation can be applied [29, 30].

Another possibility for molecular quantum state recon-
struction is the evaluation of the density matrix elements,
𝜌
𝑚𝑛
, which have a one-to-one correspondence [5] toWigner’s

function:

𝑊(𝑟, 𝑝) = (
1

𝜋ℎ
)∫ exp(

2𝑖𝑝𝑥

ℎ
) ⟨𝑟 − 𝑥

󵄨󵄨󵄨󵄨𝜌
󵄨󵄨󵄨󵄨 𝑟 + 𝑥⟩ 𝑑𝑥, (8)

where 𝜌 is the density matrix [2]:

𝜌 = ∑
𝑛,𝑚

𝜌
𝑚𝑛

󵄨󵄨󵄨󵄨𝜓𝑛 (𝑟)⟩ ⟨𝜓𝑚 (𝑟)
󵄨󵄨󵄨󵄨. (9)

2.2. Approximate Procedures. When the TRED measure-
ments do not span a complete cycle and the data are incom-
plete, only the diagonal density matrix elements, 𝜌

𝑛
= 𝜌
𝑛𝑛
,
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can be evaluated from the probability density ⟨𝑃(𝑟, 𝑡)⟩
𝜏

averaged over the time interval 𝜏 ≫ sup(|𝜔
𝑚
− 𝜔
𝑛
|
−1
), with

𝑚 ̸= 𝑛, as shown by Richter andWünsche [31–34], Leonhardt
[29, 35], Leonhardt andRaymer [36], and others [37–39].This
method uses the superposition principle combined with the
structure of Schrödinger’s equation to reveal the quantum
state of a molecule from the time-averaged coordinate-
dependent probability density function. In general, and for
a complete data set,

𝜌
𝑚𝑛

= ∫𝑃 (𝑟, 𝜔
𝑚
− 𝜔
𝑛
) {

𝜕 [𝜓
𝑚
(𝑟) 𝜑
𝑛
(𝑟)]

𝜕𝑟
} 𝑑𝑟, (10)

where 𝑃(𝑟, 𝜔
𝑚

− 𝜔
𝑛
) is the Fourier transform of the time-

dependent probability density 𝑃(𝑟, 𝑡) [29, equation 5.59],
the 𝜓
𝑛
(𝑟) are the normalized regular solutions of the time-

independent Schrödinger equation, and the 𝜑
𝑛
(𝑟) are the

linearly independent nonnormalizable irregular second solu-
tions [33, 36, 40].

In the particular case of incomplete data, one can express
the diagonal density matrix elements as

𝜌
𝑛𝑛

= ∫ ⟨𝑃(𝑟, 𝑡)⟩𝜏 {
𝜕 [𝜓
𝑛
(𝑟) 𝜑
𝑛
(𝑟)]

𝜕𝑟
} 𝑑𝑟. (11)

Time-dependent probability density function 𝑃(𝑟, 𝑡) aver-
aged over electron pulse profile of duration 𝜏 provides evolu-
tion in time of the diagonal density matrix elements 𝜌

𝑛𝑛
in

(11).
The terms state, density matrix, or Wigner function are,

for most practical purposes, synonymous. Thus, when the
available data are incomplete and only the diagonal density
matrix elements are used, one has to keep in mind that it
is not possible to determine the complete Wigner function.
However, it is possible to use the diagonal density matrix
elements to calculate an approximate or truncated Wigner
function, which contains useful information when the off-
diagonal elements are small.The truncatedWigner functions
can be used to calculate approximate vonNeumann entropies
and purity parameters which, nonetheless, may contain
meaningful information on the quantum state of a system.

3. Experiment

Instrumentation for TRED developed at the University of
Arkansas, spanning the time domain from microseconds to
picoseconds, has been described before [41]. A UV laser-
driven tantalum photocathode in a Pierce-type [42] electron
gun assembly was used for generation of the probe electron
pulses. The mechanics of the photoemission process suggest
that the electron pulse should follow the temporal profile of
the incident optical pulse [43, 44]. In the experiments used
for this study, the output from an excimer laser (Questek
Model 2260, 193 nm (ArF), pulse duration ∼15 ns) was used
to generate electron pulses (duration ∼15 ns FWHM, ∼1010
electrons per pulse [41]) which were accelerated through a
potential of ∼40 keV. For the current study, carbon disulfide,
CS
2
, target molecules were irradiated with similar 193 nm

laser pulses from a second excimer at 50–130mJ per pulse.
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Figure 1: Experimental probability densities for CS at 20, 40, and
120 ns following irradiation of CS

2
at 193 nm, as calculated from the

stochastic approach [45], and selected sampling functions (lower
curves). The sampling procedure was applied for 𝑛 < 10 and the
dimensionless variable 𝑥 = (2𝜋𝜇𝜔

𝑒
/ℎ)
1/2

(𝑟 − 𝑟
𝑒
), where 𝜇 is the

reduced mass, 𝜔
𝑒
the harmonic frequency, and 𝑟

𝑒
the equilibrium

internuclear distance. Sampling functions for CS (bottom) are
defined in (14).

Delay times between excitation and electron scattering varied
from 20 to 120 ns and the diffraction intensities were recorded
online using a phosphor screen-photodiode array detector
[41].The target gaseswere admitted into the vacuumchamber
through a nozzle orifice (I.D. 200 𝜇m) at a pushing pressure
of 30–50 Torr. The electron scattering occurred in a volume
immediately adjacent to the nozzle exit in which the gas
pressure is estimated to be∼10 Torr. Such conditions preclude
the formation of clusters, and the number 𝑍 of collisions per
particle in the target gas is estimated to be in the range of
10
0
< 𝑍 < 10

2 in 15 ns. Also, time averaging is determined by
the electron pulse profile and averaging time 𝜏 ∼ 15 ns. The
experimental TREDdata sets [45] and sampling functions are
presented in Figure 1.
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Table 1: Diagonal density matrix elements for N2 and CS.

𝑛/𝜌
𝑛𝑛

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
N
2
(exp)a 0.9938 0.0011 0.0102 −0.000 0.001 0.005 −0.009 0.012 −0.011 0.009 −0.005 — — — —

N
2
(theor)b 0.9935 0.0064 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CS (nasc)c 0.000 0.049 0.098 0.156 0.101 0.077 0.061 0.070 0.073 0.077 0.077 0.073 0.067 0.021 0.000
CS (nasc)d 0.000 0.074 0.148 0.236 0.153 0.116 0.083 0.042 0.042 0.032 0.023 0.023 0.028 — —
CS (20 ns)e 0.349 0.260 0.172 0.099 0.053 0.025 0.013 0.000 −0.001 −0.003 0.001 — — — —
CS (40 ns)e 0.204 0.190 0.160 0.129 0.097 0.075 0.058 0.033 0.005 −0.015 −0.015 — — — —
CS (120 ns)e 0.173 0.165 0.147 0.124 0.100 0.080 0.058 0.040 0.029 0.021 0.013 — — — —
aValues obtained from experimental electron diffraction intensities of N2 in an equilibrium Boltzmann distribution recorded at 673K. Estimated uncertainties
are 0.01. bValues calculated for a Boltzmann distribution at𝑇 = 673K. cValues derived from the nascent ensemble of CS reported in [46]. dValues derived from
the nascent ensemble of CS reported in [47]. eDerived from TRED data of photogenerated CS recorded at 20, 40, and 120 ns after the 193 nm photodissociation
of CS2.

To further illustrate the described procedures, N
2
in an

equilibrium Boltzmann distribution was chosen as a test case
because its potential energy function is well known from
high-resolution spectroscopic measurements. Data were
recorded throughout the temperature range from 298K to
773K,with a continuous electron beam [15, 41]. Experimental
data and sampling functions are presented in Figure 2.

4. Results and Discussion

The photochemistry of CS
2
has been thoroughly studied in

the absorption region from 180 to 210 nm [45–47]. At 193 nm,
and in single-photon processes, the photodissociation pro-
ceeds according to the following two-channel scheme:

CS
2
(𝑋
1
Σ
+

𝑔
)󳨀→CS

2
(
1
𝐵
2

1

Σ
−

𝑢
)󳨀→CS(𝑋 1Σ+

𝑔
)+𝑆 (

3
𝑃
𝐽
)

(12)

CS
2
(𝑋
1

Σ
+

𝑔
)󳨀→CS

2
(
1
𝐵
2

1

Σ
−

𝑢
)󳨀→CS (𝑋 1Σ+

𝑔
)+𝑆 (

1
𝐷
𝐽
) .

(13)

The structure of excited state of CS
2
is believed to be quasi-

linear, but with different geometrical parameters compared
to the ground state; further, predissociation occurs on a time
scale of ∼1 ps.

In supersonic molecular beams of 193 nm irradiated CS
2
,

it was found [46, 47] that the nascent vibrational distribu-
tion of CS is strongly inverted for both the 1𝐷

2
and 3𝑃

2

dissociation channels, exhibiting a bimodal [46] or broad [47]
distribution with low occupancy at 𝑛 = 0 and 𝑛 ≥ 10, as
summarized in Table 1.

To apply the quantum sampling procedure to N
2
as

a test equilibrium case, position-probability densities were
first derived from the diffraction intensities by using the
stochastic approach to data analysis [45]. This approach
[45] allows one to refine TRED data of laser-excited species
without imposing any model restrictions on intramolecular
motion. It is an advantage of the procedure that the requisite
molecular parameters may be refined from the experimental
data without any information on the potential energy surface.

90 95 100 105 110 115 120 125 130
r (pm)

N2 P(r) versus r

(a)

Sampling functions (n = 0, 1, 2)
2.0
1.5

0.0

0 1 2 3

0

4

1

5

2

0.5
1.0

−0.5

−1.0

−1.5

−2.0

−5 −4 −3 −2 −1

X

(b)

Figure 2: Experimental probability density for N
2
(upper curve) in

an equilibrium distribution at 673K; note the slight asymmetry of
the 𝑃(𝑟) due to the anharm1onicity of the molecular vibration. Typ-
ical sampling functions (lower curves) selected for illustration. The
sampling procedure was applied for 𝑛 < 10 and the dimensionless
variable 𝑥 = (2𝜋𝜇𝜔

𝑒
/ℎ)
1/2

(𝑟 − 𝑟
𝑒
), where 𝜇 is the reduced mass, 𝜔

𝑒

is the harmonic frequency, and 𝑟
𝑒
is the equilibrium internuclear

distance. Sampling functions for N
2
(bottom) are defined in (14).
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Figure 3: Wigner function for N
2
in a Boltzmann distribution

reconstructed from the experimental electron diffraction results of
[41, 45]. The marginal 𝑃(𝑟) and 𝑃(𝑝) at the left and right edges of
the graph, respectively, are plotted on an arbitrary vertical scale;
momentum scale is in arbitrary units. For this equilibrium case, the
diagonal density matrix elements and Wigner function adequately
describe the full quantum state of the system.

The probability density functions obtained in this way were
then sampled with the functions 𝐹

𝑚𝑛
(𝑟) [34]:

𝐹
𝑚𝑛

(𝑟) =
𝜕 [𝜓
𝑚
(𝑟) 𝜑
𝑛
(𝑟)]

𝜕𝑟
, (14)

where 𝜓
𝑚
(𝑟) and 𝜑

𝑛
(𝑟) are, respectively, the normalized reg-

ular and nonnormalizable irregular wave functions referred
to above. The sampling functions for the first 3 levels are
shown in Figure 2. Calculated densitymatrix elements for the
Boltzmanndistribution ofN

2
at𝑇 = 673Kare comparedwith

the experimentally determined values in Table 1.
The truncated Wigner function, together with the

associated marginal position- and momentum-dependent
probability density functions ((2) and (3)), is shown in
Figure 3. The results represent, for the nearly harmonic one-
dimensional oscillator at equilibrium, a Gaussian-like func-
tion and Gaussian-like marginal position- and momentum-
probability densities.

For CS, we derived time-dependent probability density
functions ⟨𝑃(𝑟, 𝑡)⟩

𝜏
= 𝑃(𝑟, 𝑡

𝑑
) at several delay times from the

experimental time-dependent molecular intensity functions,
using the stochastic approach [15, 45]. To calculate the
sampling functions of (14), the Dunham vibrational potential
of CS, as determined spectroscopically up to sixth order [48],
was used. The regular wave functions 𝜓

𝑛
(𝑟) were evaluated

by solving Schrödinger’s equation for the same Dunham
potential [48] using the variational technique of [49].

The values of the diagonal density matrix elements, 𝜌
𝑛𝑛
,

obtained by applying (11) to the experimental 𝑃(𝑟, 𝑡
𝑑
) at

different delay times, are represented in Table 1. Truncated
Wigner functions for 𝑡

𝑑
= 20 ns, 40 ns, and 120 ns are shown

in Figure 4 and compared with those for the nascent state
distribution of [47] (see also Table 1). For 𝑡

𝑑
= 40 and

120 ns the truncatedWigner functions and the corresponding

marginal density functions, 𝑃(𝑟, 𝑡) and 𝑃(𝑝, 𝑡) ((2) and (3)),
are similar. In contrast, these functions exhibit significant
changes between 𝑡

𝑑
= 0, 20, and 40 ns. We interpret these

changes in the following way.
Changes in the first 20 ns of the evolution of the sys-

tem are indicative of rapid equilibration, predominantly
by noncollisional intermolecular vibrational energy transfer
involving, for example, dipole-dipole interactions. During
this time span bimodal distributions, both in position and
momentum space, evolve to monomodal and narrower dis-
tributions. Between 20 and 40 ns, collision-induced energy
transfer becomes more important than collisionless energy
transfer processes.Thus, we believe that the changes between
20 and 40 ns indicate electronic to vibrational energy transfer
induced by collisions between 𝑆(

1
𝐷
𝐽
) atoms and CS(𝑋 1Σ+

𝑔
)

molecules. Between 40 and 120 ns, this process shows features
of saturation.

It can be inferred from Table 1 that, keeping the foregoing
approximations in mind, there is significant depopulation
of the first three vibrational levels of CS between 20 and
120 ns, very likely indicating the transfer of vibrational energy
to rotational and translational degrees of freedom. This
interpretation is supported by the fact that the rotational
temperature of CS in this process increases from𝑇rot = 4200±

300K at 20 ns to 5000 ± 600K at 40 ns and to 5200 ± 800K
at 120 ns [45]. The truncated Wigner functions at 20, 40,
and 120 ns are positive throughout the entire phase space, in
agreement with the hypothesis that the molecular quantum
state of CS after 20 ns can be characterized as a classical-
like statistical mixture, rather than a coherently prepared
superposition of the lower vibrational states. This confirms
the increasing importance of collisions after 20 ns and is in
contrast to the nascent molecular distribution, for which
the complete Wigner function exhibits significant negative
areas (not visible in Figure 4). Furthermore in this case, the
bimodality of the marginal distributions, 𝑃(𝑟, 𝑡) and 𝑃(𝑝, 𝑡),
reflects the fact that the 193 nm photodissociation of CS

2

proceeds via two different channels, producing 𝑆(
3
𝑃
𝐽
) and

𝑆(
1
𝐷
𝐽
). The symmetric nature of the bimodality shown in

Figure 4 is an artifact due to the truncation of the Wigner
function.

We have also investigated the processes described above
in terms of the von Neumann entropy 𝑆 [29]:

𝑆 = − tr {𝜌 ln𝜌} , (15)

where tr{𝑄} is the trace of the operator𝑄 and 𝜌 is the density
matrix. The von Neumann entropy vanishes for pure states,
exceeds zero for mixed states, and is an extensive quantity for
nonentangled subsystems; thus, it is a fundamental measure
of the preparation impurity of a quantum state [29]. It is
also informative to consider the so-called purity parameter,
𝑆
pur, which represents a lower bound for the von Neumann
entropy; that is, 𝑆pur ≤ 𝑆:

𝑆
pur

= 1 − tr {𝜌2} = 1 − 2𝜋ℎ∬[𝑊(𝑝, 𝑟, 𝑡)]
2

𝑑𝑝𝑑𝑟. (16)

In the current investigation, the diagonal density matrix
elements were used to derive approximate estimates for 𝑆
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Figure 4:Wigner functions for CS in a nascent distribution (upper left), and at 20, 40, and 120 ns following photodissociation of CS
2
by 193 nm

laser pulses. For the nascent distribution, the diagonal density matrix was obtained from the time-of-flight measurements of [47]; negative
areas are present which are not visible from the chosen perspective. The experimental time-dependent Wigner functions were calculated
using the diagonal density matrix elements of Table 1. The marginal probability density functions are shown at the left and right sides of each
graph; scales are arbitrary.

and 𝑆
pur. In spite of their approximate nature, it is seen from

Table 2 that the estimates obtained are in agreement with
previous descriptions [45] of the 193 nm photodissociation of
CS
2
. That is, at 20 ns both the approximated von Neumann

entropy and purity parameters are smaller than at 𝑡 = 0

(nascent CS), indicating the transition from bimodal to
monomodal distributions. At times later than 20 ns, both of
these parameters increase due to increasing populations of
vibrational states above 𝑛 = 3.

5. Conclusion

The material presented above shows that time-resolved elec-
tron diffraction measurements offer a new avenue for quan-
tum state reconstruction, yielding the Wigner function from
a tomographically complete set of time-dependent position-
probability densities. When the TRED data are incomplete,
a truncated Wigner function can be determined from the
diagonal density matrix elements derived from the time-
averaged experimental probability density ⟨𝑃(𝑟, 𝑡)⟩. Even

though the diagonal terms do not describe the full quantum
state of a system, they still contain useful information.

Deriving the truncated Wigner function for N
2
in an

equilibrium Boltzmann distribution, the expected Gaussian-
like features were found. In the case of the 193 nm photodis-
sociation of CS

2
, the analysis indicates collisionless vibra-

tional energy transfer mechanisms in the photogenerated
ensemble of nascent CS and a collision-induced electronic to
vibrational energy transfer process, from 𝑆(

1
𝐷) to CS(𝑋 1Σ+

𝑔
)

at later times. Apart from quantum state reconstruction,
(4) represents a novel expression for analyzing diffraction
intensities directly in terms of the Wigner function.

Molecular quantum state measurements by TRED are
complementary to quantum state preparation and control
of matter by laser fields. Coherent nuclear dynamics can be
followed in this way [15, 25–27] because the elastic scattering
of fast electrons proceeds on an ultrashort (ultimately attosec-
ond) time scale and represents a nondestructive probing
technique. Adequately, new avenues in physical chemistry
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Table 2: Sum of the diagonal density matrix elements (∑
𝑛
𝜌
𝑛
),

approximate von Neuman entropies (𝑆), and approximate purity
parameters (𝑆pur) for N2 and CS.

∑
𝑛
𝜌
𝑛

𝑆 𝑆
pur

N
2
(exp)a 1.03 0.19 0.012

N
2
(theor)b 1.00 0.039 0.013

CS (nasc)c 1.00 2.49 0.91
CS (nasc)d 1.00 2.21 0.87
CS (20 ns)e 0.97 1.56 0.77
CS (40 ns)e 0.95 1.92 0.86
CS (120 ns)e 0.90 2.11 0.88
aValues obtained from experimental electron diffraction intensities of N2
in an equilibrium Boltzmann distribution recorded at 673K. Estimated
uncertainties are 0.01. bValues calculated for a Boltzmann distribution at
𝑇 = 673K. cValues derived from the nascent ensemble of CS reported in
[46]. dValues derived from the nascent ensemble of CS reported in [47].
eValues derived from TRED data of photogenerated CS recorded at 20, 40,
and 120 ns after the 193 nm photodissociation of CS2.

are in development based on studies of coherent nuclear
dynamics [15, 16, 50].

Since the 1980, the scientific world made intensive efforts
in order to register a movie about the coherent nuclei
dynamics in the molecules, the fast dynamic processes in
biological tissues and cells, and the structure dynamics of
the solid in nanovolumes in time. The observed coherent
changes in the nuclear subsystem by time-resolved electron
diffraction method determine the fundamental transition
from the standard kinetics to the dynamics of the phase
trajectory of the molecule and the tomography of molecular
quantum state.
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