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Interval wavelet numerical method for nonlinear PDEs can improve the calculation precision compared with the common wavelet.
A new interval Shannon wavelet is constructed with the general variational principle. Compared with the existing interval wavelet,
both the gradient and the smoothness near the boundary of the approximated function are taken into account. Using the new
interval Shannon wavelet, a multiscale interpolation wavelet operator was constructed in this paper, which can transform the
nonlinear partial differential equations intomatrix differential equations; this can be solved by the coupling technique of the wavelet
precise integration method (WPIM) and the variational iteration method (VIM). At last, the famous Black-Scholes model is taken
as an example to test this new method. The numerical results show that this method can decrease the boundary effect greatly and
improve the numerical precision in the whole definition domain compared with Yan’s method.

1. Introduction

The nonlinear Black-Scholes equations have been increas-
ingly attracting interest over the last two decades, since they
provide more accurate values by taking into account more
realistic assumptions, such as the transaction costs, risks
from an unprotected portfolio, large investor’s preferences,
or illiquid markets, which may have an impact on the stock
price, the volatility, the drift, and the option price itself [1].
In contrast with the traditional Black-Scholes equation, it
is almost impossible to find the analytical solution of the
nonlinear Black-Scholes equations. Most of the numerical
schemes focus on the finite difference methods [2, 3]. As
the matter of fact, the wavelet precise integration method
(WPIM) is a simple and effective method for linear partial
differential equations proposed by Mei et al. [4]. For linear
steady structural dynamic systems, their numerical results at
the integration points are almost equal to those of the exact
solution inmachine accuracy. Yan proposed a wavelet precise
integration method for the nonlinear Black-Scholes model
[5] recently by combining the variational iteration method
(VIM) and homotopy perturbation method (HPM) [6].

Since the definition domain of wavelet transformation is
an infinite interval, the boundary effect would occur when

being applied for resolving the engineering problems with
bounded interval, for example, ordinary differential equa-
tions (ODEs). Consequently, it will decrease the precision
and computational efficiency of the solution. Nevertheless,
the boundary effect can be eliminated effectively by con-
structing an interval wavelet using numerical methods.There
are several ways available to construct an interval wavelet.
Mei et al. [7] proposed a general construction method of
interval wavelet based on the restricted variational principle.
According to this method, there exist some interval wavelets
that have been constructed to solve PDEs in engineering [8–
11].

The main purpose of this paper is to deduce a novel
interval wavelet based on the restricted variational principle
and construct an interval wavelet precise integration method
(WPIM) for the nonlinear Black-Scholesmodel. According to
WPIM, the nonlinear differential equation should be trans-
formed to a system of ordinary differential equations with
the multiscales wavelet interpolation operator [12], and then
the nonlinear PDEs become a system of nonlinear differential
equations. The matrix differential equation (MDE) can be
solved almost exactly by the coupling technique of the precise
integration method and the variational iteration method

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 541023, 9 pages
http://dx.doi.org/10.1155/2014/541023



2 Mathematical Problems in Engineering

(VIM) [13–17]. In contrast to the traditional finite difference
approximation, the numerical results obtained by the PIMare
close to the computer precision and also are free from the stiff
problem in solving a set of simultaneous linear time-invariant
ODEs.

2. Construction of Interval Shannon Wavelet
Based on Restricted Variational Principle

Mei et al. [7] proposed a kind of construction method of the
interval interpolation wavelet based on the restricted varia-
tional principle. It does not matter with the representation of
the wavelet function. In this section, a new interval wavelet
function with this method will be constructed. It takes into
account the gradient and the smoothness of the approximated
function. This is helpful to improve the calculation precision
of the wavelet numerical method.

The representation of Shannon wavelet [18–21] is based
upon approximating the Dirac delta function as a band-
limited function and is given by

𝜙 (𝑥) =
sin (𝜋𝑥)
𝜋𝑥

. (1)

The Shannon wavelet possesses many excellent numerical
properties such as interpolating, relative sparse, and orthogo-
nal properties. A perceived disadvantage of (1) is that it tends
to zero quite slowly as |𝑥| → ∞. A direct consequence of this
is that there are a large number of grid points will contribute
to the derivatives calculation of approximated function. It is
for this reason that Hoffman et al. [22] have suggested using
the Shannon-Gabor wavelet as follows:

𝑤 (𝑥) =
sin (𝜋𝑥)
𝜋𝑥

exp(− 𝑥2

2𝜎2
) , 𝜎 > 0. (2)

It has been proved that (2) can improve the localized and
asymptotic behavior of the Shannon scaling function. 𝜎 is
the width parameter (or called window size). However, the
presence of the Gaussian window destroys the orthogonal
properties possessed by the Shannon wavelet, effectively
worsening the approximation to a Dirac delta function.
So, the Shannon wavelet representation of the Dirac delta
function is adopted in this paper, and it is shown that
this representation ensures that the approach is identical to
the weighted residual approach. The corresponding discrete
formula of the Shannon scaling function is

𝑤 (𝑥 − 𝑥
𝑖
) =

sin (𝜋/Δ) (𝑥 − 𝑥
𝑖
)

(𝜋/Δ) (𝑥 − 𝑥
𝑖
)

. (3)

In the following, the construction of the interval Shannon
wavelet is based on the general variational principle [7].
Consider one-dimensional problem 𝑢(𝑥), whose domain of
definition Ω is [𝑚, 𝑛]. Assuming that the number of discrete
points is 2𝑗+1, 𝑗 ∈ 𝑍, the 𝑖th discrete point of variable 𝑥 could
be written as

𝑥
𝑖
= 𝑚 +

𝑛 − 𝑚

2𝑗
⋅ 𝑖, 𝑖 ∈ 𝑍. (4)

If the Shannon wavelet with interpolation property is
employed as the trial function𝑁

𝑗
, that is,

𝑁
𝑗
= 𝑤
𝑗
(𝑥 − 𝑥

𝑖
) =

sin (2𝑗𝜋/ (𝑛 − 𝑚)) (𝑥 − 𝑥
𝑖
)

(2𝑗𝜋/ (𝑛 − 𝑚)) (𝑥 − 𝑥
𝑖
)

, (5)

any element in the matrices K and G𝑇 could be expressed,
respectively, as

𝐾
𝑘,𝑛

= 𝐴 (𝑤
𝑗
(𝑘 − 𝑛)) , (6)

𝐺
𝑇

𝑘,𝑛
= ∫
Ω

�̃�
𝑇

𝑘
𝐿
1
(𝑁
𝑛
) dΩ, (7)

where �̃�
𝑘
is the Lagrange basic function.

As the definition domain of wavelet transformation is
a double infinite interval, the wavelet coefficients are large
near the endpoints of the bounded signal, which increases
the computational error. To obtain a high computational
precision, the additional condition of scalar fonctionelle in
boundary Γ could be changed to

𝑢 = 𝑢. (8)

Thus

𝐿
1
(𝑁
𝑛
) = ∑
𝑖

𝑁
𝑖
𝑢
𝑖
, (9)

where 𝑢
𝑖
is a known value. According to the general varia-

tional principle, we obtain

K0C + R = [
K G
G𝑇 0]{

a
b} − {

P
0} = 0, (10)

where

K = ∫
Ω

N𝑇𝐴 (N) dΩ,

G𝑇 = ∫
Ω

Ñ𝑇𝐿
1
(N) dΩ,

Q = ∫
Ω

Ñ𝑇𝐶
1
dΩ.

(11)

Correspondingly, (7) changed to the form

𝐺
𝑇

𝑘,𝑛
= �̃�
𝑇

𝑘
𝑁
𝑛
. (12)

The interpolation properties of Ñ and N imply that a and b
are the vectors consisting of the approximate values of 𝑢 in
discrete points 𝑥

𝑖
and extended discrete points outside the

domain of [𝑚, 𝑛], respectively. Typically, periodic, symmetric,
and zero extension methods could be employed. Assuming
that there are 𝑅 = 2𝑗 discrete points in [𝑚, 𝑛], that is,
𝑥
0
, 𝑥
1
, . . . , 𝑥

2
𝑗 , and 𝐿 extended points in both outsides of the

domain [𝑚, 𝑛], respectively, that is, 𝑥
−𝐿−1

, 𝑥
−𝐿
, . . . , 𝑥

−1
and

𝑥
𝑅+1

, 𝑥
𝑅+2

, . . . , 𝑥
𝑅+𝐿

, the function 𝑢 can be extended outside
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of the definition domain using the symmetry method as
below:

𝑢 (𝑥
−1
) = 2𝑢 (𝑥

0
) − 𝑢 (𝑥

1
) ,

𝑢 (𝑥
−2
) = 2𝑢 (𝑥

0
) − 𝑢 (𝑥

2
) ,

...

𝑢 (𝑥
−1−𝑖

) = 2𝑢 (𝑥
0
) − 𝑢 (𝑥

1+𝑖
) ,

...

𝑢 (𝑥
−𝐿−1

) = 2𝑢 (𝑥
0
) − 𝑢 (𝑥

1+𝐿
) ,

𝑢 (𝑥
𝑅+1

) = 2𝑢 (𝑥
𝑅
) − 𝑢 (𝑥

𝑅−1
) ,

𝑢 (𝑥
𝑅+2

) = 2𝑢 (𝑥
𝑅
) − 𝑢 (𝑥

𝑅−2
) ,

...

𝑢 (𝑥
𝑅+𝑖

) = 2𝑢 (𝑥
𝑅
) − 𝑢 (𝑥

𝑅−𝑖
) ,

...

𝑢 (𝑥
𝑅+𝐿

) = 2𝑢 (𝑥
𝑅
) − 𝑢 (𝑥

𝑅−𝐿
) .

(13)

Substituting (13) into (10) results in

[

[

G1
A

G2
]

]

{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{
{

𝑢
−𝐿−1

𝑢
−𝐿

...
𝑢
−1

𝑢
0

𝑢
1

...
𝑢
2
𝑗

𝑢
𝑅+1

𝑢
𝑅+2

...
𝑢
𝑅+𝐿

}}}}}}}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}}}}}}}
}

= {
P
0 } , (14)

where

A

=

[
[
[
[
[
[
[

[

𝐴(𝑤
𝑗
(0 − 0)) 𝐴 (𝑤

𝑗
(0 − 1)) ⋅ ⋅ ⋅ 𝐴 (𝑤

𝑗
(0 − 2𝑗))

𝐴 (𝑤
𝑗
(1 − 0)) 𝐴 (𝑤

𝑗
(1 − 1)) ⋅ ⋅ ⋅ 𝐴 (𝑤

𝑗
(1 − 2𝑗))

...
...

...
...

𝐴(𝑤
𝑗
(2𝑗 − 0)) 𝐴 (𝑤

𝑗
(2𝑗 − 1)) ⋅ ⋅ ⋅ 𝐴 (𝑤

𝑗
(2𝑗 − 2𝑗))

]
]
]
]
]
]
]

]

,

G1

=
[
[
[
[

[

𝑎
−𝐿−1,−𝐿−1

𝑤
𝑗
(0) 𝑎

−𝐿−1,−𝐿
𝑤
𝑗
(−1) ⋅ ⋅ ⋅ 𝑎

−𝐿−1,−1
𝑤
𝑗
(−𝐿)

𝑎
−𝐿,−𝐿−1

𝑤
𝑗
(1) 𝑎

−𝐿,−𝐿
𝑤
𝑗
(0) ⋅ ⋅ ⋅ 𝑎

−𝐿,−1
𝑤
𝑗
(1 − 𝐿)

...
...

...
...

𝑎
−1,−𝐿−1

𝑤
𝑗
(𝐿) 𝑎

−1,−𝐿
𝑤
𝑗
(𝐿 − 1) ⋅ ⋅ ⋅ 𝑎

−1,−1
𝑤
𝑗
(0)

]
]
]
]

]

,

G2

=
[
[
[
[

[

𝑏
𝑅,𝑅

𝑤
𝑗
(0) 𝑏

𝑅,𝑅+1
𝑤
𝑗
(−1) ⋅ ⋅ ⋅ 𝑏

𝑅,𝑅+𝐿
𝑤
𝑗
(−𝐿)

𝑏
𝑅+1,𝑅

𝑤
𝑗
(1) 𝑏

𝑅+1,𝑅+1
𝑤
𝑗
(0) ⋅ ⋅ ⋅ 𝑏

𝑅+1,𝑅
𝑤
𝑗
(1 − 𝐿)

...
...

...
...

𝑏
𝑅+𝐿,𝑅

𝑤
𝑗
(𝐿) 𝑏
𝑅+𝐿,𝑅+1

𝑤
𝑗
(𝐿 − 1) ⋅ ⋅ ⋅ 𝑏

𝑅+𝐿,𝑅+𝐿
𝑤
𝑗
(0)

]
]
]
]

]

.

(15)

In the matrices G1 and G2, 𝑎
𝑛𝑘

and 𝑏
𝑛𝑘

could be calculated,
respectively, as

𝑎
𝑛𝑘
= 𝑙
1

𝑗𝑘
(𝑥
𝑗𝑛
) , 𝑏

𝑛𝑘
= 𝑙
2

𝑗𝑘
(𝑥
𝑗𝑛
) ,

𝑙
1

𝑗,𝑘
=
−1

∏
𝑖=−𝐿−1

𝑖 ̸= 𝑘

𝑥 − 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
− 𝑥
𝑗,𝑖

, 𝑙
2

𝑗,𝑘
=
2
𝑗
+1+𝐿

∏

𝑖=2
𝑗
+1

𝑖 ̸= 𝑘

𝑥 − 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
− 𝑥
𝑗,𝑖

.
(16)

According to G𝑇𝑏 = 0 and the relational expression (13), (14)
could be condensed in the following way:

[

[

G1 + A11 A12 A13
A21 A22 A23
A31 A32 G2 + A33

]

]

{{{{
{{{{
{

𝑢
0

𝑢
1

...
𝑢
2
𝑗

}}}}
}}}}
}

= {
P
0
} . (17)

Therefore, the function 𝑢(𝑥) can be represented as

𝑢 (𝑥) =
2
𝑗
+𝑁

∑
𝑘=−𝑁

𝑤(2
𝑗
𝑥 − 𝑘) 𝑢

𝑗

𝑘

=
−1

∑
𝑘=−𝑁

𝑤(2
𝑗
𝑥 − 𝑘) (2𝑓

0
− 𝑢
𝑗

−𝑘
) +
2
𝑗

∑
𝑘=0

𝑤(2
𝑗
𝑥 − 𝑘) 𝑢

𝑗

𝑘

+
2
𝑗
+𝑁

∑
𝑘=2
𝑗
+1

𝑤(2
𝑗
𝑥 − 𝑘) (2𝑢

2
𝑗 − 𝑢
2
𝑗+1
−𝑘
)

= −
−1

∑
𝑘=−𝑁

𝑤(2
𝑗
𝑥 − 𝑘) 𝑢

𝑗

−𝑘
+ 2
−1

∑
𝑘=−𝑁

𝑤(2
𝑗
𝑥 − 𝑘) 𝑢

0

+
2
𝑗

∑
𝑘=0

𝑤(2
𝑗
𝑥 − 𝑘) 𝑢

𝑗

𝑘
+ 2
2
𝑗
+𝑁

∑
𝑘=2
𝑗
+1

𝑤(2
𝑗
𝑥 − 𝑘) 𝑢

2
𝑗

−
2
𝑗
+𝑁

∑
𝑘=2
𝑗
+1

𝑤(2
𝑗
𝑥 − 𝑘)𝑓

2
𝑗+1
−𝑘
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= −
𝑁

∑
𝑘=1

𝑤(2
𝑗
𝑥 + 𝑘) 𝑢

𝑗

−𝑘
+ 2
𝑁

∑
𝑘=1

𝑤(2
𝑗
𝑥 + 𝑘) 𝑢

0

+
2
𝑗

∑
𝑘=0

𝑤(2
𝑗
𝑥 − 𝑘) 𝑢

𝑗

𝑘
+ 2
−2
𝑗
−1

∑
𝑘=2
𝑗
−𝑁

𝑤(2
𝑗
𝑥 + 𝑘) 𝑢

2
𝑗

−
2
𝑗
+𝑁

∑
𝑘=2
𝑗
+1

𝑤(2
𝑗
𝑥 − 𝑘) 𝑢

2
𝑗+1
−𝑘
,

(18)

where

2
𝑗

∑
𝑘=0

𝑤(2
𝑗
𝑥 − 𝑘)𝑓

𝑗

𝑘
= 𝑤 (2

𝑗
𝑥)𝑓
𝑗

0
+
𝑁

∑
𝑘=1

𝑤(2
𝑗
𝑥 − 𝑘)𝑓

𝑗

𝑘

+
2
𝑗
−𝑁−1

∑
𝑘=𝑁+1

𝑤(2
𝑗
𝑥 − 𝑘)𝑓

𝑗

𝑘

+
2
𝑗
−1

∑
𝑘=2
𝑗
−𝑁

𝑤(2
𝑗
𝑥 − 𝑘)𝑓

𝑗

𝑘

+ 𝑤 (2
𝑗
𝑥 − 2
𝑗
) 𝑓
𝑗

2
𝑗 .

(19)

Subsequently, as interval interpolation basic functions, the
interval Shannon wavelet can be obtained from (18) as
follows:

𝑤
𝑗𝑘

=

{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{

𝑤(2𝑗𝑥 − 0) + 2
𝑁

∑
𝑘=1

𝑤(2𝑗𝑥 + 𝑘) , 𝑘 = 0,

𝑤 (2𝑗𝑥 − 𝑘) − 𝑤 (2𝑗𝑥 + 𝑘) , 𝑘 = 1, 2, . . . , 𝑁,

𝑤 (2𝑗𝑥 − 𝑘) , 𝑘 = 𝑁 + 1, . . . ,

2𝑗 − 𝑁 − 1,

𝑤 (2𝑗𝑥 − 𝑘)

−𝑤 (2𝑗𝑥−2𝑗+1 + 𝑘) , 𝑘 =2𝑗 − 𝑁, . . . , 2𝑗 − 1,

𝑤 (2𝑗𝑥 − 2𝑗)

+ 2
2
𝑗
+𝑁

∑
𝑘=2
𝑗
+1

𝑤(2𝑗𝑥 − 𝑘) , 𝑘 = 2𝑗,

(20)

where𝑁 is the support domain of the wavelet function; that
is, sup 𝜙 = [−𝑁,𝑁].

The interval wavelet constructed in [8] is different from
(20), which is represented as follows:

𝑤
𝑗𝑘

=

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

𝑤(2𝑗𝑥 − 𝑘) +
−1

∑
𝑛=−𝐿+1

𝑎
𝑛𝑘
𝑤(2𝑗𝑥 − 𝑛) , 𝑘 = 0, 1, 2, . . . , 𝐿,

𝑤 (2𝑗𝑥 − 𝑘) , 𝑘 = 𝐿 + 1, . . . ,

2𝑗 − 𝐿 − 1,

𝑤 (2𝑗𝑥 − 𝑘)

+
2
𝑗
+𝐿−1

∑
𝑛=2
𝑗
+1

𝑏
𝑛𝑘
𝑤(2𝑗𝑥 − 𝑛) , 𝑘 = 2𝑗 −𝐿, . . . , 2𝑗,

(21)

where

𝑎
𝑛𝑘
=
−1

∏
𝑖=𝐿−1

𝑖 ̸= 𝑘

𝑥
𝑗,𝑛
− 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
− 𝑥
𝑗,𝑖

, 𝑏
𝑛𝑘
=
2
𝑗
+1+𝐿

∏

𝑖=2
𝑗
+1

𝑖 ̸= 𝑘

𝑥
𝑗,𝑛
− 𝑥
𝑗,𝑖

𝑥
𝑗,𝑘
− 𝑥
𝑗,𝑖

,

𝑥
𝑗,𝑘

= 𝑘
𝑥max − 𝑥min

2𝑗
, 𝑘 ∈ Z,

(22)

where 𝐿 is the amount of the external collocation points, the
amount of discrete points in the definition domain is 2𝑗 + 1
(𝑗 ∈ 𝑍), and [𝑥min, 𝑥max] is the definition domain of the
approximated function.

It is obvious that (21) is just the Lagrange extrapolation
representation. The parameter 𝐿 appeared in (21) is relative
to the smoothness and gradient of the function to be
approximated. In theory, the increase of 𝐿 can improve the
approximate precision. But it was pointed out in [23] that
the increase of 𝐿 can also bring the increase of the condition
number of the problem to be solved, and this can decrease the
numerical precision greatly. In addition, the larger 𝐿 can also
bring more calculation.

Table 1 shows themaximumabsolute errors of the numer-
ical approximation to curves with different gradient near the
boundary corresponding to different value of 𝐿. It illustrates
that 𝐿 is not only related to the smoothness, but also to the
gradient of original function near the boundary. For the same
𝐿, the greater the original function’s gradient is, the bigger
the error is. To the different gradient original functions in
Table 1, the reasonable 𝐿 should be 𝐿 ≥ 3, 𝐿 ≥ 4, 𝐿 ≥ 4, and
𝐿 ≥ 8, respectively. In contrast, the interval wavelet proposed
in this paper is not sensitive to the gradient of the function to
be approximated, and the calculation amount is the same as
the interval wavelet in [7] with 𝐿 = 1. As the matter of fact,
the proposed interval wavelet is constructed based on that
the derivative function should be continuous, and the smaller
𝐿 avoids the Gibbs phenomenon appeared in the Lagrange
interpolator. This is the reason why it is not sensitive to the
gradient value.
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Table 1: Errors comparison of the numerical approximation to curves with different gradients (𝑗 = 10, 𝑟 = 3).

𝐿
sin(𝑥)
(10−15)

sin(5𝑥)
(10−15)

sin(10𝑥)
(10−15)

sin(100𝑥)
(10−14)

Interval wavelet in [7]

1 3964.88397669 123954.735364 793825.449818 2336702.80902
2 5.60662627435 634.825525480 1759.70349403 599685.701097
3 0.22204460492 2.22044604925 46.9624339416 18207.2357191
4 0.22204460492 0.44408920985 0.44408920985 3343.21459405
5 0.27755575615 0.44408920985 0.44408920985 129.352084599
6 0.22204460492 0.44408920985 0.44408920985 18.0300219199
7 0.27755575615 0.44408920985 0.44408920985 0.88817841970
8 0.27755575615 0.44408920985 0.44408920985 0.88817841970

New interval wavelet 0.27755575613 0.27755575625 0.27755575615 0.02784584512

3. Black-Scholes Equation and Its Interval
Wavelet Approximation

The famous Black-Scholes equation can be represented as

𝜕𝑉

𝜕𝑡
= 𝑟𝑉 −

1

2
𝜎
2
𝑆
2 𝜕
2𝑉

𝜕𝑆2
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
, (23)

where 𝑆(𝑡) denotes the underlying asset, 𝑡 ∈ (0, 𝑇), 𝑇 denotes
the expiry date, 𝜎 is the volatility (measures the standard
deviation of the returns), and 𝑟 is the riskless interest rate.
In general, the parameter 𝜎 is taken as a constant since the
transaction cost is taken as zero. Obviously, the 𝜎 is not
really a constant, and thenwe can obtain the nonlinear Black-
Scholes equation as follows:

𝜕𝑉

𝜕𝑡
= 𝑟𝑉 −

1

2
�̃�
2
(𝑡, 𝑆,

𝜕𝑉

𝜕𝑆
,
𝜕2𝑉

𝜕𝑆2
)𝑆
2 𝜕
2𝑉

𝜕𝑆2
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
, (24)

where �̃� denotes a nonconstant volatility. In order to solve the
problem, it is necessary to perform a variable transformation
as follows:

𝑥 = ln( 𝑆
𝐾
) , 𝜏 =

1

2
𝜎
2
(𝑇 − 𝑡) ,

𝑢 (𝑥, 𝜏) = 𝑒
−𝑥𝑉 (𝑠, 𝑡)

𝐾
.

(25)

Substituting (25) into (24), the following equation can be
obtained:

𝜕𝑢

𝜕𝑡
=
�̃�2

𝜎2
(
𝜕2𝑢

𝜕𝑥2
+
𝜕𝑢

𝜕𝑥
) + 𝐷

𝜕𝑢

𝜕𝑥
, (26)

where

𝐷 =
2𝑟

𝜎2
, 𝑥 ∈ 𝑅, 0 ≤ 𝜏 ≤ �̃� =

𝜎2

2
. (27)

Initial condition is

𝑢 (𝑥, 0) = (1 − 𝑒
−𝑥
)
+ for 𝑥 ∈ 𝑅. (28)

And the boundary conditions are

𝑢 (𝑥, 𝜏) = 0, as 𝑥 → −∞,

𝑢 (𝑥, 𝜏) ∼ 1 − 𝑒
−𝐷𝜏−𝑥

, as 𝑥 → ∞.
(29)

According to the transformation relation (25), it is easy to
understand that the point 𝑥 = 0 is corresponding to the strike
price 𝑆 = 𝐾. Obviously, the initial solution curve is smooth
except around the position 𝑥 = 0, where a sharp steep wave
happened. So, an adaptive numerical method is suited to this
problem.

According to the wavelet precision integration method,
the nonlinear Black-Scholes equation can be approximately
represented as

d𝑢
𝑗
(𝑥
𝑖
, 𝑡)

d𝑡
= 𝐷
2
𝑗

∑
𝑚=0

𝑢
𝑗
(𝑥
𝑚
, 𝑡
𝑛
) [𝑤

(𝑥
𝑖
− 𝑥
𝑚
)]

+
�̃�2

𝜎2

2
𝑗

∑
𝑚=0

𝑢
𝑗
(𝑥
𝑚
, 𝑡
𝑛
)

× [𝑤

(𝑥
𝑖
− 𝑥
𝑚
) + 𝑤

(𝑥
𝑖
− 𝑥
𝑚
)] ,

(30)

where 𝑖 = 0, 1, 2, . . . , 2𝑗. Let

𝑈
𝑛

𝑗
= (𝑢
𝑗
(𝑥
0
, 𝑡
𝑛
) , 𝑢
𝑗
(𝑥
1
, 𝑡
𝑛
) , . . . , 𝑢

𝑗
(𝑥
2
𝑗 , 𝑡
𝑛
))
𝑇

,

𝐹 = diag (𝑓 (𝑥
0
) , 𝑓

(𝑥
1
) , . . . , 𝑓


(𝑥
2
𝑗)) ,

𝑊
1
=
[
[
[
[

[

𝑤 (𝑥
0
− 𝑥
0
) 𝑤 (𝑥

0
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤 (𝑥

0
− 𝑥
2
𝑗)

𝑤 (𝑥
1
− 𝑥
0
) 𝑤 (𝑥

1
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤 (𝑥

1
− 𝑥
2
𝑗)

...
... d

...
𝑤 (𝑥
2
𝑗 − 𝑥
0
) 𝑤 (𝑥

2
𝑗 − 𝑥
1
) ⋅ ⋅ ⋅ 𝑤 (𝑥

2
𝑗 − 𝑥
2
𝑗)

]
]
]
]

]

,

𝑊
2
=
[
[
[
[

[

𝑤 (𝑥
0
− 𝑥
0
) 𝑤 (𝑥

0
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤 (𝑥

0
− 𝑥
2
𝑗)

𝑤 (𝑥
1
− 𝑥
0
) 𝑤 (𝑥

1
− 𝑥
1
) ⋅ ⋅ ⋅ 𝑤 (𝑥

1
− 𝑥
2
𝑗)

...
... d

...
𝑤 (𝑥

2
𝑗 − 𝑥
0
) 𝑤 (𝑥

2
𝑗 − 𝑥
1
) ⋅ ⋅ ⋅ 𝑤 (𝑥

2
𝑗 − 𝑥
2
𝑗)

]
]
]
]

]

.

(31)

Then the system of (30) can be expressed as the matrix
format:
d𝑈𝑛
𝑗

d𝑡
=𝐷⋅𝑊

1
𝑈
𝑛

𝑗
+
�̃�2

𝜎2
(𝑊
1
+𝑊
2
) 𝑈
𝑛

𝑗
= 𝑀
0
𝑈
𝑛

𝑗
+𝑀
1
(𝑈
𝑛

𝑗
)𝑈
𝑛

𝑗
.

(32)
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It is obvious that 𝑀
0
is a constant matrix according to

(32). 𝑀
1
(𝑉
𝑗
) 𝑉
𝑗
is the nonlinear term in (32), which can be

linearized subsectionally in terms of first-order Taylor series
expansion; that is, the nonlinear terms can be taken as linear
ones in the time step (𝑡

𝑘
,𝑡
𝑘+1

), and then (32) can be rewritten
as

d
d𝑡
𝑈
𝑗
= 𝑀
0
𝑈
𝑗
+ 𝑟
0
+ 𝑟
1
(𝑡 − 𝑡
𝑘
) , (33)

where

𝑟
0
= 𝑀
1
𝑈
𝑗
, 𝑟

1
=
d (𝑀
1
𝑈
𝑗
)

d𝑡
=
d𝑀
1

d𝑡
𝑈
𝑗
+𝑀
1

d𝑈
𝑗

d𝑡
.

(34)

Letting 𝑀
2
= d𝑀

1
/d𝑡 = − diag(d𝑈

𝑗
/d𝑡)𝑊

1
and combining

with (32), the expression of 𝑟
1
can be obtained as

𝑟
1
= 𝑀
2
𝑈
𝑗
+𝑀
1
((𝑀
0
+𝑀
1
) 𝑈
𝑗
) . (35)

The precise time integration scheme for the linear ordi-
nary differential equations (33) can be expressed as

𝑈
𝑘+1

𝑗
= 𝑇 × [𝑉

𝑘

𝑗
+𝑀
−1

0
(𝑟
0
+𝑀
−1

0
𝑟
1
)]

−𝑀
−1

0
(𝑟
0
+𝑀
−1

0
𝑟
1
+ 𝑟
1
𝜏) ,

(36)

where

𝑇 = exp (𝑀
0
⋅ 𝜏) (𝜏 is time step) , (37)

and then solving (33) is changed into the calculation ofmatrix
𝑇. the exponential matrix 𝑇 can be calculated accurately by
PIM as follows:

𝑇 (𝑡) = exp (M0𝑡) = [exp(M0 ⋅
𝑡

2𝑁
)]
2
𝑁

. (38)

Let Δ𝑡 = 𝜏/2𝑁, where 𝑁 is a positive integer (usually take
𝑁 = 20, and then Δ𝑡 = 𝜏/1048576). Taking into account that
𝑡 is a small time interval and Δ𝑡 is a very smaller value, then

exp (M0 ⋅ Δ𝑡) = 𝐼 + 𝑇
𝑎
= 𝐼 +M0Δ𝑡

+
(M0Δ𝑡)

2

[𝐼 + (M0Δ𝑡) /3 + (M0Δ𝑡)
2

/12]

2
(39)

which is the Taylor series expansion of exp(M0Δ𝑡). In order
to calculate the matrix 𝑇 more accurately, it is necessary to
factorize the matrix 𝑇 as

𝑇 (𝑡) = [exp (M0 ⋅ Δ𝑡)]
2
𝑁

= (𝐼 + 𝑇
𝑎
)
2
𝑁−1

(𝐼 + 𝑇
𝑎
)
2
𝑁−1

. (40)

After doing𝑁 times of factorization as above, amore accurate
solution of 𝑇 can be obtained.

The calculation of the exponent matrix 𝑇(𝑖ℎ) at different
time steps is needed in solving nonlinear equations through
iteration based on the precise integration method, and the

algorithm of the matrix 𝑇(𝑖ℎ) presented here can obtain all
the matrices at different time steps for once.

The numerical solution of the nonlinear Black-Scholes
equation is shown in Figure 1, where the riskless rate 𝑟 =
0.1, the volatility 𝜎 = 0.2, and strike price 𝐾 = 100.
With the increase of the parameter 𝑡, the smoothness of
the solution function near the strike price 𝐾 becomes better
and better, and the amount of the collocation points is
decreasing correspondingly. This illustrates the performance
of the adaptive wavelet numerical method.

Compared with the wavelet precision integrationmethod
employed in Yan’s method [5], the amount of the collocation
points in the interval wavelet precision integration method
proposed in this paper is decreased greatly, especially around
the boundary of the definition domain. This illustrates that
the interval wavelet precision integration method can elim-
inate the boundary effect completely. It is obviously that the
decrease of the collocation points can improve the efficiency
of the algorithm. The performance of Mei’s interval wavelet
[4] relates to the external interpolation points (𝐿), and the
choice scheme of 𝐿 was not given in [3]. It was pointed out
in [23] that the bigger 𝐿 usually introduces bigger condition
number which can decrease the precision greatly.This can be
illustrated in Figures 1(d) and 1(e). As 𝐿 = 1, the boundary
effect can be eliminated effectively. On the contrary, larger 𝐿
almost cannot restrict it.

In addition, the interval wavelet can also improve the
numerical precision compared with the common wavelet
method. For convenience, we take the linear Black-Scholes
equation as an example, which has exact analytical solution
as follows:

𝐶 = 𝑆 ⋅ 𝑁 (𝑑
1
) − 𝐾𝑒

−𝑟𝑇
𝑁(𝑑
2
) , (41)

where

𝑑
1
=
ln (𝑆/𝐾) + (𝑟 + (1/2) 𝜎2) 𝑇

𝜎√𝑇
, 𝑑

2
= 𝑑
1
− 𝜎√𝑇.

(42)

𝐶 is the call price, 𝑆 is the underlying asset price,𝐾 is the strike
price, 𝑟 is the riskless rate, 𝑇 is the maturity, 𝜎 is the volatility,
and𝑁(𝑑

1
) express the normal distribution.

All the comparisons in Table 2 are made qualitatively by
comparing the calculation precision in the same time step and
space mesh grid size. The first measure of error 𝑒

1
is given by

𝑒
1
=
𝑈
𝑛

𝑗
− 𝑈
𝑛

exact
∞ (43)

which provides ameasure of the accuracy of the solution near
the boundary. The second measure of error 𝑒

2
is given by

𝑒
2
= √

1

2𝑗 + 1

2
𝑗

∑
𝑖=0

(𝑢 (𝑥
𝑖
) − 𝑢exact (𝑥𝑖))

2

. (44)

In Table 2, the parameter 𝐿 is taken as 1 in Mei’s method.The
error 𝑒

1
of Mei’s method almost equals that of Yan’s method,

and the error e2 of Mei’s method is smaller evidently than
Yan’s method.This indicates that the interval wavelet method
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Figure 1: Evolution of the call option price with the parameter 𝑡.
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Table 2: The numerical precision comparison.

𝑗 𝑡
𝑒
1

𝑒
2

Interval WPIM Mei’s method Yan’s method Interval WPIM Mei’s method Yan’s method

12
10 5.5367 × 10−6 8.1579 × 10−5 8.1588 × 10−5 4.1037 × 10−6 1.0237 × 10−5 5.8298 × 10−5

100 5.7907 × 10−6 4.1246 × 10−4 4.1158 × 10−4 4.2424 × 10−6 0.6785 × 10−4 2.9468 × 10−4

200 3.5309 × 10−6 9.1429 × 10−4 9.1673 × 10−4 2.6232 × 10−6 1.2321 × 10−4 6.3692 × 10−4

15
10 5.5551 × 10−6 8.2327 × 10−5 8.2118 × 10−5 4.1718 × 10−6 1.0624 × 10−5 5.9148 × 10−5

100 5.7760 × 10−6 4.1025 × 10−4 4.0932 × 10−4 4.2907 × 10−6 0.6031 × 10−4 2.9753 × 10−4

200 6.5910 × 10−6 0.3812 0.3971 3.92907 × 10−6 0.0211 0.1195

proposed by Mei can eliminate the boundary effect to some
extent as 𝐿 = 1, but it cannot decrease the maximum of
the absolute error evidently. In addition, with the increasing
of the parameters 𝑗 and 𝑡, the errors of both Yan and Mei’s
method become larger and larger evidently. This can be
explained by the condition number theory [23]. On the
contrary, the interval wavelet method proposed in this paper
is not sensitive to the parameters 𝑗 and 𝑡, and the precision is
the best among all above methods.

4. Conclusion

The solution of the nonlinear Black-Scholes equation has an
evident sharp steep wave near the boundary, and this can
introduce evident boundary effect in the wavelet approxima-
tion such as Yan’s method. The interval wavelet approxima-
tion proposed in this paper makes sure that the derivative
function near the boundary of the definition domain is
continued, which is helpful to eliminate the boundary effect
and improve the numerical precision in the whole definition
domain. Compared with Mei’s interval wavelet method, the
interval wavelet proposed in this paper is not sensitive to the
amount of the levels and the time step and does not have to
choose the external collocation points. So, it is a simple and
robust tool for solving the Black-Scholes equation. In fact,
we can construct various interval wavelet functions aiming
at different problems in engineering based on the general
variational principle.
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