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This paper proposes an approach to identifying time-varying structural modal parameters using the Hilbert transform and
empirical mode decomposition. Definition of instantaneous frequency and instantaneous damping ratio based on Hilbert transform
for single-degree-of-freedom (SDOF) system is first introduced. The following is the definition of Hilbert damping spectrum from
which the time-varying damping ratio of multi-degree-of-freedom (MDOF) system can be calculated. Identification procedures
for both instantaneous frequency and damping ratios based on their definition are then introduced. Applicability of the proposed
identification algorithm has been validated through several numerical examples. The instantaneous frequency and damping ratios
of SDOF system under free vibration and under sinusoidal and white noise excitation have been identified. The proposed method is
also applied to MDOF system with slow and sudden changing structural parameters. The results demonstrate that when the system
modal parameters are slowly changing, the instantaneous frequency could be easily and well identified with satisfied accuracy for all
cases. However, the instantaneous damping ratio could be extracted only when the system is lightly damped. The damping results
are better for free vibration situation than for the forced vibration cases. It is also shown that the suggested method can easily track
the abrupt change of system modal parameter under free vibration. The proposed method is then applied to a 12-story short-lag
shear wall structure model tested on a shaking table. The instantaneous dynamic properties of the structure were identified and
were then introduced as known parameters into a finite element model. Comparisons with the numerical results using constant
structural parameters demonstrate that the calculated structural responses using the identified time-varying parameters are much
closer to the experimental results.

1. Introduction

Quite some structures exhibit intrinsically time-varying
behavior when subjected to strong excitations as earthquake
or wind or when they are damaged. However, most existing
structural identification techniques rest on the assumption
that the structures are linear or time invariant. They are
not readily applicable to examine the possible time-varying
behavior during online monitoring of some civil structures.
It is therefore necessary to develop identification techniques
that can quantify the time-varying structural behavior for the
purpose of damage detection, health monitoring, reliability,
and safety evaluation of structures.

A mount of research has been carried out regarding the
online estimation (tracking) technique of systems with time-
varying parameters. Smyth et al. [1] had obtained online
estimation of the parameters of multi-degree-of-freedom
(MDOF) nonlinear hysteretic systems based on the measure-
ment of restoring forces. Zhang et al. [2] identified dynamic
properties of linear single-degree-of-freedom (SDOF) system
with gradual changing stiffness based on empirical mode
decomposition (EMD) plus Hilbert transform (HT) method
and pointed out that the steady part and transient part of
structural dynamic responses could be separated through
Hilbert spectrum analysis when the system is under sine wave
excitation. Pines and Salvino [3] proposed Hilbert damping



spectrum based on intrinsic mode functions decomposed by
the EMD method. The damping loss factor was first proposed
as a joint distribution function of time and frequency;
afterwards Hilbert marginal spectrum was developed and
applied to identify the damage of a 3-story shearing building
in a shaking table test. Shi and Law [4] addressed the iden-
tification of linear time-varying multi-degrees-of-freedom
systems by HT+EMD. They used several numerical examples
to demonstrate the effectiveness and accuracy of the proposed
method. Basu et al. [5] developed online identification of
linear time-varying stiffness of structural systems based on
wavelet analysis. L-P wavelet was adopted in their study
to identify MDOF system with slowly varying stiffness and
sudden changing stiffness. Pai et al. [6] compared EMD
plus Hilbert transform method with sliding window in time-
frequency analysis of nonlinear signal. They pointed out
that EMD plus Hilbert transform method as a self-adaptive
method needs no basis function and has high frequency
resolution dealing with nonstationary and nonlinear signal.
However, they also pointed out that Gibbs phenomenon
could lead to inaccuracy at the ends. Wang and Genda [7]
suggested a recursive Hilbert transform method for the time-
varying property identification of shear-type buildings under
base excitation. With known floor masses, the stiffness and
damping coefficients of each floor were identified one by one
from the top to bottom. It is worth noting that the Hilbert
transform plus EMD method has also been widely used in
parameter identification of linear structures [8, 9]. The author
also has applied the HT+EMD approach for linear identifica-
tion problems as parameters identification of structures with
closed space modal properties [10], structural damage detec-
tion [11], and parameter identification of an existing long-
span bridge [12]. We further demonstrated in Chen et al. [13]
that EMD is a very powerful tool in processing nonstationary
signal which is frequently encountered in time-varying iden-
tification problem. Though successful in numerical exam-
ples, experimental verifications of the abovementioned tech-
niques, especially for time-varying system, are still rare.
Inspired by the previous researches regarding the time-
varying structural parameter identification problem, this
paper presents an approach for identifying time-varying
structural parameters using HT+EMD. Definitions of instan-
taneous frequency and damping ratios based on Hilbert
transform in SDOF with time-varying parameters are first
introduced. For SDOF, the time-varying parameters can be
easily obtained by its definition. For MDOF system, the struc-
tural responses will be first processed by EMD to obtain the
modal response based on which the time-varying parameters
can be identified using the same procedure for SDOF system.
Extensive numerical examples and experimental measure-
ments of a large-scale 12-story building model, which was
tested on a shaking table, have been employed to demonstrate
the applicability and effectiveness of the proposed method.

2. Definitions of Instantaneous
Parameters by Hilbert Transform

Traditionally frequency is defined as the number of occur-
rences of a repeating event per unit time. In the classical
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Fourier transform analysis, the repeating event is regarded as
sine or cosine wave that has constant amplitude. According to
this definition, any sine or cosine wave whose duration is less
than one period cannot lead to a meaningful frequency value.
However, as we know, lots of random processes in nature are
nonstationary such as earthquake wave or wind speed, it is
difficult for us to capture the local modulation properties of
nonstationary signals.

In order to depict local properties of nonstationary
signals, Leon Cohen proposed the instantaneous frequency
systematically and defined it as the first derivative of phase
angle. For an arbitrary time series, u(t), we can always have
its Hilbert transform, v(t), as

() = %P.V. ro ;‘ﬂdr, 1)

o t—T

where P.V. indicates the Cauchy principal value integral.
According to this definition, u(t) and v(t) are actually the
complex conjugate pair, so we can have an analytic signal,
x(t), as

x(t) =u(t) = jot) =a)e®, )

in which

a(t) = Ju(®) +o(t)* = |x (t)], (3a)

0 (t) = arctan [%] . (3b)

Equation (1) defines the Hilbert transform as the convolution
integral of u(t) with 1/t, and it therefore emphasizes the
local properties of u(t). In (2) the polar coordinate expression
further clarifies the local nature of this representation: it is the
best local fit of amplitude and phase varying trigonometric
function to u(t).

With the above Hilbert transform in (1), the instanta-
neous frequency f; is defined as

1 do
=D, (4)
Equation (4) can be further deduced as follows:

f= 1 VO u®)-u v @) _ llm w

Yoom u? (t) + 0% (t) 2m x(t)
(5)

_ 1 [x'(t)x* (t)]
| x|

In order to clarify the meaning of (4) physically, Cohen intro-
duced the term “monocomponent function” as a limitation
on the original signal u(t), which means that only when u(t)
is a narrow band signal could the instantaneous frequency
reflect the local vibration property.

Based on the Hilbert transform and definition of instan-
taneous frequency, instantaneous damping ratio of SDOF
system could also be deduced from the equation of motion.
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Consider the equation of motion of a SDOF system with
time-varying parameters as follows:

m@)it)+c)u)+k)u)=0. (6)

After normalization by the mass property, (6) could be rewrit-
ten as

it (£) + 2& (£) w, (£) it () + wl (F) u(t) = 0, (7)

where w,(¢) and &(¢) indicate the time-dependent frequency
and damping ratio; through Hilbert transform we know that
the analytical signal of u(t) could be formed as
2(t)=u()+ju(t) = A e, (8)
where A(t) and y(t) are regarded as the instantaneous ampli-
tude and instantaneous phase angle, respectively. The first and

second derivatives of analytical signal z(¢) could be easily got
as follows:

2(0) =2 (1) [38 zw(t)]
_ )
2 =z (t) [ﬁég ) +2i% rje®].
Apply HT to (7) leading to
Z(t) +2E (M) wy () 2 (1) + wp () 2 (t) = 0. (10)

Introducing (9) into (10) we get

A 5 0, A A
z|——w +wy+28w— +i| 20— + @+ 28wyw || =0.
A A A
(11)

Let the real part and imaginary part in (11) be equal to zero,
respectively; we can finally determine the time-dependent
damping ratio &(¢) as follows:

-2(A/A) - (o/w)

§(1) = . ,
2v? — (A/A) + 2 (A2/A?) + (Ad/ Aw)

(12)

where A and w are instantaneous amplitude and frequency;,
respectively. Therefore, the instantaneous damping ratio of
SDOF system under zero excitation could be defined as a joint
function of amplitude and frequency.

3. Identification Methodology

With definitions of the instantaneous frequency and damping
ratio for SDOF system in the previous section, identifi-
cation algorithms are proposed based on empirical mode
decomposition method in this part. The empirical mode
decomposition (EMD) method was proposed by Huang et al.
in 1998 [14]. EMD can decompose any measured signal into
intrinsic mode function (IMF) that admits a well-behaved
Hilbert transform. EMD is a self-adaptive data processing
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FIGURE 1: Nonlinear signal x(t) consists of two frequency compo-
nents.

method and has higher frequency resolution compared with
traditional signal processing tools in dealing with nonstation-
ary signals.

Firstly, in order to obtain the “monocomponent function”
as required by HT, it is necessary to apply EMD to the original
signal u(t) to decompose it into summation of several IMF
components plus the final residue. That is,

N
ut)=Yc ) +ry), (13)
i=1

where c.(t) is intrinsic mode function, which is a narrow band
signal and ry(t) is residual. Therefore, the multicomponent
signal u(t) is represented by several monocomponent signals
IMFs. Each IMF corresponds to one mode; in this way,
dynamic responses of MDOF system could be decoupled
into several intrinsic mode responses like c;(¢). Details of the
implementation of EMD can be found in Huang et al. [14] and
Chen and Xu (10, 12].

Having cj(t) obtained, HT can be used to calculate the
instantaneous phase angle as defined in (3a)-(3b). Then,
according to (4) three difference algorithms are introduced
here to estimate f;, and the first is forward difference:

fi(n) = 2, [0+ -6(m)]. (14)

The second is backward difference:

Fom =506 -0 (-1, (1)
The third is central difference:
=00+ ) -00- 1), (16)

These three algorithms almost have the same accuracy, and
they are all sensitive to noise. Therefore, necessary smoothing
or fitting techniques could be taken on f;(n) to eliminate
numerical errors. It should be noted that the identification
results are also sensitive to calculating parameters adopted in
EMD algorithm. In general, a stricter decomposing standard
should be taken when the input signal is highly contaminated.

Take a nonlinear signal x(¢) as example; Figure 1 shows
the time history of x(¢):

x(t) = V2 - sin [271- (4t + 3t2)] + V2 sin [271- (t + 2t2)] .
(17)
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TaBLE 1: Identification error of frequency and damping ratio at different time instant (SDOF Example 1).

Time instant (sec.) Natural frequency (Hz) Damping ratio (%)
Theory Identify Error (%) Theory Identify Error (%)
2 4.044 4.009 0.91 6.186 6.413 3.69
4 3.761 3.742 0.49 4.472 4.435 0.86
6 5.623 5.645 0.37 3.488 3.369 3.42
8 4.486 4.480 0.13 5.954 5.823 2.18
10 3.572 3.597 0.69 5.249 5.214 0.72
12 5.627 5.606 0.37 3.382 3.408 0.78
16 3.444 3.443 0.35 6.054 5.901 2.58
20 5.294 2.795 470 5.320 5.510 3.48
20

0.04
o~
O 0.00 M
0.0 0.5 1.0 15 2.0

Time (s)

FIGURE 2: EMD decomposition result of signal in Figure 1.

Equation (17) indicates that x(¢) has two modal components,
and the theoretical value of instantaneous frequency of each
component is given in the following:

frt) =4+6t,
18
L) =1+4t 1

After empirical mode decomposition we got seven IMFs as
depicted in Figure 2. The amplitude of the first two IMFs is
significantly larger than the last five IMFs, which are actually
due to the numerical calculation error of EMD. By applying
Hilbert transform to the first two IMFs, we can get the instan-
taneous phase angle from which the instantaneous frequency
can be estimated by the forward difference algorithm given
(14). Figure 3 shows the identified results compared with
theoretical ones. It could be observed that identified results
fit well with the theoretical ones.

Identification of instantaneous damping ratios for SDOF
system has been derived in (12); however, it could be used
only in free vibration cases; when the system is forced
vibration, EMD in conjunction with random decrement
technique should be used first to extract the free responses.
In order to extend this method to MDOF systems Pines
and Salvino, 2006 [3] proposed Hilbert damping spectrum

Frequency (Hz)

O 1 1 1
0.0 0.5 1.0 1.5 2.0
Time (s)
------ Identified
—— Theoretical

FIGURE 3: Instantaneous frequencies f,(t) and f,(t) of signal in
Figure 1.

to evaluate damping; he defined damping lose factor #(t) =
2&(t) and demonstrated that 7 is a function of both frequency
and time as follows:

: 2 . 2N\ 1

2 2A (w) t) 2 A (wa t)
D e C) . . (19)

1 (@) ( Awn )\ "\ A
According to (19), each IMF has a time-dependent damping
loss factor #(t), and as already mentioned each IMF corre-
sponds to each single mode. In this sense, the instantaneous
damping ratios can be estimated from (19) as a marginal

distribution of time or frequency from (19). The time-
dependent damping ratio, for instance, will be

E@t) = % [N LN 7 (w,t) dw] 1/2. (20)

In summary, the procedure of time-varying parameter iden-
tification of MDOF system consists of the following three
steps. First, decompose the measured response of the system
by EMD into summation monocomponent signal. Then, for
each monocomponent signal, the instantaneous frequency
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FIGURE 4: Dynamic responses of SDOF system with time-varying
parameters (Example 1).

can be estimated by (14), (15), or (16). The instantaneous
damping ratio can be estimated by (20).

4. Numerical Simulations

In order to illustrate the proposed algorithm for identification
of SDOF and MDOF systems with time-varying parameters,
several numerical examples are discussed in this section
including SDOF system with slow varying and fast varying
parameters and MDOF system with slow varying and sudden
change parameters.

4.1. SDOF: Free Vibration. SDOF system with time-varying
mass stiffness and damping is considered as follows:

m)X+ct)Xx+k(t)x=0, (21)
in which the time-varying parameters are

m(t) = (2 + O.Seio'lt) x 10° kg,
k() = (2 + cos (£)) x 10°N - s/m, (22)
c(t) = (1+0.25sin (¢)) x 10> N/m.

The initial velocity and displacement of the system are
10 mm/s and 10 mm, respectively, and time interval is set as
0.001sec. The free response time histories of displacement,
velocity, and acceleration, as shown in Figure 4, were calcu-
lated by fourth-order Runge-Kutta method.

Take the acceleration response as the measured signal
u(t); the instantaneous phase angle 9(t) and amplitude A(t)
can be obtained by Hilbert transform. The instantaneous
frequency and damping ratios can then be identified by (14)
and (12). Second-order five-point smoothing was applied to
the identified instantaneous damping ratios to reduce the
numerical noise due to difference calculation. Figures 5(a)
and 5(b) compare, respectively, the identified instantaneous
frequency and damping ratio with theoretical value.

It is found that the identified instantaneous frequency
agrees very well with the theoretical value, excluding the
results at endpoints. The difference at endpoints is called end

Frequency (Hz)

2 1 1 1 2
0 5 10 15 20

Time (s)

—— Theoretical
o Identified

(a) Instantaneous frequency

0.08
L
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0.00 L L L
0 5 10 15 20
Time (s)
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- Identified

(b) Instantaneous damping ratio

FIGURE 5: Comparison of identified time-varying parameter with
theoretical value (SDOF Example 1).

effect that is caused by Hilbert transform itself, since the
signal is always cut limited while the convolution integral in
theory is from —oo to +co. Therefore, inaccuracy will occur
at endpoints according to numerical difference methods.
Figure 5(b) shows that the identified damping ratios are
fluctuating around the theoretical value. Table 1 further gives
the relative error of identified and theoretical parameters at
different time instants. Note that the average identification
error of frequency and damping ratio is less than 0.5% and
3%, respectively.

4.2. SDOF: Excited Vibration. The equation of motion of a
SDOF system under external excitation can be expressed as
follows:

a(t)
m(t)

G +26w®) i) +0* (Oul) =— (23)
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FIGURE 6: Dynamic responses of SDOF system (Example 2).
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FIGURE 7: IMF components of acceleration response in Figure 6.

where a(t) is system input and &(t) and w(t) are time-
dependent damping ratios and frequency, respectively. For
the first case, we assume the external input as a(t) =
2% sin(207t+0.17¢%) and the initial velocity and displace-
ment are zero. The time-varying parameters were set as 0.01
times that in Example 1 and the time step was 0.001 sec. The
dynamics responses of the system are shown in Figure 7.
Figure 8 gives the Hilbert energy spectrum of the accel-
eration response. It can be easily observed from Figure 8 that
there are two time scales in the response; one is in the fre-
quency range from 10 to 12 Hz and the other is from 3 to 6 Hz.
The second one is in accordance with the natural frequency
of the SDOF system. Therefore, we take the second IMF as
the free vibration response of SDOF system, and following
the above steps in the first example, instantaneous frequency
and damping ratios could be easily identified. The results are
compared with theoretical values as in Figures 9(a) and 9(b).
Table 2 shows relative errors at several calculation time
instants. It is found in Table 2 that identified results for fre-
quency are relatively stable in the middle part of the response
with relative error around 1%. Significant errors occur at
the end due to the end effect the same as Example 1. For
damping ratios, it should be mentioned that the results are
fitted by second-order 5 points smoothing method, although
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FIGURE 8: Hilbert energy spectrum for signal in Figure 7.
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FIGURE 9: Comparison of identified time-varying parameter with
theoretical value (SDOF Example 2).
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TABLE 2: Identification error of frequency and damping ratio at different time instant (SDOF Example 2).

Time instant (sec.) Natural frequency (Hz) Damping ratio (%)
Theory Identify Error (%) Theory Identify Error (%)
2 4.044 4.057 0.31 0.0618 0.0601 2.81
4 3.761 3.79 0.74 0.0447 0.0358 19.8
6 5.623 5.477 2.68 0.0348 0.0471 35.2
8 4.486 4.547 137 0.0595 0.0562 5.57
10 3.572 3.573 0.024 0.0524 0.0482 8.08
12 5.627 5.584 0.77 0.0338 0.04 18.3
16 3.444 3.484 111 0.0605 0.059 2.51
20 5.294 20 73.5 0.0532 0.05 5.99
TaBLE 3: Identification error of frequency and damping ratio at different time instant (MDOF Example 1).
Time instant (sec.) Freq. (Ist) Freq. (2nd) Damp. (Ist) Damp. (2nd)
Theory Identify Theory Identify Theory Identify Theory Identify
2 6.057 6.016 14.642 14.592 0.149 0.149 0.012 0.012
4 4.516 4.578 12.046 11.988 0.088 0.083 0.010 0.011
6 5.616 5.606 17177 17171 0.109 0.109 0.012 0.014
8 6.478 6.502 15.769 15.934 0.150 0.150 0.013 0.013
10 4.776 4.743 11.974 11.974 0.100 0.102 0.011 0.011
12 5.336 5.332 17.032 17.054 0.106 0.106 0.012 0.011
16 5.003 4.928 12.161 12.109 0.117 0.117 0.010 0.010
20 6.980 2.977 17.603 20.00 0.145 0.137 0.015 0.016
2 10
c £ 3
K, I—EI— K, %« —(5)
518 : - :
c s
K 2_|:|_ K, E
= . .
7777 /77 ‘g
FIGURE 10: 2-DOF shear building model. é
|9}
4 . .
0 5 10 15 20

the identified results are not ideal; with average relative error
5%, the trend of time-varying damping ratios could be clearly
tracked by this method. White noise excitation was also
considered in this example. The identification accuracies for
frequency and damping were similar.

4.3. MDOF System with Slowly Varying Parameter. To illus-
trate the application of the identifying methodology for
MDOF systems, an example of a 2DOF system has been
considered. The system considered is a shear-building model
(as shown in Figure 10) with 2 mass lumped at the two nodes,
m, = m, = 2+ 0.5 %" kg; the floor stiffness for the first
and second floor is k; = (2 + sin(f)) x 10° N/m, k, =
4 % (2 + cos(t)) x 10° N/m, respectively. The damping ratios
are assumed as time dependent with ¢, = 0.1 x (1 +
0.5sint) X 10> N-s/m, ¢, =0.05x (1+0.5cost) x 10° N-s/m.
With initial condition {X(0)} = {10 0 10 0}, (unit:

Time (s)

FIGURE 11: Dynamic responses of the first floor.

mm), dynamic responses of system can be calculated by
fourth-order Runge-Kutta method, At = 0.001s, and the
results of the first floor are shown in Figure 11. Apply EMD
to the acceleration response of the first floor leading to
three IMF components as shown in Figure12. The first
IMF corresponds to the modal response of the second
vibration mode and the second IMF corresponds to the
first vibration mode. Following the identification procedures
of SDOF system, taking the two IMFs decomposed as free
responses of SDOF system, the instantaneous frequency and
damping ratios could be easily identified. Figures 13(a), 13(b),
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FIGURE 12: IMF components of acceleration response in Figure 11.
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FIGURE 13: Comparison of identified time-varying parameter with theoretical value (MDOF Example 1).
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FIGURE 14: Dynamic response of the first floor (MDOF Example 2).
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F1GURE 15: IMF components of acceleration response in Figure 14.

TABLE 4: Identified natural frequency damping ratio of the 12-story
building model.

C Natural Damping Frequency
ase - .
frequency ratio reduction
Initial state 5.127 0.0352 0%
Casel 4.883 0.0405 -4.76%
Case 2 2.930 0.0628 —42.85%
Case 3 2.441 0.1106 -52.39%

and 13(c) compare, respectively, the identified time-varying
frequencies, damping ration of the first, and second vibration
mode with the theoretical values. Table 3 further shows the
relative identification error at several time instants. Note that
the frequency results fit very well with the theoretical values,
while the damping ratio results are less ideal, especially at the
curve peak or valley. The variation trend of the instantaneous
damping can be tracked by the identification results.

4.4. MDOF System with Sudden-Change Parameter. To check
the effectiveness of the method for structures with sudden-
change parameter, the same 2DOF system above is adopted

20
< 15
T
>~
Q
5
=S 10
e
s &
5
O 1 n 1 n
5 10 15
Time (s)
Identified
—— Theoretical

FIGURE 16: Comparison of identified frequency with real values
(MDOF Example 2).
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TN TN Y W W,

“
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FIGURE 17: Panoramic view of the building model.

TABLE 5: Root mean square value of measured and calculated
responses.

nwuigber Real value Constant damping Timg;ﬁgier?gdem
Q7 0.779 0.4961 (36.32%) 0.7077 (9.15%)
Q8 0.6992  0.3781 (45.92%) 0.5391 (22.9%)
Q10 0.7153 0.4677 (34.61%) 0.6555 (8.36%)

but assume that an abrupt change of the first floor’s stiffness
happens, which is

0s<t<10s,

~ [2x10°N/m, (24)
10s <t <155,

" |1 x10°N/m,
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(b) Locations of accelerometers and displacement transducer in the experiment

FIGURE 18: Experimental setup.

with the initial conditions {X(0)} = {10 0 10 0}, (unit:
mm); then responses of the structure are obtained by fourth-
order Runge-Kutta method, time interval At = 0.001s.
Figure 14 shows the first floor’s displacement, velocity, and
acceleration response, from which three IMF components
and one residual can be obtained by EMD (Figure 15).
Figure 16 compares the identified instantaneous frequency
with the theoretical values. Note that the change of frequency
can be well identified before and after the sudden change of
stiffness.

5. Experimental Investigation

5.1. Description of the Experiment. A 12-story short-lag
shear wall reinforced concrete building model was tested
on shanking table (see Figure17). The structural model
was 3.51m high, 2.81m wide, and 3m long as indicated in
Figure 18(a). Schematic plan of standard floor of the model
with wall numbering and measurement sensor arrangement
isillustrated in Figures 18(a) and 18(b). The sensors adopted in
this test were piezoelectric accelerometers and displacement
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FIGURE 19: Measured acceleration and displacement responses of wall Q7 Q8 and QI0.

gauge. Earthquake wave adopted in this test was El Centro
earthquake wave. Acceleration and displacement responses of
shear wall No. Q7, Q8 QIO (refer to number in Figure 18(a))
on the top floor under El Centro wave are shown in Figure 19.
It should be noted that the displacements measured in the test
were relative displacements with respect to the shake table.

5.2. Parameter Identification. White noise sweep frequency
tests were carried out in the test after each loading case.
Using the acceleration records of wall Q7, the constant natural
frequency and damping ratio can be identified by method
previously suggested by the author of [12]. The identification
results are given in Table 4, in which the amplitude of input
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earthquake increased from Case 1 to Case 3 (low, moder-
ate, and high earthquake intensity). Note that the natural
frequency has a sharp decrease from 5.127 Hz of the intact
structure to 2.441 Hz after Case 3, indicating occurrence and
accumulation of damage from test Case 1 to Case 3. It is
interesting that from Case 1 to Case 3 the damping ratio
increases from 3.5% to 11.06%, implying that the structure has
increased energy dissipating capacity when damaged.

For test Case 1 the instantaneous frequencies and damp-
ing ratios are identified by the proposed method using
displacement responses at the top of walls Q7 and Q8, and
the identified results are given in Figure 20. It is seen that,
at most part of the time duration, except near the two
ends of the record, the identified instantaneous frequency
varies slightly around 5Hz. Test Case 2, the instantaneous
frequency, and damping ratio are identified using response

of wall Q7 and the results are shown in Figure 21. It is
seen that the instantaneous frequency drops quickly from
6 Hz to 2Hz at the beginning and then varies around 2 Hz
for the rest period. As for the damping ratio, it goes down
from 8% at the very beginning and varies in a range from
2% to 6% and then in a range from 4% to 6%. Figure 22
compares the marginal damping-frequency spectrum (by
integrating (19) over time) of response of Q7 at Case 1
(low level earthquake intensity) with that at Case 2 (high
level earthquake intensity). It is observed that, for low level
earthquake excitation, the damping ratio changes not much
from 2Hz to 5Hz. For high level earthquake excitation
the damping ratio is higher in lower frequency region as
1Hz to 3Hz than other regions, indicating that the input
energy is mainly dissipated in vibration modes with lower
frequency. The conclusion agrees well with the experimental
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observations that when the structure model was damaged
more energy will be dissipated during opening and closing
of existing cracks and development of new cracks.
Time-varying frequency and damping ratio of a struc-
tural model under various earthquake excitations are identi-
fied with the method proposed, in order to testify the identi-
fied results; 3D finite element simulation of the shaking table
test is performed. First, a 3D FE model is established, with
different inputs of earthquake waves, the displacements D at
different shearing walls on top floor are calculated, then, with
the identified real time frequency and damping ratios under
different earthquake cases, the original FE model is modified,
and the displacements are recalculated as D'; then D and D'
are compared, respectively, with real experimental values; it
is easily found that D' is closer in amplitude to experimental
results, particularly in free vibration piece after main shock.

5.3. FE Simulation. To further compare the effect of con-
stant parameters with the time-varying parameters on struc-
tural response prediction, a three-dimensional finite ele-
ment model of the building was established as shown in
Figure 23. Beam 188 element, Shell63 element, and Shell43
element were employed to simulate beam, floor, and shearing
wall, respectively. Concrete material properties were deter-
mined from control specimens cast during the construction
procedure of the model. Floor density was adjusted to account
for the additional mass added to the building model in the
test. Model analysis on the FE model was performed. The cal-
culated natural frequencies of the first three vibration modes
are 5.075Hz, 6.204 Hz, and 6.785 Hz in the X translational
direction, torsional direction, and Y translational direction,
respectively. The relative error of the first frequency between
FE model (5.075 Hz) and real model (5.127 Hz) is only 1.2%
which means the mass/stiffness ratio of the FE model is very
close to the real one.

Taking the actual record of earthquake wave in test Case
1 as input to the FE model, the structural responses can
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F1GURE 23: 3D finite element model of the test structure.

be calculated for two situations: first, a constant damping
ratio 5% is adopted, and second, the identified time-varying
parameters (Figure 20(a)) are used. Since Rayleigh damping
model is used in ANSYS, for the first situation the two damp-
ing coeflicients alpha and beta are determined as follows;

2 : .
_ 2oy 2X507X678 005 =182,
@+, 507+ 6.78
(25)
2 2

x 0.05 = 0.0013.

B =

W +@,° (507 +6.78) x 21

For the second situation the identified instantaneous param-
eters are introduced into the above two equations to calculate
the instantaneous damping coeflicient.

Figures 24 and 25 compare, for the constant damping
situation and time-varying damping, respectively, the cal-
culated displacements of walls Q7, Q8, and QI0 with the
measured responses. It is found that when constant damping
is adopted the response amplitude calculated by FE model
is much smaller than the measured value, which indicates
that the constant damping ratio of 5% is overestimated. The
significant difference occurs in duration of 2-4 second where
the calculated amplitude is only about half of the measured
ones. When time-varying damping is considered, on the
other hand, the calculated responses are much closer to the
measured responses especially for the duration 6-10 seconds
when the structural responses could be broadly treated as
free vibration response. The root-mean-square value (RMS)
of the calculated responses and the measured responses
are computed and given in Table 5. The relative prediction
error for time-varying damping situation is much smaller
compared to that of the constant damping situation. For
response of wall Q7 and Q10 the relative error is no more than
10%. This comparison shows that time-dependent parameters
by the proposed method are reasonable.
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6. Conclusions

This paper suggests an approach to identifying instantaneous
parameters of structures with time-dependent properties.
The instantaneous frequency is identified by its defini-
tion according to Hilbert transform. For single-degree-of-
freedom system, the instantaneous damping ratio is iden-
tified by equation derived from equation of motion with
consideration of time-varying frequency. For multi-degree-
of-freedom system, the instantaneous damping ratio can be
obtained as marginal spectrum of Hilbert damping spectrum.
The empirical mode decomposition method is necessary to
decompose the measured structural response into monocom-
ponent signal, thus making the calculation of instantaneous
frequency and damping spectrum reasonable. The effective-
ness and applicability of the proposed identification approach
have been validated by extensive numerical examples and
experimental example. The results demonstrate that the
suggested method can be applied to identify instantaneous
modal features of SDOF or MDOF systems with slowly
varying parameters.
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