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Automation of the smart home binds together services of hardware and software to provide support for its human inhabitants. The
rise of web technologies offers applicable concepts and technologies for service composition that can be exploited for automated
planning of the smart home, which can be further enhanced by implementation based on service oriented architecture (SOA).
SOA supports loose coupling and late binding of devices, enabling a more declarative approach in defining services and simplifying
home configurations. One such declarative approach is to represent and solve automated planning through constraint satisfaction
problem (CSP), which has the advantage of handling larger domains of home states. But CSP uses hard constraints and thus cannot
perform optimization and handle contradictory goals and partial goal fulfillment, which are practical issues smart environments
will face if humans are involved. This paper extends this approach to Weighted Constraint Satisfaction Problem (WCSP). Branch
and bound depth first search is used, where its lower bound is estimated by bacterial memetic algorithm (BMA) on a relaxed version
of the original optimization problem. Experiments up to 16-step planning of home services demonstrate the applicability and
practicality of the approach, with the inclusion of local search for trivial service combinations in BMA that produces performance
enhancements. Besides, this work aims to set the groundwork for further research in the field.

their services in order to reach the maximum number of
goals set from either human command or event triggered
by generating an optimal sequence of plans. An optimum
plan can mean a plan that minimizes energy consumption or
maximizes comfort. For this paper, optimization is defined as
minimizing a certain quantifiable cost. Besides that, the plan
should also abide by constraints such as user preferences and
physical limitations. An example of constraint related to user
preference is the need for a room to be well lit when the user
is in there while awake. An example for physical limitation
constraint can be that the curtain needs to be open before the
window can be swung open.

1. Introduction

As human lifestyle has become increasingly hectic, smart
home starts to gain more prominence. Smart home is a viable
solution to provide comfort for its human inhabitants, mon-
itoring, and caregiving for the elderly. Demographic shifts
towards elderly people for developed and some developing
countries are a serious issue, where caregivers are in short
supply relative to the population of the elderly, which is a
serious issue in Japan as the elderly population is expected
to reach 25.2% of the total population. Many of them will lose
the ability to live independently [1, 2]. With the rising number
of the elderly coupled by hectic lifestyle of the working class,

the elderly cannot be provided with ample care that they need. Researches related to web services and semantic web

Therefore, it is necessary for the home to provide support to
handle mundane tasks and to ensure the continual welfare of
its human inhabitants.

Smart homes need to provide services based on the
devices that they are connected to. Given the available devices
and initial state of the house, smart homes should coordinate

provide concepts and technologies that can support service
discovery, the design and implementation of services, and
providing machine understandable semantics for reasoning.
The idea is adopted by ubiquitous and pervasive computing
due to its ability to discover services and support for late
binding of services.
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Advancements in the web of things and web service
technologies can shed light on service composition for
building automation of the smart home. Similarities are quite
significant, where both are dealing with high heterogeneity of
objects, dynamic environment due to objects connection and
disconnection from the system or due to contextual changes,
and the need for integration and coordination of different
objects to deliver complex services. Service oriented archi-
tecture (SOA) [3] complemented by automatic service com-
position provides the crucial approach in delivering what is
required of home automation. SOA consists of independent
but interoperable services that are loosely coupled, where
each service only exposes its functionality to others, keeping
the details of implementation hidden.

As argued by [4, 5], the main focus of previous platforms
of pervasive applications does not consider complex and
intelligent functionalities involving higher levels of informa-
tion. Dynamic composition of complex sequence of services
under uncertainty is necessary. Currently, to enable higher
functionalities, tedious procedural programming is required
from the user side. Besides, certain applications require
manipulation and reading of values, such as counting the
number of times a person goes to the toilet. Reference [4]
uses artificial intelligence method, namely, constraint pro-
gramming, to handle such service composition task where
variables of a wider domain are required in the planning
process. It performs service composition through solving
constraint satisfaction problem (CSP) and implements indi-
vidual services by appropriate devices. Hard constraints are
used, and therefore the approach cannot (or at least very inef-
ficiently) support optimization and partial goal fulfillment.
Partial fulfillment of goals is important because certain goals
might contradict each other or because they might be too
complicated to solve in one go. For this, solving via hard
constraints will conclude that the goal is unsatisfiable instead
of trying to fulfill as many goals as possible.

For example, a given mother is requesting the TV to
switch to channel 1, whereas her daughter requests channel 2.
These two goals contradict each other. Service composition
via hard constraints will conclude that the goals are not
satisfiable, instead of trying to fulfill one of their wishes (such
as switching to channel 1 to fulfill the mother’s wishes as
the goal imposed by her is considered much more important
compared to the daughter). Such problems can be solved with
soft constraints by introducing weights.

This work is built on the previous work on Information-
ally Structured Space (ISS) [6] by providing it with auto-
mated planning and optimization. It aims to extend the smart
home automated planning approach in [4] from using CSP to
Weighted Constraint Satisfaction Problem (WCSP). WCSP
endows constraints with weights, which transforms them
into soft constraints where optimization can be implemented.
Branch and bound with depth first search is applied to solve
the planning problem represented as WCSP, where the lower
bound is estimated via bacterial memetic algorithm (BMA).
Memetic algorithms have been shown to be effective in
handling weighted constraints that give good enough solu-
tions [7]. Test on various plan sequences and modifications
shows the applicability of the approach in generating optimal
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plans in fulfilling the maximum number of goals. It lays the
necessary groundwork and obtains implications for further
development. This work will not cover the middleware
implementation. Services are described by preconditions,
effects, and properties, which resemble those of web services,
such that they can be easily translated to current web service
technologies.

This work is on high level planning. We like to consider
smart devices such as the Google Nest that is capable of
learning and adjusting as a composed service that we can
call upon, or there are inferred results, which can be used
by planning. This is likened to the automatic setup of
surveillance system or robot navigation to a certain cabinet in
a certain room. The former can be achieved through service
composition via association with SWRL or SPARQL language
[8]. The latter can have a built-in path finding algorithm that
works with high level planning, where high level planning
has to ensure proper working environment for low-level
functions [9]. Theoretically, planning itself can handle all the
tasks, including device association and low-level path finding.
But, due to efficiency issue, it is considered that composed
service and low-level tasks can be called upon as an actor of
a particular planning operator.

The outline of the paper is as follows. Section 2 discusses
the related works on home automation and service com-
position. The approach to solve planning problem through
WCSP is presented in Section 3. Experiments are provided
in Section 4 to demonstrate the applicability of the approach.
Finally, the work is concluded in Section 5.

2. Background

The main focus of this paper is on home automation. Various
home automation systems have been developed over time
that employ the SOA architecture complemented by web
technologies.

Home automation for inferring environment state is
developed in [10]. It uses DogOnt ontology [11] to determine
environment states like whether a certain room is smoke-free
and mosquito-free depending on which rooms are adjacent
and whether certain doors or windows are open or not. This
work shows that additional information of environments can
be inferred by defining a set of rules. Although it does not
include service composition, since it only deals with sensors,
nevertheless, it provides insight into generating rules as goals
for service composition to work on.

The work in [12] uses knowledge representation and
automated reasoning to create a self-adapting framework for
managing user profiles and device services. Rule matching
need not be exact, where it allows potential or intersection
matches, which is the case in most practical situations. It
supports partial or disjoint matches, where requests and
supplied resources have conflicting features and when no
other matches are possible. Service composition is performed
through constant running of concept abduction algorithm
[13] and selecting services to cover missing features. But
such service composition will not be applicable if complex
sequence of service is needed. Situation is made worse under
uncertainty. A more flexible system is developed in [14],
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where the case study is to maximize human comfort and
energy efficiency.

Building automation adopting SOA and device profile for
web service (DPWS) is proposed in [5]. Context information
is obtained for processing before being used to guide service
composition, complemented by policy rules and composition
plans. To handle dynamic changes during service compo-
sition, it uses service composition plans to describe users
requirements by Composition Plan Description Language
(CPDL). Similar to [12], service composition does not sup-
port construction of complex sequence of services, such as
the case of robot query on users preferred activity before
preparing the environment for such activity.

Kaldeli et al. [4, 15] developed a home automation service
composition based on SOA that is capable of complex compo-
sition of a sequence of services using constraint program-
ming. Unlike previous methods, the system does not require
manual construction of subplans. It handles context aware-
ness and is able to deal with an uncertain situation by
dynamic replanning. By using constraint programming, it
can also handle variables with large domain efficiently. But the
work employs hard constraints. It cannot fulfill partial goals
as well as optimizing plans.

Home automation requires service composition to be
functional. Here, we will review some service composition
methods that are applied or are closely overlapping with the
methods used in home automation. More detailed review on
service composition can be obtained from [16].

In [17], OWLS-XPlan uses the semantic descriptions of
atomic web services defined in OWL-S for planning pur-
poses. Given the atomic services, the XPlan planning module
will generate the sequence of services to fulfill a goal. In the
work, an XML dialect of planning domain definition lan-
guage (PDDL) is developed; thus, the system is PDDL com-
pliant. Although the system obtains semantic descriptions
in OWL-S, it is not utilized and semantic awareness is not
achieved. Exact matching for service inputs and outputs is
required from the planning module. This is the downside, as
the most practical situation does not allow exact matching.

A framework developed in [18, 19] converts web ser-
vice composition tasks into planning problems expressed in
PDDL. The framework will then convert the devised plan into
an OWL-S composite process description. The framework
translates atomic OWL-S processes to planning operators,
from which it derives the set of actions to achieve goals.
Contrary to [17], when no exact composite services can be
found, semantic information is utilized to obtain composite
services that best approximate the goal.

To deal with complex tasks and to reduce planning com-
plexity, hierarchical task network (HTN) [20] is introduced. It
uses method definitions in its planning domain description,
which specifies how the complex tasks can be broken down
into more manageable tasks [21, 22]. The planning problem
can then be specified as a list of tasks to perform. The planner
will then solve the problem by applying the breaking down
of tasks to every task in the task list. This process continues
until the tasks are reduced to their atomic planning operator
constituents that correspond to a solution plan. The main
disadvantage of this approach lies in the fact that the planning
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TaBLE 1: Example activities and their weights.
Name Precondition Effect Weight
generatorON n/a g=1 2
lightON g=1 L=1 3
fanON g=1 f=1 2

process requires that certain decomposition rules be specified
due to its hierarchical nature. This means that it needs to be
encoded in advance by an expert.

The methods discussed thus far either require exact
matchups between inputs, outputs, and variables or assume
certain ontologies to handle heterogeneities or require speci-
fications of user intention and procedural templates. Domain
and goal modeling through CSP is developed to create a
language that allows users to express goals without having
to know about the details and interdependencies between
services [4, 15, 23]. Its domain representation is of similar
concept to the Multivalued Planning Task (MPT) encoding
[24]. Besides, another advantage is that it is able to handle
variables with large domain efficiently, which is quite preva-
lent in the field of autonomous home such as temperature
value and user location. Although the CSP planner might
be slower than some state-of-the-art methods [22, 25, 26],
it can support complex goals and can handle variables with
large domain efficiently. To be able to support optimization
capability, constraints need to be endowed with weights, thus
extending CSP to WCSP.

3. The Proposed System

A system to compose complex plans that are optimized is
built based on WCSP. This section will first consider the
domain description of the problem and how representing
the planning problem as CSP and solving it help generate
complex plans to achieve goals. The CSP approach described
is based on the work of Kaldeli et al. [4]. Subsequently,
extension to WCSP through branch and bound method will
be explained.

3.1. Planner Module. This section introduces the planning/
implementation process devised for performing automated
planning and execution under an uncertain situation. Figure 1
shows the flow chart of the planning and plans implementa-
tion process, which is central to the planning/implementation
block of the ISS framework. With the services that come from
devices connected to the ISS, the planner will plan a sequence
of actions to be implemented to fulfill goals.

Variables are instances to record knowledge (termed as
knowledge variable) or act as a switch pertaining to a corre-
sponding object (termed as effect variable). An example of
a knowledge variable is the variable that records room
temperature. For effect variable, an example is a variable T'V,
which turns the TV on if it is of state 1.

An activity is a service that is being wrapped with
appropriate parameters, effects, and preconditions. Examples
are shown in Tables 1 and 2. At planning stage, information
of devices associated with the activities is obscured from
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FIGURE 1: Service composition and execution process flow.
TABLE 2: Examples of relevant activities (as FOL).
Name Precondition Effect Wt
generatorlON true 9 =1 Gopangea =1 3
generatorlOFF true 9= 0, Gnanged = 1 3
generator20ON true g2=1, gzdmnge =1 2
generator2OFF true g2:=0, gzchunge i=1 2
lightDim’mON BrightLight(n) — false A 3,Generator(x) = 1 L(n) =1, Lpgngea(m) =1 Cost(n)
lightDim’'nOFF true L(n) =0, Lgngea(n) =1 Cost(n)
lightBrightW’ON  —BrightLight(n) — false A 3, Generator(x) = 1 L(n) =1, Lggngea(nn) =1 Cost(n)
lightBright wOFF true L(n) =0, Lgungea(n) =1 Cost(n)
fan'nON 3,Generator(x) = 1 f@0) =1, foangea®) =1 Cost(n)
fannOFF true f(#) =0, fiangea®) =1 Cost(n)
door'n'Open Obstruction(n) = 0 D(1) =1, Dyapgea(nn) =1 2
door'n’Close Obstruction(n) = 0 D(1) =0, Dyapgea(n) =1 2
windown’Open Swing(n) A Curtain(n, c) — Curtain(c) = 1 W) =1, Waneea(n) =1 Cost(n)
window’n’Close true W(n) =0, Wyaneea(nn) =1 Cost(n)
curtainn’Open true Cr(n) =1, Cryangea(n) =1 Cost(n)
curtain’n’Close Curtain(w, ¢) — window(w) = 0 Cr(n) =0, Crchanged(n) =1 Cost(n)
TVON true Tv =1, Tvchanged =1 2
TVOFF true Tv := 0, TVchanged =1 2
SwitchChannel UPChannely,,,, = 1\NTV =1 TVchan = UPchannel, TVchan z,e.q =1 2
GetUPchannel true UPChannel i= UPChannel, ., UPChannely,,,,,, =1 2
GetWeather true Weather := Weather, oy, Weather,g,,, =1 2

the planner. Activity’s role is to manipulate the values of the
variables, which have correspondence with the physical world
associated during variable binding. An activity contains
preconditions and effects. Preconditions are conditions that
need to be true before the activity can be executed. Effects
are the changes that the activity makes when the activity is
finished without any glitches or unforeseen circumstances.
The following is the explanation for the process flow
shown in Figure 1. The system starts at state —1, where
initialization is performed and connection is set up. At this
stage, it is required that variables are already bound and

activities are ready. The system will restart at stage —1 if
there are changes to the number of variables and services
due to device connection or disconnection or failure. After
initialization, goal is obtained and planning is implemented.
If a sequence of activities is found that can fulfill the goal, the
system will proceed to stage 1. Otherwise, it will proceed to
stage 4, indicating a failure. Stage 1 deals with getting the next
activity in sequence to be executed. After the next activity is
selected, it will proceed to stage 2, which is orchestration of
activities. Before execution occurs, it needs to check whether
the precondition is fulfilled, upon which, if not, it will proceed
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to stage O for replanning. If the precondition is fulfilled,
activity is executed by sending command to the relevant
devices. After the device finishes executing the activity, the
system will proceed to stage 3. Connection loss or device
failure is bound to happen, which will delay or stop executing
the activity altogether. Given this situation, stage 2 has a time-
out threshold, upon which if the threshold is reached, the
system will assume that the current plan does not work and
proceed to stage 0. Despite being not implemented yet, this
event can be logged to record the number of failures a certain
device faces. This can help determine the quality of service
of the devices, such that it can be used as a weight when
selecting services. Stage 3 checks for 2 things: whether there is
any activity left for execution (if true, the system will proceed
to stage 1 to get the next activity) and if there is none, it will
check whether the goal is fulfilled or not. If the final goal
is not fulfilled, then it will proceed to stage 4, otherwise, to
stage 5, indicating a success. Given stage 4 or stage 5, the
system will proceed to stage 6. Stage 6 records a log of past
events, obtains a new goal, and proceeds to stage 0. Stage 0
is similar to stage —1 except that it does not need to perform
initialization.

3.2. Preliminaries. Domain description for activity planning
is based on the work of [15]. We denote 9 as variable set
(list of variables). 9 contains V variables, which consist
of knowledge, effect, and response variables confined by
their own domain. Response variables represent informa-
tion that can only be obtained from objects, information
that comes from sources not within 9. During planning
stage, response variables remain the same throughout all
planning sequences and represent an unknown value (thus,
initialization constraint is imposed on them). From [15], the
response variables can take on whatever value to facilitate
constraint satisfaction during planning that employs an opti-
mistic approach (values taken on by response variables are
considered true).

A state is a tuple of values to variables at a particular
plan implementation sequence with index t that is denoted
as X, = (X},X%,...,X}), where X},X?,....X) € 9,
confined by their domains denoted by D', D?,...,D". As
there is a finite limit to the number of sequences per plan
being planned denoted as K, thus, 0 < ¢t < K. For the
current work, domains of the variables remain unchanged
over time.

« is the set of activities, where a = (id(a), precond(a),
effect(a)) € «. id(a) is the identifier of the activity. There
is an additional activity in « that does nothing. It has no
preconditions and effects, termed as Nop.

precond(a) is the precondition that needs to be met before
the activity can be executed, such as the location being
known as a precondition to implement the weather forecast
web service. Precondition of an activity can be described as
follows:

precond (a) == prop | precond (a) A precond (a) |
precond (a) V precond (a) | —precond (a) | precond (a)

— precond (a)

prop == var e var | var e val |

(var ® var) o var | (var ® var)  val | Brel,
¢))

where var € 9, val is a constant, © € {+,—} is a binary
operator, » € {=, <,>,#,<, >} is a relational operator, and Brel
is a Boolean relation.

effect(a) is the changes that will be induced after the
activity is completed. It emulates how the variables will
change given the activity is run by its corresponding objects
such that its logical formulation can be used to impose
constraints on subsequent sequence of the plan for activity
planning. It should be emphasized that the actual object
manipulates variables during run-time after planning instead
of the effect(a) formulation (which is only used for planning).
Effect of an activity can be formulated as or a combination
of the following: var,,, = val, var,,;, = var,, and var,,; =
f(vy,v,), where v;, v, € 9, or v;, v, are constants and f is the
sum, subtraction, and Boolean operation.

Given the goals, which are represented as propositions,
activity planning can be obtained to fulfill the goal by
representing the problem as constraint satisfaction problem
(CSP) and solve it [4, 15]. A constraint satisfaction problem
is a triple CSP = (x, D, (), where y is a set of variables, D
is the set of domains of the variables in y, and ( is a set of
constraints over y. y consists of every state up to index K,
where y = {X, X,,..., Xg} U{A,A,,...,Ax [ JUR,Ris
a set of response variables, and A, € « is the chosen goal
at sequence index t. A solution to a CSP is an assignment of
values to the variables in y such that the values fall within
D and all constraints in { are satisfied, which is normally
obtained from backtracking methods [27].

{ consists of constraints imposed by a chosen activity
at t from activity preconditions and effects, law of inertia,
initial and final variable state, and maintenance of achieved
goal constraints. Initial variable state is just a constraint that
dictates the values of all variables (obtained from object state
module) before any planning. Final state constraint consists
of the goal proposition that needs to hold at sequence index
K.

Constraints from activity preconditions:
(A, = a) — precond (a), where Va € a. (2)

Constraints from activity effects:

(A, = a) — [(var,,, = effects, (@) A Fr], 5
3

where Va € «,

where Fr is the law of inertia, which indicates that for every
other variable var (excluding those from R) not affected by
effects,(a), var,,, = var,.

Maintenance of Achieved Goal Constraint. This constraint
dictates that whenever a goal is achieved at sequence index
t<K

A, = Nop, wheret<t<(K-1). (4)



Maintenance of achieved goal constraint is just one of the
goals specified in [15, 23], though it is sufficient for the current
work.

There are 3 types of variables during planning, which
are knowledge, effect, and response variables. Knowledge
variable stores a piece of information that can be referred to in
the future. Associated with every knowledge variable is a flag
that indicates whether the information is updated or not (in
this paper, these are variables with subscript Known). Effect
variables record the state objects are in. Every effect variable
has a flag to indicate whether the state is changed or not
(the variable is indicated by a subscript Changed). Response
variables represent information that can only be obtained
during run-time. Details on how these variables work can be
found in [15, 23].

To increase the speed of the constraint satisfaction solver,
only activities that are relevant to the given goals are selected.
This work employs the same method used by [28]. Irrelevant
activities to the goal are pruned out to reduce the search
space. For every activity g;, a list of other activities that has
at least one effect that has the potential to satisfy one of the
preconditions of a; is found. Backward action chain is then
computed. This chain of actions can be used to select the
activities that are relevant to the imposed goal. R, is denoted
as the set of relevant activities. An interesting alternative is
to use dependency graph as proposed in this work [29] or
to divide all the activities into effects ontology to shortlist
relevant activities [30].

CSP approach employs hard constraints, which are fed
to a solver to obtain a sequence of A that are the activities
that need to be implemented to fulfill the given goals. One
example of state-of-the-art solver is Z3 SMT solver, which
can efficiently obtain the plan given hard constraints [31].
The plan will be solved by continually increasing K until
the constraints are satisfied. Such solvers cannot handle soft
constraints to perform optimization and partial fulfillment of
goals, or at least not efficiently.

A Weighted Constraint Satisfaction Problem (WCSP)
can be described as a tuple (x,D,F) [32], where y =
X1, X5, ..., XgUR, Dis the set of domains of the variables in
x> and F is a set of weighted constraints. One can think of {
as F with all the constraints f having infinity as weight values
Weight( f). The objective function is the sum of all functions
in F:

L= ZWeight(f). )

feF

The goal is to find the instantiation of all variables such that
it minimizes the objective function.

Various approaches have been used to solve general
WCSP, which includes search, clustering, and variable elim-
ination as explained in this paper [33]. Good heuristics used
can also further hasten solving process [34]. Our problem
is specific to planning with domain description described
previously. Therefore, internal structures can be exploited to
build a solver that is specially tailored for plan composition
via solving WCSP. Branch and bound with depth first search
is used due to polynomial space complexity and the ability to
handle constraints of high arity and wide domain, compared
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to methods like variable elimination [35] (though variable
elimination can be combined with search to obtain a much
better result [33]). Besides, using a relaxed condition of the
former planning problem as shown in Section 3.5, lower
bound can be easily obtained to prune the search graph.

3.3. Design of Automated Planner. Given an initial state (or
initial variable instantiations), an optimized plan means a
plan that can fulfill the maximum number of goals with the
least number of activities (or with the least cost given the
sum of the costs for all activities), where the sequences of
activities need to abide by their individual precondition and
effects described in Section 3.2.

Goals are constraints for the final possible variable instan-
tiations. For example, if the goal is A V B, then final state
should be Ay = 1,Bxy = 0Oor Agx = 0,Bx = lor Ag =
1, Bx = 1. Weights associated with every goal are imposed as
costs if the goal is not fulfilled in the final state.

Constraints imposed by activities are the preconditions
and effects. An activity can only be implemented if its
preconditions are met. For example, a TV can only change its
channel given the precondition that the TV is on. At the same
time, it is considered (at least in planning phase) that effects
of activities will definitely change the subsequent state (e.g.,
the act of changing TV channel will result in a change to the
preferred channel). Due to uncertainty, effects might not give
the desirable response during actual execution. But this is not
an issue given the dynamic planning framework described in
Section 3.1, which supports replanning. That said, constraints
from preconditions and effects are treated as hard constraints
unlike goal imposed constraints.

Activities themselves also come with weights. But unlike
weights for constraints, these weights are imposed when an
activity is implemented. They act as costs for their respective
activities. This is important as there are times when one
prefers certain activities to others. For example, during late
night, a person might prefer the dimmer light to be switched
on instead of the brighter ones. Therefore, the action to switch
on the brighter light imposes a higher cost than its dimmer
counterparts.

It is assumed that weights are determined depending on
situation and time. But this paper does not deal with weight
settings. Our intention is that, given a set of constraints and
weights, the system will try to generate a sequence of activities
as plans that is optimum. In order to achieve that, it needs to
minimize the following cost function:

Aopt — argmin ( [ Z C (At) + Pc (At>St)

AgApAgy 0<t<K
+ Gc (Z ° SO)> )

where C(A,) is the weight for implementing activity A, and
Pc(A,, S,) gives the cost given whether or not precondition
for A, is fulfilled by state S at sequence t. Due to precondition
being a hard constraint, Pc will return infinity if precondition
is not met.
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Initial state:

Activities: S = 0.5 =0.8 =2
a0 =S l ’<020 2 3

b: S5 := =5, 2

¢S =85+8;

(1,0,2)  (1,0,-1)

(1,3,2)

(1,0,0)

(0,0, 0)

Layer 0

Layer 1

Layer 2

(0,0, 0) (3,2,2) (0,2,0) (0,2,2)

FIGURE 2: Search tree for planning.

AoSy=Ax_10Ag o A oA, oSy, which gives the final
state Sy when activity A, is implemented on state S, followed
by A, and so on until finally A _;.

Ge(S) = X pegoa Weight(f,S), which gives the total cost
imposed by nonfulfilled goals. Weight( f,S) is different from
(5) as it only considers variables at the final state sequence,
whereas (5) considers variables of all sequences.

As an example, consider two goals: (1) fanison f = 1
with weight 4 and (2) light is on L = 1 with weight 6; and
consider an initial state where generator, light, and fan are all
off (g = 0,L = 0, f = 0, resp., {(0,0,0) in short). Example
activities are shown in Table 1.

Case 1. Activity sequence is generatorON = lightON =
fanON (which means generatorON is executed, followed by
lightON and finally fanON). There is no precondition of
generatorON; therefore, Pc component will return a 0. Effect
from the activity will set g = 1, thus (1,0,0). Given this
new state, precondition for lightON (g = 1) is also met,
and execution proceeds until fanON. Finally, the state will be
(1,1, 1). Total cost returned by Pc is 0. Total cost of activity is
7 = C(generatorON) + C(lightON) + C(fanON). Since the 2
goals are fulfilled, Gc returns 0 too. Total cost is 7.

Case 2. Activity sequence is generatorON = lightON. Exe-
cution of the plan will result in final state (1,1,0). All
preconditions are met; thus, Pc returns a total of 0. Total cost
of activity is 5. Since goal 1 is not satisfied, Gc returns 4. Total
costis 9.

Case 3. Activity sequence is lightON. Since the initial state
is (0,0, 0), precondition is not met. Pc returns co, rendering
subsequent calculation trivial.

Equation (6) tries to find a sequence of activities that is
optimal. Due to the use of logical constraints, optimization
becomes complicated. Direct search is intractable, aggravated
by hard constraints and its weights from Pr.

Equation (6) can be relaxed by eliminating Pc and,
in turn, reformulated as goals. Problem reformulation is
explained in Section 3.5. The relaxed optimization problem
can then be used to calculate the lower bound for branch and
bound via BMA explained in Section 3.6.

The planning representation as well as the heuristics used
for optimization in this work assumes nonparallel encoding.

3.4. Branch and Bound Search. Search tree represents the
possible paths to reach potential solutions. For our planning
problem, every layer of the tree is a particular sequence of
activity, which in our case has a total of K layers. Every
node is a particular state. Edges are the actions taken, which
transform S, to S, ;. Figure 2 shows an example of the search
tree for planning.

Depth first search branch and bound works by choosing
a path that gives the best estimated cost, where the best
estimated cost of the nodes for every layer except the layer of
the leaf nodes is estimated via a heuristic function H, given
its previous cost. H estimates the best possible cost to reach
the goal state by using the relaxed optimization problem,
which combined with previous cost gives the lower bound.
A potential solution is reached when the path reaches the leaf
nodes. Total cost of every potential solution will be compared
with the upper bound, upon which if lower, the upper bound
will be updated. Branch and bound reduces the number of
search paths by pruning branches of the respective nodes
where their lower bound is higher than or equal to the upper
bound.
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Result: A%

Current cost Cc = 00;
Sequence index tc = 0;
State S initialized;
Activity sequence A set to empty;
Store all relevant activities in R,
note: Recursion starts
Function BnB(Cc, tc, S, A);
if tc > K — 1 then
if CostEst(A,S) < UB then
Update UB;
A% = A,
[UB, A%'] := UB_Refine;
end
else

act>

then

else
Act[f] = o0

end
end
SList = sort(Act);

for Loop through SList do

Cc2 = Cc + C(SList);
if LB > UB then
Break the loop;
else
A = append(AC);

end
end
end

Upper bound (global variable) UB = co;

for f = all activities in R, do
if Preconditions for f are met and LSh_Check(f)

Act[ f] = BMA(tc, S) + C(f) + Cc;

note: Store the estimated lower bound if activity f is applied.
C(f) returns the weight of activity f;

note: Or else set the lower bound to co;

note: Sort Act in ascending order based on their lower bound;

note: Looping through the sorted list;

LB := Lower bound of current SList selection;
AC == Activity of current SList selection;

SC := State after the effect of AC;

BnB(Cc2,tc +1,SC, A);

ALGORITHM 1: Recursive search for optimized plan.

Algorithm 1 shows a recursive search algorithm for
optimized planning. The result of the algorithm is A, which
is the optimized sequence of plans.

Before the algorithm starts, current cost Cc and upper
bound UB are set to co. State S is set to initial state values.
Set R, is also constructed, which consists of a collection of
relevant activities given the goals as described in [28].

The algorithm starts off by checking whether or not
the last layer of the tree is reached, upon which if yes
(meaning it is a potential solution), it will update UB if
the total cost is lower. Further fine tuning can be made by
checking for activity redundancy through UB_Refine, which
checks whether the omission of certain activities will yield
better result. Given a sequence of activities, UB_Refine will

loop through each and calculate whether their omission will
produce lower cost. As fast stochastic search is employed
in calculating the lower bound, this comes at a price where
certain redundant activity will be introduced (given activity
cost does not warrant much cost relative to those imposed by
goals, which is the situation for our experimentation).

If leaf nodes are not reached, current node is branched
out to the subsequent layer, where each branch represents
the effect from each activity. Lower bound is estimated for
each node of the new layer via BMA that will be explained
in Section 3.6. Lower bounds for activities that do not have
their preconditions met are assigned co. Besides that, further
checking is performed by LSh_Check. LSh_Check checks
whether the selection of a certain activity for branching
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coincides with pairs listed in the local search lookup table,
where the lookup table is explained in Section 3.7. The
activities are then sorted according to their lower bounds to
determine which activity should be branched out further for
evaluation. If UB is lower than or equal to an activity’s lower
bound, that branch and the subsequent branches in the sort
list are all pruned out.

Currently, we assume goals to be the desirable final
state. Sometimes, extended goals that dictate how a plan
is arranged instead of the desirable final state are needed.
For example, the generator should not be switched when
any electrical appliances are turned on. Algorithm 1 can be
extended to support extended goals by treating such goals as
preconditions for activities, such that the part Preconditions
for f are met and LSh_Check(f) in Algorithm 1 can prune
out inconsistent activities. The part can also be modified
to support weighted extended goals such that unfulfilled
extended goals will impose a higher cost on the activity.
Extended goal is subject to future work.

3.5. Relaxing Optimization Problem. To obtain a larger fea-
sible region by removing restrictions, (6) is relaxed by
converting the Pc(e) component to goals, which gives

A% = argmin < z C(At)+GC(ZOSO)>. (7)

Ag- A=Ak \0<t<K

Ge(e) varies from Gc(s) in the sense that it considers not
only cost from fulfillment of goals, but also extra subgoals
introduced by the conversion of Pc(e).

Conversion is done under the concept that whenever an
effect of an activity takes place, its precondition has to be
met. Therefore, subgoals are constructed in such a way that
if a variable holds a certain value in the final state and that
it is different from its initial value, it implies that one of
the preconditions of activities which subject that particular
variable to hold that value has to be true. Currently, only
variables of Boolean type are considered for conversion.
Other types such as integer and finite domain sorts are subject
to future research. Conversion of variables is limited to 4
types of effects pertaining to the variable, which are V := 0,
V =1,V = var,and V := -war, where var is a variable.
The first two types of conversion are shown in Algorithm 2.
The third type is shown in Algorithm 3, whereas the fourth
is shown in Algorithm 4. The number of generated subgoals
is denoted by nSG. Extra subgoals equipped with weights
reduce the effective branching factor. Optimizing the relaxed
problem thus gives a better lower bound.

3.6. Bacterial Memetic Algorithm Optimization. Bacterial
memetic algorithm (BMA) is applied for finding the optimal
solution for the relaxed optimization problem discussed in
Section 3.5. BMA is a population based stochastic optimiza-
tion technique which effectively combines global and local
search in order to find good quasi-optimal solution for the
given problem [36]. In the global search, BMA applies the
bacterial operators, the bacterial mutation, and the gene
transfer operation. The role of the bacterial mutation is the
optimization of the bacteria’s chromosome. The gene transfer

V = val, val is a value where either val = 0 or 1;
V, is the initial value of V;
Pstore set to empty;
if Vis not a response variable then
for f = all activities do
if FoundV = valin the f effects then
Add f precondition in Pstore;
end
end
end
Add (V =val AV, # V) — (\/ Pstore) as sub-goal;
note: \/ Pstore statement is true if at least one addition of
f precondition in it is true;

ALGORITHM 2: Conversion for direct value assignment.

V = var;
Vj, is the initial value of V;
Pstore set to empty;
if V is not a response variable then
for f = all activities do
if FoundV := 1 in the f effects then
Add f precondition in Pstore;
end
end
end
Add (V =1 Avar=1AV, # V) — (\/ Pstore) as sub-goal;
Add (V =0Avar=0AV, # V) — (\/ Pstore) as sub-goal;

ArcoriTHM 3: Conversion for variable assignment.

allows the information’s transfer in the population among
the different bacteria. As a local search technique, individual
reparation is applied for all bacteria.

In case of evolutionary and memetic algorithms, we have
to discuss the encoding method and the evaluation of the
individuals (bacteria) as well. The encoding of the individual
is a sequence with K—1 indexes. The evaluation of the bacteria
is calculated by

Cost = Z C(A,)+Gc (Z ° SO)' (8)

0<t<K

BMAss task is to generate a sequence of activities A (from a
pool of activities from R,,) such that Cost is minimized.

The operation of the BMA starts with the generation of
a random initial population containing N,,; individuals (see
Algorithm 5). Every individual is a particular sequence A.
Next, until a stopping criterion is fulfilled (which is usually
the number of generations, N,,), we apply the bacterial
mutation, gene transfer, and local search operators. Bacterial
mutation creates N,,,,, number of clones (copies) of an
individual, which are then subjected to random changes in
their genes (see Algorithm 6). The number of genes that are
modified with this mutation is a parameter of the algorithm
(I,,)- After the bacterial mutation, the gene transfer operation
is applied at population level (see Algorithm 7). This means
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V = var;
V,, is the initial value of V;
Pstore set to empty;
for f = all activities do
if f is not a response variable then
if FoundV = —war in the f effects then
Add f precondition in Pstore;
end
end
end
Add (V =1Avar=0AV, #V) — (\/ Pstore) as sub-goal;
Add (V =0Avar=1AV, #V) — (\/ Pstore) as sub-goal;

ALGORITHM 4: Conversion for negated variable assignment.

Create initial population;
generation < 0;
while generation # N, do
fori — 1 to N,,; do
BacterialMutation(bacterium;)
end
GeneTransfer;
fori — 1 to N, do
LocalSearch(bacterium,)
end
generation < generation + 1;
end

ALGORITHM 5: Bacterial memetic algorithm.

copying genes from better individuals to worse ones. For
this reason, the population is split into two halves, according
to the cost values. The number of gene transfers in one
generation (N,,), as well as the number of genes (lgt) that get
transferred with each operation, is determined by the param-
eters of the algorithm. The last operator in each generation is
the local search, which performs reparation of all individuals,
using a lookup table, which describes conflicting values in the
neighborhood genes of the bacterial chromosome.

Bacterial memetic algorithm has been successfully
applied to a wide range of problems. More details about the
algorithm can be found in [36, 37].

3.7 Local Search. Combinations of activities that produce
trivial effects should be avoided. Examples of such combina-
tions are turning on and then off the lights and turning the
light on two consecutive times.

In this work, we only assume combination of two. To
obtain a list of such trivial pairs, all activities are paired
with other activities, including themselves. Given an initial
state, a pair of activities is considered trivial if the state
after their execution is the same as the initial state. The list
is generated according to the activities available before the
search commences.

This list is used by BMA to perform local search and
better reparation. The local search list is also used in branch
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Create N, + 1 clones of bacterium;
N

segments - K/lhm;
for i — 1 t0 Nyypess do
Select [, yet unmutated random genes;
for k — 2 to N, +1 do

Mutate the selected genes in clone;,
end
for k — 1 to N, +1 do

Evaluate clone, using (8)

end

Select the best clone;

Best clone transfers the mutated genes to all clones;
end

bacterium « best clone

ALGORITHM 6: Bacterial mutation.

for i — 1 to N, do
Ascending order of the population according to (8);
SourceBacterium < Random(0, ..., N,,;/2 - 1)
DestinationBacterium < Random(N,,;/2, ..., N;)
Select random consecutive [, genes;
Transfer the selected genes from SourceBacterium to
DestinationBacterium

end

ALGORITHM 7: Gene transfer.

and bound search through LSh_Check. It determines whether
branching out of a particular activity is redundant given the
previous activity, thus reducing search space.

4. Experiments and Discussion

4.1. Setup. Smart home automation is built up from an
assortment of devices that are loosely bounded, where they
interoperate to provide services. Since they are loosely bound
to each other, they do not know anything other than the
activities they can provide themselves. Examples of such
atomic activities are shown in Table 2. Preconditions and
effects are shown as first-order logic (FOL) to save space. In
actual implementation, the formulas are all grounded.

Activity Nop has weight wNop = 1. Every other activity
has weight greater than that of Nop. This means activity Nop
is preferred over others after the goal is achieved. Subgoals
(not goals) have weight wSG = 1. Every goal (not subgoals)
has weight = K x wNop + nSGx wSG. This puts goals as having
higher priority than activities and subgoal fulfillment.

Since the purpose of this paper is not on ways to set
weights, but to come up with an optimized plan around
predefined weights, weights are set for the purpose of
experiments. The same case applies to goals. Goals’ initial
conditions and weights (termed configurations) are specially
designed such that optimal plans consist of 4 to 16 steps
of activities. These assortments of configurations will be
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TABLE 3: Example activities.

Name Precondition Effect Wt
generatorlON true gl=1 3
generator20ON true g2:=1 2
light TON gl=1vg2=1 L1=1 4
light 2’ON gl=1vg2=1 L2:=1 2
light 30N gl=1vg2=1 L3:=1 3
fanTON gl=1vg2=1 fl=1 3
fan'’2’0ON gl=1vg2=1 f2=1 2

randomly chosen given the number of steps of the optimal
plan during test.

As an example, assume K = 10. Table 3 shows the activi-
ties in this example. All formulas are grounded. Boolean term
is treated as an integer of 1 and 0.

Goals are as follows:

2=L1+L12+L3.

fl=1

f2=1

f2+ flL
Initial state is g1 = 0, g2 = 0, L1 = 0, L2 = 0, L3 = 0,
f1=0, f2=0.

The optimal solution is

generator2ON = light’0ON = light2?’ON =
faw2’0ON .

The optimal cost is
14(activity cost) + 0(subgoal cost) +10(goal cost) = 24.

Therefore, the optimal plan is 4 steps with optimal cost 24.

If instead the planner gives the following solution:

generator2ON = light3’ON = light2’ON =
fan'TON,

its cost is now 25. The difference from optimum cost is thus
4.17%.

4.2. Parameter Selection. Parameters for BMA are number of
generations N,,,, number of bacteria N;,4, number of clones
N jones» mutation segment length [, number of infections
N, and infection segment length I,,. For speed and simplic-
ity, ly> Njyp and I, are all set to 1.

Parameters N, Nj,g, and N, are selected via a test
run with total sequence K of 10, with optimal solution having
4 activity sequences. UB_Refine, LSh_Check, and local search
are not applied in this test. Table 4 shows the planning cost
and Table 5 shows the training time for various values of
Nyep> Niyg> and Ny, ... Only the relevant parameter settings
are shown in the tables.

From the tables, N,,, of 8 and 10 has a more consistent
result with increasing N;,;. Besides, general performance is

better compared to the lower N, values. The downside is
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TaBLE 4: Planning cost for various N,,, Nj,4, and N, values.

N Notm 3 4 N;nd 6 7
4 2 19.7 20.2 18.6 19.1 18.8
6 2 19.3 18.5 18.7 17.9 18.2
8 2 18.4 18.1 18.2 17 16.2
10 2 173 172 16.8 17.2 16.3
4 3 18.2 19.5 17.7 18 17.6
6 3 18 17.6 17.6 175 17.4
3 17.7 17 16.6 17 16.7
10 3 16.4 16.8 16.3 16.2 16.2
4 4 19 18 17.7 17.8 17.4
6 4 17.2 171 16.8 17 16.9
8 4 16.6 16.8 16.7 16.7 16.6
10 4 16.7 16.2 16.3 16.4 16.1

TABLE 5: Planning time (seconds) for various N,,,, N;,;, and N,

gen> Vi lones
values.

Ny, Neones Nina
3 4 5 6 7

4 2 5.1 5.3 7.5 8.8 10.3
6 2 7.8 8.5 10.8 14.9 14.5
8 2 8.1 12.9 16.5 19.2 20.3
10 2 13.2 11.8 33.2 19.2 32.9
4 3 6.6 7.4 10.5 11.8 14.1

3 8.7 12.2 11.6 23 28.9
8 3 11.9 22.8 19.9 26 32.3
10 3 13.9 24.4 30.2 22.9 25.3
4 4 9 9.1 12.1 13.3 14.6
6 4 10.3 18.7 26.7 20.4 34.2
8 4 19.2 19.9 28.2 25.3 39.4
10 4 20.5 38.5 30.2 34.5 36.5

their time consumption in order to obtain the solution. For

the subsequent tests, N,,,, = 10, N,y = 3, and N, = 3.
From the tables, with N, = 10 and N, = 3, the perform-

ance is more consistent and nearer to the optimal solution.
N, will remain at 3 due to time consumption constraint.
4.3. Planning Performance without Time Threshold. Planning
test is performed with UB_Refine, LSh_Check, and BMA
local search. As mentioned in Section 3.4, UB_Refine will
loop through the activity sequence and checks whether any
activity's omission will produce better results. LSh_Check will
check whether branching out of an activity is redundant or
not based on the local search lookup explained in Section 3.7.
Total sequence K is set to 20. A set of goals is designed
such that the number of activities of their optimal plan lies
between 4 and 8. Test is performed on 4, 6, and 8 optimal
plan sequences (OPS), where the designed goals are randomly
selected.

For each OPS, 5 sets of modifications are tested, which are
(1) planning without UB_Refine, LSh_Check, and local search,
(2) planning with UB_Refine and without LSh_Check and local
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FIGURE 3: Distance from optimum cost (in percentage) test result
for planning without time threshold. Modifications from 1 to 5
(explained in Section 4.3) are indicated by colors blue, red, green,
magenta, and black, respectively. The top of the box indicates the
3rd quartile, and the bottom of the box indicates the 1st quartile. The
cross indicates the median. Line extension shows the minimum and
maximum of the collected test samples. The same indicators apply
to subsequent graph.
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FIGURE 4: Planning time test result for planning without time
threshold.

search, (3) planning with LSh_Check and without UB_Refine
and local search, (4) planning with both UB_Refine and
LSh_Check but without local search, and (5) planning with
UB_Refine, LSh_Check, and BMA local search. Modifications
1 to 4 can be seen as Bacterial Evolutionary Algorithm,
while modification 5 is the bacterial memetic algorithm. Each
modification is run 20 times. There is no time threshold;
therefore, for every test run, the planner will proceed until
tull search is completed. Figure 3 shows the result on distance
from optimum cost, with the tests planning time shown in
Figure 4.

It can be observed that inclusion of UB_Refine and
LSh_Check can help improve performance in terms of
approaching the optimum cost, although LSh_Check has a
wider distribution compared to UB_Refine if applied individ-
ually. With the inclusion of local search, the performance is
further enhanced.

In terms of consumption time, as expected, the more
the activities required, the slower the planning time. But the
inclusion of local search greatly reduces planning time, as
this may be due to the fact that BMA has a higher chance of
obtaining good combinations given reparation from the local
search.
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FIGURE 5: Distance from optimum cost (in percentage) test result for
planning with time threshold of 1 minute.

4.4. Planning Performance with Time Threshold. Previous test
shows that time consumption is a significant issue, where
planning time may reach several minutes. Increasing OPS
further becomes impractical.

Alternatively, instead of waiting for the planner to finish,
the best possible solution within a certain time limit can be
used instead. This is likened to the planner generating the
first few moves for execution, before proceeding further to
eventually complete the whole process.

To test this idea, a time threshold of 1 minute is used
to obtain plans of OPS from 10 to 16. If planning process
does not end after 1 minute, the best solution is obtained
instead. Experimental procedure is the same as in Section 4.3.
Result of distance from optimal cost is shown in Figure 5.
Consumption time is not examined as most of the planning
process exceeds threshold time.

UB_Refine and LSh_Check do not fare so well by them-
selves. From time consumption result shown in Figure 4, both
of them when applied individually require longer searches for
OPS of 6 and 8. Cutting them short by introducing a time
threshold of 1 minute forces the current best solution to be
used, which is suboptimal. Combining them, coupled by the
local search, enables the planner to obtain significantly better
plans. Spread of distribution of performance is also reduced
at significant magnitude, indicating a more consistent perfor-
mance given local search is employed for gene reparation in
BMA.

The performance test for Figure 5 is conducted with the
assumption that the optimum plan is to be obtained given
only 1 planning being done. The bad performance of the
distribution is mainly due to unfulfilled goals (since goals
impose the most weights). One planning is fairly restrictive,
given that, in real life, planning and execution can be done
sequentially. This means planning only needs to come up with
partial plan to be executed, before proceeding to the next
plan, until all goals are fulfilled, which is obviously more
efficient. Such continuous planning is tested with 16 steps of
optimal plan. Planning (and execution, which is just the
manipulation of state variables) is run until no plans can be
devised (which means all the activities in the K—1 sequence of
activities are Nop). Threshold is 1 minute for each planning
process. Performance is shown in Table 6. As can be observed,
the performance drastically increases. Single planning gives
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TABLE 6: Performance for continuous planning for modifications 1
to 5.

Modification 1 2 3 4 5
303%  45% 154% 22%  2.0%

Diff. from optimum

worse result compared to multiple planning because the
former produces an incomplete plan. Given multiple imple-
mentations of the planner (with execution), it will approach
the optimal solution. The bad result of modifications 1 and
3 is due to redundant activities contributing more costs. For
other modifications, the main reason why they cannot reach
0% difference from optimum is due to goals that are related
to conditions on integer (e.g., 3 < L1 + L2 + L3 + L4, where
there are specific activities to set L1 to L4 1 or 0 with different
weights). As our current subgoals do not take integer into
account, the planner does not know whether it is getting
nearer or farther away from a solution related to integer. It
only considers whether the constraint is fulfilled or not. In
this case, it may choose activities with higher costs to fulfill
the goal. Future work will involve generating subgoals for
constraints involving integers to improve branching factor.

4.5. Comparison with CSP. The use of hard constraints in the
CSP planner [4] makes it very inefficient to handle overcon-
strained situations, where one needs to resort to partial goal
fulfillment. Given problems that have contradicting goals,
CSP planner will deem it unsolvable. WCSP planner directly
assigns weights to the goals, where instead of satisfying
constraints it works by maximizing the fulfillment of goals,
which subsumes the former. Besides, with too many goals that
cannot be solved at one go, WCSP can solve them through
continuous planning and execution. It should be emphasized
that this advantage holds only if each goal is solvable given
the fixed planning horizon, as opposed to one goal that
requires long complicated planning solution. For the latter,
if the planning horizon is below minimum steps of actions
to fulfill the goal, WCSP planner will produce an empty plan
due to UB_Refine eliminating all actions (which it deemed
redundant).

Work in [4] also provides a fixed planning horizon, which
introduces redundancy. Redundancy check is only partially
realized through the use of constraints that maintain the
state upon achieving the goal by imposing the no-action
nop activity. A workaround is to continually increase the
planning horizon until constraint consistency is achieved. For
the proposed approach, optimization and upper bound min-
imization through UB_Refine inherently prevent redundancy
from occurring given fixed planning horizon.

Besides that, plan optimization is crucial as certain
actions are preferable depending on context. For CSP planner,
all actions are considered equal, and there is no direct way
to encode preferences. As for WCSP, action preferences are
encoded as costs, which will then be taken into account
together with penalties of unfulfilled goals during optimiza-
tion.

Despite the advantages, WCSP planner will be substan-
tially slower compared to CSP planner due to it having to
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find a consistent plan and the fact that the plan needs to
be optimized. Therefore, planning horizon should not be
too large, while at the same time it should be sufficient to
support reasonable number of steps to fulfill goals. A possible
enhancement left as future work is to generate more goals
that are the consequence of the original set of goals. For
example, the goal x > 5entails x > 4, x > 3, x > 2, and
so forth. By including these entailments, planning horizon
can be cut short, where complex plan can be continually
generated.

5. Conclusion

An automated planner for the smart home that can deal with
partial goal fulfillment and plan optimization is developed,
where planning problem is solved as WCSP that is an
extension of planning via CSP [4].

The planning problem itself is a mixture of soft and
hard constraints. By exploiting the structure of the planning
problem itself, it can be represented as a branch and bound
search problem. Lower bound is calculated given a relaxed
version of the original problem by exploiting the precondition
and effects of the activities of the smart home. The relaxed
optimization problem can be readily handled by evolutionary
methods, such as the BMA in our case. BMA provides a lot
of room for future research especially in the realm of its local
search.

Results obtained from planning with and without time
threshold demonstrate the applicability of our approach.
Besides, the results also show the strength of applying local
search for more efficient reparation of potential solutions in
the BMA.

Yet, the work is still far from complete. At the moment,
conversion of subgoals of the relaxed optimization problem
only deals with Boolean data type. More efficient branching
factor can be achieved if other data types are taken into
account. Apart from that, faster searches and better heuristics
should be devised to achieve better planning performance.
Given the structure of the problem, search space can also be
reduced by applying bucket elimination [38], where functions
oflow arity are eliminated before passing the constraint graph
to search methods.

Reference [39] has argued that smart homes are devel-
oped mostly from the viewpoint of technical capabilities. It
proposes to shift the smart home paradigm from technolog-
ical capabilities to that which is centered around humans’
need to enhance their living experience. The emphasis is that
smart home should function in a way that tries to maximize
the fulfillment of goals based on objects connected to it,
instead of humans having to decide how the devices are
going to serve them. Currently, smart devices that are able
to learn and adapt their control are on the rise. Although
this work does not involve machine learning or data mining
to deliver services, relevancy can be drawn with such smart
devices in that it may use their inferred results as knowledge
variables. Given the right specification of ontology and func-
tionalities, smart devices’ abilities can be utilized with other
devices to maximize goals. Such extensions will be made in
future work.
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