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We consider the Cauchy problem for a family of Klein-Gordon equations with initial data in modulation spaces𝑀𝑎

𝑝,1
. We develop

the well-posedness, blowup criterion, stability of regularity, scattering theory, and stability theory.

1. Introduction

In this paper, we consider the Cauchy problem for the
following nonlinear Klein-Gordon equation in the spaceR ×

R𝑛 = R
𝑡
×R𝑛

𝑥
:

𝑢
𝑡𝑡
+ (𝐼 − Δ) 𝑢 + 𝑓 (𝑢) = 0,

𝑢 (𝑡
0
, 𝑥) = 𝑢

0
,

𝑢
𝑡
(𝑡
0
, 𝑥) = 𝑢

1
,

(1)

where 𝑢(𝑡, 𝑥) is a complex-valued function in 𝐼×R𝑛 for some
time interval 𝐼 containing 𝑡

0
, the initial data (𝑢

0
, 𝑢
1
) lies in

the product of modulation spaces 𝑀𝑠

𝑝,1
× 𝑀

𝑠−1

𝑝,1
(1 ≤ 𝑝 ≤

∞, 𝑠 ≥ 0), and the nonlinear term 𝑓(𝑢) = 𝜋(𝑢
𝑘+1

) is any
(𝑘 + 1)-time product of 𝑢 and 𝑢, 𝑘 ∈ N. To understand this
research problem and its historical developments, the reader
may see Ruzhansky et al. [1] for a brief survey of nonlinear
evolution equations on the modulation spaces. Concerning
the well-posedness of solution to the Schrödinger equation
in the modulation space, readers can refer to [2, 3].

We give some remarks about our results. The known
study of the Klein-Gordan equations (or other dispersive
equations) on modulation spaces must be based on the
assumption that the nonlinear term𝑓(𝑢) is a polynomial.This

assumption is also necessary in this paper; in fact, this is an
open problem that if

󵄩󵄩󵄩󵄩󵄩
|𝑢|
𝜆

𝑢
󵄩󵄩󵄩󵄩󵄩𝑀𝑝,1

≤ 𝐶‖𝑢‖
𝜆

𝑀𝑝,1
‖𝑢‖

𝑀𝑝,1
(2)

holds for any positive real constant 𝜆.
We recall that 𝑠

𝑘
= 𝑛/2 − 2/𝑘 is the critical index for

(1). Up to now, we cannot solve (1) in 𝐻
𝑠 for the case that

𝑠 < 𝑠
𝑘
(the sup-critical case). On the other hand, we notice

that the modulation space 𝑀
𝑝,1

has low regularity property.
More precisely, for sufficiently large 𝑠, we have the following
embedding:

𝐻
𝑠

⊂ 𝑀
𝑝,1
. (3)

In other words, the modulation space 𝑀
𝑝,𝑞

has lower regu-
larity than 𝐻

𝑠 for large 𝑠. So, for large 𝑠
𝑘
(high dimension

for instance), one can solve (1) in 𝑀𝑠

𝑝,1
which contains sup-

critical initial dates in𝐻𝑠 for 𝑠 < 𝑠
𝑘
.

The local well-posedness of (1) in 𝑀
𝑠

𝑝,1
(1 ≤ 𝑝 ≤ ∞,

𝑠 ≥ 0) is a result of Bényi and Okoudjou [4]; see also
Wang [2] for a global result with small initial data. These
results say that, for (𝑢

0
, 𝑢
1
) ∈ 𝑀

𝑠

𝑝,1
× 𝑀

𝑠−1

𝑝,1
, there exists

a positive 𝑇 = 𝑇(‖𝑢
0
‖
𝑀
𝑠
𝑝,1

, ‖𝑢
1
‖
𝑀
𝑠−1
𝑝,1

) ≤ ∞ such that (1)
has a unique solution 𝑢(𝑡, 𝑥) ∈ 𝐶([0, 𝑇],𝑀

𝑠

𝑝,1
). Moreover,

the lifetime of the solution can be proved to be bounded
below by a decreasing positive function 𝑔 depending on
‖𝑢
0
‖
𝑀
𝑠
𝑝,1

, ‖𝑢
1
‖
𝑀
𝑠−1
𝑝,1

; that is, 𝑇(𝑢
0
, 𝑢
1
) ≥ 𝑔(‖𝑢

0
‖
𝑀
𝑠
𝑝,1

, ‖𝑢
1
‖
𝑀
𝑠−1
𝑝,1

). It
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also asserts that if a strong𝑀𝑠

𝑝,1
solution keeps its𝑀𝑠

𝑝,1
norm

bounded in a bounded interval, it can be extended beyond
the endpoint. Hence, the following blowup criterion holds:

𝑇 < ∞ implies lim
𝑡→𝑇

‖𝑢(𝑡)‖
𝑀
𝑠
𝑝,1
= ∞. (4)

In this paper, we will develop a stronger blowup criterion
which says that a blowup solution cannot blow up too slowly
(see Corollary 8 and Remark 9). We also study the regularity
of solutions and show that the regularity is stable along
the lifetime. As an application, the global existence of low
regularity ensures the global existence of high regularity.

Compared with 𝐶(𝐼,𝑀
𝑠

𝑝,1
) (used in [4]), the space

𝐿
𝑟

𝑡
(𝐼,𝑀

𝑠

𝑝,1
) seemsmore suitable for applying continuity argu-

ment, which is the key point for obtaining the perturbation
theorem, especially the long-time version. So we choose
𝐿
𝑟

𝑡
(𝐼,𝑀

𝑠

𝑝,1
) as our work space and establish the nonlinear

estimate associated with this work space in Section 2.
In Section 3, we will establish the local theory.We first use

the fixed point theorem to construct a local-in-time solution
𝑢 ∈ 𝐿

𝑟

𝑡
(𝐼,𝑀

𝑠

𝑝,1
) to (1). Then, we verify that such solution is

a strong 𝑀𝑠

𝑝,1
solution in the sense that 𝑢 ∈ 𝐶(𝐼,𝑀

𝑠

𝑝,1
) ∩

𝐶
1

(𝐼,𝑀
𝑠−1

𝑝,1
) and is unique in the category of strong solution.

Finally, we study the regularity of solutions and deduce a
stronger blowup criterion which implies the high rate of
blowup. We will develop the scattering results in Section 4.
In Section 5, we establish a stability theory for (1) and obtain
the continuous dependence as a corollary.

Denote the operator 𝜔 = Id − Δ, and

𝜑 (𝜔) := F
−1

𝜑 ((1 + |𝜉|)
2

)F (5)

for any function 𝜑. Using this notation, we define

𝐾 (𝑡) :=

sin (𝑡𝜔1/2)
𝜔1/2

(6)

and the Klein-Gordon semigroup:

𝐺 (𝑡) := 𝑒
𝑖𝑡𝜔
1/2

. (7)

We now state our main results. Unless otherwise speci-
fied, we assume that the letters 𝑘, 𝑛 are integers such that
1/(𝑘 + 2) + 1/𝑛(𝑘 + 1) < 1/2 and (𝑝, 𝑟) is 𝑘-admissible
(Definition 25). First, we have the following local theorem.

Theorem 1 (local well-posedness). Let I be a compact time
interval that contains 𝑡

0
. Let (𝑢

0
, 𝑢
1
) ∈ 𝑀

𝑠

𝑝,1
×𝑀

𝑠−1

𝑝,1
satisfy

󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡 − 𝑡
0
)𝑢
0
+ 𝐾(𝑡 − 𝑡

0
)𝑢
1

󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≤ 𝜂 (8)

for some 0 < 𝜂 ≤ 𝜂
0
, where 𝜂

0
is a small constant (depending

only on n, k). Then, there exists a unique solution 𝑢 ∈

𝐿
𝑟

𝑡
(𝐼,𝑀

𝑠

𝑝,1
) to (1). Moreover, u is a 𝑀𝑠

𝑝,1
strong solution to (1)

in the sense that 𝑢 ∈ 𝐶(𝐼,𝑀
𝑠

𝑝,1
) ∩ 𝐶

1

(𝐼,𝑀
𝑠−1

𝑝,1
), and one also

has

‖𝑢‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 2𝜂. (9)

From Lemma 19, we can verify the condition (8) by
choosing 𝐼 sufficiently small. So this theorem already gives
local existence for large ‖𝑢

0
‖
𝑀
𝑠
𝑝,1

, ‖𝑢
1
‖
𝑀
𝑠−1
𝑝,1

data. On the other
hand, by inequality (63), we have the following global result
as an application.

Corollary 2 (global well-posedness for small fine data). Let
2𝜎(𝑝) = (𝑛+ 2)(1/2 − 1/𝑝). Assume that (𝑢

0
, 𝑢
1
) ∈ 𝑀

𝑠+2𝜎(𝑝)

𝑝
󸀠
,1

×

𝑀
𝑠+2𝜎(𝑝)−1

𝑝
󸀠
,1

satisfies
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀
𝑠+2𝜎(𝑝)

𝑝󸀠,1

+
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩𝑀
𝑠+2𝜎(𝑝)−1

𝑝󸀠,1

≤ 𝛿
0
, (10)

for some small constant 𝛿
0
> 0. Then, there exists a unique

global solution 𝑢 ∈ 𝐿
𝑟

𝑡
(R,𝑀𝑠

𝑝,1
). Similarly, u is also a strong

solution; that is, 𝑢 ∈ 𝐶(R,𝑀𝑠

𝑝,1
) ∩ 𝐶

1

(R,𝑀𝑠−1

𝑝,1
). One also has

the bound
‖𝑢‖

𝐿
𝑟
𝑡
(R,𝑀𝑠

𝑝,1
)
≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀
𝑠+2𝜎(𝑝)

𝑝󸀠,1

+
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩𝑀
𝑠+2𝜎(𝑝)−1

𝑝󸀠,1

. (11)

More precisely, we have the following global well-
posedness result which gives the decay rate of solutions.

Corollary 3 (another form of global well-posedness for small
fine data). Assume that (𝑢

0
, 𝑢
1
) ∈ 𝑀

𝑠+2𝜎(𝑝)

𝑝
󸀠
,1

× 𝑀
𝑠+2𝜎(𝑝)−1

𝑝
󸀠
,1

satisfies
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀
𝑠+2𝜎(𝑝)

𝑝󸀠,1

+
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩𝑀
𝑠+2𝜎(𝑝)−1

𝑝󸀠,1

< 𝛿 (12)

for some small constant 𝛿 > 0. Then, there exists a unique
global solution 𝑢:

𝑢 ∈ 𝑋 := {𝑢 : sup
𝑡∈R

(1 + |𝑡|)
𝑛(1/2−1/𝑝)

‖𝑢‖
𝑀
𝑠
𝑝,1
< ∞} . (13)

In the proof of Theorem 1, uniqueness is an immediate
conclusion by the fixed point theorem. But, in fact, we have
the following stronger result.

Theorem 4 (unconditional uniqueness in 𝑀
𝑠

𝑝,1
). Let I be a

time interval containing 𝑡
0
, 𝑝 ∈ [1,∞], 𝑘 ∈ N, and let 𝑢, V ∈

𝐶(𝐼,𝑀
𝑠

𝑝,1
) be two strong solutions to (1) in the sense of (45)

with the same initial data 𝑢(𝑡
0
) = V(𝑡

0
), 𝑢

𝑡
(𝑡
0
) = V

𝑡
(𝑡
0
); then

𝑢 = V in𝑀𝑠

𝑝,1
for all 𝑡 ∈ 𝐼.

By combining the above uniqueness result with the local
theorem, one can define the maximal interval 𝐼 of the
strong solution; thus, we have the following standard blowup
criterion.

Theorem 5 (blowup criterion). Let 𝑢
0
∈ 𝑀

𝑠

𝑝,1
, 𝑢

1
∈ 𝑀

𝑠−1

𝑝,1
,

and let 𝐼 = (𝑇min, 𝑇max) be the maximal interval. If 𝑇max <

∞ (𝑇min > −∞), then one has

‖𝑢‖
𝐿
𝑟
𝑡
([𝑡0 ,𝑇max],𝑀

𝑠
𝑝,1
)
= ∞(‖𝑢‖

𝐿
𝑟
𝑡
([𝑇min ,𝑡0],𝑀

𝑠
𝑝,1
)
= ∞) . (14)

The above blowup criterion will be improved soon as an
application of Lemmas 31 and 32. For completeness, we also
give a proof for this weak version. Then, we give a regularity
result.
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Theorem 6 (persistence of regularity). Let 1 ≤ 𝑝
1
, 𝑝
2
≤ ∞,

0 ≤ 𝑠
1
, 𝑠
2
< ∞, and 𝑘 ∈ N, and let𝑢 be a strong𝑀𝑠2

𝑝2,1
solution

to (1)with itsmaximal existence interval 𝐼. If 𝑢(𝑡
0
) ∈ 𝑀

𝑠1

𝑝1,1
and

𝑢
𝑡
(𝑡
0
) ∈ 𝑀

𝑠1−1

𝑝1,1
for some 𝑡

0
∈ 𝐼, then 𝑢 is also a strong 𝑀𝑠1

𝑝1,1

solution with the same maximal interval.

Remark 7. Combining the above theorem with global result
in 𝑀

2,1
× 𝑀

−1

2,1
in [2], one can easily get the global well-

posedness in𝑀𝑠

𝑝,1
×𝑀

𝑠−1

𝑝,1
with small initial data for 𝑝 ∈ [1, 2]

and 𝑠 ≥ 0.

Thus, it is not possible to develop a singularity which
causes the𝑀𝑠1

𝑝1 ,1
× 𝑀

𝑠1−1

𝑝1 ,1
norm to blow up while the𝑀𝑠2

𝑝2 ,1
×

𝑀
𝑠2−1

𝑝2 ,1
norm remains bounded.We also see that the regularity

is stable, because if a solution lies in 𝐶(𝐼,𝑀
𝑠2

𝑝2 ,1
) and is not

in 𝑀𝑠1

𝑝1,1
× 𝑀

𝑠1−1

𝑝1,1
at some initial time 𝑡

0
, it never belongs to

𝑀
𝑠1

𝑝1 ,1
×𝑀

𝑠1−1

𝑝1 ,1
at any later (or earlier) time. As an application

(see also Lemmas 31 and 32), we have the following stronger
version of blowup criterion.

Corollary 8 (stronger blowup criterion). Let 𝑝 ∈ [1,∞], 𝑘 ∈
N, and a strong solution of Cauchy problem (1) blows up in a
finite time 𝑇max < ∞ (𝑇min > −∞) if and only if

‖𝑢(𝑡)‖
𝐿
𝑘
𝑡
([𝑡0 ,𝑇max],𝑀

0
∞,1
)
= ∞(‖𝑢(𝑡)‖

𝐿
𝑘
𝑡
([𝑇min ,𝑡0],𝑀

0
∞,1
)
= ∞) .

(15)

Remark 9. From another point of view, the above blowup
criterion implies that ‖𝑢(𝑡)‖

𝑀
𝑠
𝑝,1

cannot blow up too slowly
when 𝑡 tends to a finite blowup time 𝑇; that is,

lim
𝑡→𝑇

‖𝑢(𝑡)‖
𝑀
𝑠
𝑝,1

|𝑇 − 𝑡|
−1/𝑘+𝜀

= +∞ (16)

for every 𝜀 > 0.

We also obtain a scattering theorem for these equations
provided a bounded 𝐿𝑟

𝑡
(R,𝑀𝑠

𝑝,1
) norm.

Theorem 10 (𝐿𝑟
𝑡
(R,𝑀𝑠

𝑝,1
) bounds imply scattering). Let 𝑢

0
∈

𝑀
𝑠

𝑝,1
, 𝑢

1
∈ 𝑀

𝑠−1

𝑝,1
, and let 𝑢 be a global strong𝑀𝑠

𝑝,1
solution to

(1) such that

‖𝑢‖
𝐿
𝑟
𝑡
(R,𝑀𝑠

𝑝,1
)
≤ 𝑀 (17)

for some constant𝑀 > 0. Then, there exist V±
1
, V±
2
∈ 𝑀

𝑠

𝑝,1
such

that V± ≜ 𝐺(𝑡)V±
1
+𝐺(𝑡)V±

2
are solutions to the freeKlein-Gordon

equation 𝑢
𝑡𝑡
+ (𝐼 − Δ)𝑢 = 0, and

󵄩󵄩󵄩󵄩𝑢(𝑡) − V±󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

󳨀→ 0 (18)

as 𝑡 → ±∞.

Finally, we will discuss the stability theory. The stability
theory for (1) means that given an approximate solution

�̃�
𝑡𝑡
+ (𝐼 − Δ) �̃� = 𝑓 (�̃�) + 𝑒 (19)

to (1), with 𝑒 and 𝑢 − �̃�, 𝑢
𝑡
− �̃�

𝑡
small in a suitable space, is

it possible to show that the genuine solution 𝑢 to (1) stays
very close to �̃� in some sense (for instance, in the 𝑀𝑠

𝑝,1
)?

Note that the question of continuous dependence of the data
corresponds to the case 𝑒 = 0 and the uniqueness theory to
the case 𝑒 = 0, 𝑢(𝑡

0
) = �̃�(𝑡

0
). We have the following short-

time perturbations and long-time perturbations.

Theorem 11 (short-time perturbations). Let I be a compact
time interval, and let �̃� be an approximate solution to (1) in the
sense of (19). Assume that �̃� has a uniform𝑀

𝑠

𝑝,1
bound:

‖�̃�‖
𝐿
∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 𝑀,

󵄩󵄩󵄩󵄩�̃�𝑡
󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠−1
𝑝,1
)
≤ �̃� (20)

for some constant𝑀, �̃� > 0. Let 𝑡
0
∈ 𝐼 and let 𝑢(𝑡

0
) ∈ 𝑀

𝑠

𝑝,1
,

𝑢
𝑡
(𝑡
0
) ∈ 𝑀

𝑠−1

𝑝,1
be close to �̃�(𝑡

0
), �̃�

𝑡
(𝑡
0
), respectively, in the sense

that
󵄩󵄩󵄩󵄩𝑢(𝑡0) − �̃�(𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≤ 𝑀
󸀠

,
󵄩󵄩󵄩󵄩𝑢𝑡(𝑡0) − �̃�𝑡(𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

≤ 𝑀󸀠

(21)

for some𝑀󸀠

,𝑀󸀠 > 0.Moreover, assume the following smallness
conditions:

‖�̃�‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 𝜀

𝑐
,

󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡 − 𝑡
0
) (𝑢 (𝑡

0
) − �̃� (𝑡

0
))

+𝐾 (𝑡 − 𝑡
0
) (𝑢

𝑡
(𝑡
0
) − �̃�

𝑡
(𝑡
0
))
󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 𝜀,

‖𝑒‖
𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)
≤ 𝜀,

(22)

for some 0 < 𝜀 < 𝜀
𝑐
, where 𝜀

𝑐
is a small constant.

Then, there exists a solution 𝑢 to (1) with initial values
𝑢(𝑡

0
), 𝑢

𝑡
(𝑡
0
) at time 𝑡

0
satisfying

󵄩󵄩󵄩󵄩󵄩
(𝜕
2

𝑡
+ 𝐼 − Δ)(𝑢 − �̃�) + 𝑒

󵄩󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠
𝑝󸀠,1
)

≲ 𝜀, (23)

‖𝑢 − �̃�‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≲ 𝜀, (24)

‖𝑢 − �̃�‖
𝐿
∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≲ 𝐶 (|𝐼|) (𝑀

󸀠

+𝑀󸀠 + 𝜀) , (25)

󵄩󵄩󵄩󵄩𝑢𝑡 − �̃�𝑡
󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠−1
𝑝,1
)
≲ 𝐶 (|𝐼|) (𝑀

󸀠

+𝑀󸀠 + 𝜀) , (26)

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≲ 𝐶 (|𝐼|) (𝑀 +𝑀

󸀠

+𝑀󸀠 + 𝜀) , (27)

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠−1
𝑝,1
)
≲ 𝐶 (|𝐼|) (�̃� +𝑀

󸀠

+𝑀󸀠 + 𝜀) . (28)

Theorem 12 (long-time perturbations). Let I be a compact
time interval, and let �̃� be an approximate solution to (1) in
the sense of (19) for some function e. Assume that

‖�̃�‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 𝐿, (29)

‖�̃�‖
𝐿
∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 𝑀,

󵄩󵄩󵄩󵄩�̃�𝑡
󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠−1
𝑝,1
)
≤ �̃� (30)
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for some constants 𝑀, �̃�, and 𝐿. Let 𝑡
0
∈ 𝐼 and let 𝑢(𝑡

0
) ∈

𝑀
𝑠

𝑝,1
, 𝑢
𝑡
(𝑡
0
) ∈ 𝑀

𝑠−1

𝑝,1
be close to �̃�(𝑡

0
), �̃�

𝑡
(𝑡
0
), respectively, in the

sense that
󵄩󵄩󵄩󵄩𝑢(𝑡0) − �̃�(𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≤ 𝑀
󸀠

,

󵄩󵄩󵄩󵄩𝑢𝑡(𝑡0) − �̃�𝑡(𝑡0)
󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

≤ 𝑀󸀠

(31)

for some𝑀󸀠

,𝑀󸀠 > 0.Moreover, assume the following smallness
conditions:

󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡 − 𝑡
0
) (𝑢 (𝑡

0
) − �̃� (𝑡

0
))

+ 𝐾(𝑡 − 𝑡
0
)(𝑢

𝑡
(𝑡
0
) − �̃�

𝑡
(𝑡
0
))
󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≤ 𝜀,

‖𝑒‖
𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)
≤ 𝜀,

(32)

for some 0 < 𝜀 < 𝜀
1
, where 𝜀

1
= 𝜀

1
(𝐿) is a small constant.Then,

there exists a solution 𝑢 to (1)with initial values 𝑢(𝑡
0
), 𝑢

𝑡
(𝑡
0
) at

time 𝑡
0
satisfying

󵄩󵄩󵄩󵄩󵄩
(𝜕
2

𝑡
+ 𝐼 − Δ) (𝑢 − �̃�) + 𝑒

󵄩󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)

≲ 𝐶 (𝐿) 𝜀, (33)

‖𝑢 − �̃�‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≲ 𝐶 (𝐿) 𝜀, (34)

‖𝑢 − �̃�‖
𝐿
∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≲ 𝐶 (|𝐼| , 𝐿) (𝑀

󸀠

+𝑀󸀠 + 𝜀) , (35)

󵄩󵄩󵄩󵄩𝑢𝑡 − �̃�𝑡
󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠−1
𝑝,1
)
≲ 𝐶 (|𝐼| , 𝐿) (𝑀

󸀠

+𝑀󸀠 + 𝜀) , (36)

‖𝑢‖
𝐿
∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≲ 𝐶 (|𝐼| , 𝐿) (𝑀 +𝑀

󸀠

+𝑀󸀠 + 𝜀) , (37)

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠−1
𝑝,1
)
≲ 𝐶 (|𝐼| , 𝐿) (�̃� +𝑀

󸀠

+𝑀󸀠 + 𝜀) . (38)

As applications of the above stability theorems, we have
the following corollaries.

Corollary 13 (continuous dependence). Assume that 1/(𝑘 +
2) ≤ 1/𝑝 < 1/2 − 1/𝑛(𝑘 + 1), and 𝑢(𝑡) is a strong solution to
(1) with initial data 𝑢(𝑡

0
) = 𝑢

0
∈ 𝑀

𝑠

𝑝,1
, 𝑢
𝑡
(𝑡
0
) = 𝑢

1
∈ 𝑀

𝑠−1

𝑝,1
. If

(𝑢
0,𝑛
, 𝑢
1,𝑛
) → (𝑢

0
, 𝑢
1
) in𝑀𝑠

𝑝,1
×𝑀

𝑠−1

𝑝,1
, then

lim
𝑛→∞

𝑇max (𝑢0,𝑛, 𝑢1,𝑛) ≥ 𝑇max (𝑢0, 𝑢1) ,

lim
𝑛→∞

𝑇min (𝑢0,𝑛, 𝑢1,𝑛) ≤ 𝑇min (𝑢0, 𝑢1) .
(39)

For every compact interval 𝐼 ⊂ (𝑇min(𝑢0, 𝑢1), 𝑇max(𝑢0, 𝑢1)), let
𝑢
𝑛
be the solution to (1) on 𝐼 with initial 𝑢

0,𝑛
, 𝑢
1,𝑛
, and then we

have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲ 𝐶(
󵄩󵄩󵄩󵄩𝑢0,𝑛 − 𝑢0

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩𝑢1,𝑛 − 𝑢1

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

) ,

󵄩󵄩󵄩󵄩(𝑢𝑛)𝑡 − 𝑢𝑡
󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲ 𝐶(
󵄩󵄩󵄩󵄩𝑢0,𝑛 − 𝑢0

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩𝑢1,𝑛 − 𝑢1

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

)

(40)

with 𝐶 = 𝐶(|𝐼|, ‖ 𝑢 ‖
𝐿
𝑘+1
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
); that is, 𝑢

𝑛
→ 𝑢

0
in

𝐶(𝐼,𝑀
𝑠

𝑝,1
) ∩ 𝐶

1

(𝐼,𝑀
𝑠−1

𝑝,1
).

Also, one can deduce continuous dependence for 𝑝 ∈

[1,∞], 𝑘 ∈ N directly without using perturbation theorem,
and the proof is not difficult, so we omit the details.

Corollary 14. Assume that (𝑝, 𝑟) is a k-admissible pair. Denote
𝐴 by the subset of 𝑀𝑠+2𝜎(𝑝)

𝑝
󸀠
,1

× 𝑀
𝑠+2𝜎(𝑝)−1

𝑝
󸀠
,1

, such that, for every
(𝑢
0
, 𝑢
1
) ∈ 𝐴, the Cauchy problem (1) with initial data 𝑢

0
, 𝑢
1

has a global strong𝑀𝑠

𝑝,1
solution 𝑢 onR and ‖𝑢‖

𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
< ∞.

Then, the set 𝐴 is open in𝑀𝑠+2𝜎(𝑝)

𝑝
󸀠
,1

×𝑀
𝑠+2𝜎(𝑝)−1

𝑝
󸀠
,1

.

2. Preliminaries

If𝑋 and 𝑌 are two quantities (typically nonnegative), we will
often use the notation 𝑋 ≲ 𝑌 to denote the statement that
𝑋 ≤ 𝐶𝑌 for some absolute constant 𝐶 > 0, where 𝐶 can
depend on 𝑛, 𝑘, 𝑝, 𝑟, but it might be different from line to
line. Given 𝑘 = (𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑛
) ∈ Z𝑛, we write |𝑘| := |𝑘

1
| +

|𝑘
2
| + ⋅ ⋅ ⋅ + |𝑘

𝑛
|, |𝑘|

∞
:= sup

𝑖=1,2,...,𝑛
|𝑘
𝑖
|, and ⟨𝑘⟩ := 1 + |𝑘|. Let

𝐿
𝑟

𝑥
(R𝑛) denote the Banach space of functions 𝑓 : R𝑛 → C

whose norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑟
𝑥
(R𝑛)

:= (∫
R𝑛

󵄨󵄨󵄨󵄨𝑓(𝑥)
󵄨󵄨󵄨󵄨

𝑟

𝑑𝑥)

1/𝑟

< ∞, 1 ≤ 𝑟 < ∞. (41)

The norm ‖𝑓‖
𝐿
∞
𝑥
(R𝑛) is defined with the usual modification.

We also abbreviate ‖ ⋅ ‖
𝐿
𝑟
𝑥
(R𝑛) for ‖ ⋅ ‖𝐿𝑟 , or ‖ ⋅ ‖𝑟, when there is

no confusion.Weuse𝐿𝑟
𝑡
(𝐼, 𝑋) to denote the space-timenorm:

‖𝑢‖
𝐿
𝑟
𝑡
(𝐼,𝑋)

= (∫
𝐼

‖𝑢‖
𝑟

𝑋
𝑑𝑡)

1/𝑟

(42)

with the usual modifications when 𝑝, 𝑞, or 𝑟 is infinite. For
the operator 𝜔 = Id − Δ, the operator

𝐾 (𝑡) :=

sin (𝑡𝜔1/2)
𝜔1/2

(43)

and the Klein-Gordon semigroup

𝐺 (𝑡) := 𝑒
𝑖𝑡𝜔
1/2 (44)

have been defined in Section 1.Thus, wemay recall Duhamel’s
formula:

𝑢 (𝑡) = 𝐾
󸀠

(𝑡 − 𝑡
0
) 𝑢

0
+ 𝐾 (𝑡 − 𝑡

0
) 𝑢

1

− ∫

𝑡

𝑡0

𝐾 (𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏.

(45)

Also, we recall the integral form of Gronwall’s inequality.

Lemma 15 (Gronwall inequality and integral form [5]). Let
𝐴 : [𝑡

0
, 𝑡
1
] → R+ be continuous and nonnegative, and

suppose that A obeys the integral inequality

𝐴 (𝑡) ≤ 𝐶 + ∫

𝑡

𝑡0

𝐵 (𝑠) 𝐴 (𝑠) 𝑑𝑠 (46)
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for all 𝑡 ∈ [𝑡
0
, 𝑡
1
], where 𝐶 ≥ 0 and 𝐵 : [𝑡

0
, 𝑡
1
] → R+ is

continuous and nonnegative. Then, we have

𝐴 (𝑡) ≤ 𝐶 exp(∫
𝑡

𝑡0

𝐵 (𝑠) 𝑑𝑠) (47)

for all 𝑡 ∈ [𝑡
0
, 𝑡
1
].

LetS := S(R𝑛) be the Schwartz space andS󸀠 := S󸀠(R𝑛)
the tempered distribution space. We introduce the definition
ofmodulation space, whichwas introduced by Feichtinger [6]
in 1983 by short-time Fourier transform. We will also display
some basic properties of this function space.

Applying the frequency-uniform localization techniques,
one can get an equivalent definition ofmodulation spaces (see
[7] for details) as follows. Let 𝑄

𝑘
be the unit cube with the

center at 𝑘, so {𝑄
𝑘
}
𝑘∈Z𝑛 constitutes a decomposition of R𝑛.

First, we construct a smooth cut-off function. Let 𝜌 ∈ S(R𝑛)
and let 𝜌 : R𝑛 → [0, 1] be a smooth function satisfying
𝜌(𝜉) = 1 for |𝜉|

∞
≤ 1/2 and 𝜌(𝜉) = 0 for |𝜉| ≥ 1. Let 𝜌

𝑘

be a translation of 𝜌,
𝜌
𝑘
(𝜉) = 𝜌 (𝜉 − 𝑘) , 𝑘 ∈ Z

𝑛

. (48)

We see that 𝜌
𝑘
(𝜉) = 1 in𝑄

𝑘
, so∑

𝑘∈Z𝑛 𝜌𝑘(𝜉) ≥ 1 for all 𝜉 ∈ R𝑛.
Denote

𝜎
𝑘
(𝜉) = 𝜌

𝑘
(𝜉) (∑

𝑙∈Z𝑛

𝜌
𝑙
(𝜉))

−1

, 𝑘 ∈ Z
𝑛

. (49)

Then, {𝜎
𝑘
(𝜉)}

𝑘∈Z𝑛 satisfies the following properties:
󵄨󵄨󵄨󵄨𝜎𝑘 (𝜉)

󵄨󵄨󵄨󵄨 ≥ 𝑐, ∀𝜉 ∈ 𝑄
𝑘
,

supp (𝜎
𝑘
) ⊂ {𝜉 :

󵄨󵄨󵄨󵄨𝜉 − 𝑘
󵄨󵄨󵄨󵄨∞

≤ 1} ,

∑

𝑘∈Z𝑛

𝜎
𝑘
(𝜉) ≡ 1, ∀𝜉 ∈ R

𝑛

,

󵄨󵄨󵄨󵄨𝐷
𝛼

𝜎
𝑘
(𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝐶|𝛼|, ∀𝜉 ∈ R

𝑛

, 𝛼 ∈ (Z
+

∪ {0})
𝑛

.

(50)

In fact, {𝜎
𝑘
(𝜉)}

𝑘∈Z𝑛 constitutes a smooth decomposition ofR𝑛
and 𝜎

𝑘
(𝜉) = 𝜎(𝜉 − 𝑘), in which

𝜎 (𝜉) = 𝜌 (𝜉)(∑

𝑙∈Z𝑛

𝜌
𝑙
(𝜉))

−1

. (51)

The frequency-uniform decomposition operators can be
exactly defined by

◻
𝑘
:= F

−1

𝜎
𝑘
F (52)

for 𝑘 ∈ Z𝑛.

Definition 16 (modulation space). Let 𝑠 ∈ R, 0 < 𝑝, 𝑞 ≤ ∞,
and one defines the modulation space

𝑀
𝑠

𝑝,𝑞
(R

𝑛

) =

{

{

{

𝑓 ∈ S
󸀠

:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,𝑞

:= ( ∑

𝑘∈Z𝑛

⟨𝑘⟩
𝑠𝑞󵄩󵄩󵄩󵄩𝑘𝑓

󵄩󵄩󵄩󵄩

𝑞

𝑝
)

1/𝑞

< ∞

}

}

}

.

(53)

Below, we list some basic properties for the space
𝑀
𝑠

𝑝,𝑞
(R𝑛).

Lemma 17 (embedding). Let 𝑠
1
, 𝑠
2

∈ R and 0 <

𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
≤ ∞.

(1) If 𝑠
2
≤ 𝑠

1
, 𝑝
1
≤ 𝑝

2
, and 𝑞

1
≤ 𝑞

2
, then𝑀𝑠1

𝑝1 ,𝑞1
⊂ 𝑀

𝑠2

𝑝2 ,𝑞2
.

(2) If 𝑞
2
< 𝑞

1
and 𝑠

1
−𝑠
2
> 𝑛/𝑞

2
−𝑛/𝑞

1
, then𝑀𝑠1

𝑝,𝑞1
⊂ 𝑀

𝑠2

𝑝,𝑞2
.

Proposition 18 (isomorphism). Let 0 < 𝑝, 𝑞 ≤ ∞, 𝑠, 𝜎 ∈

R. Then, 𝐽
𝜎
= (𝐼 − Δ)

𝜎/2

: 𝑀
𝑠

𝑝,𝑞
→ 𝑀

𝑠−𝜎

𝑝,𝑞
is an isomorphic

mapping.

The proof of Proposition 18 can be found in [6] for the
cases 1 ≤ 𝑝, 𝑞 ≤ ∞ and [7, 8] for the cases 0 < 𝑝, 𝑞 < 1. We
denote 𝐽 = 𝐽

1
.

Lemma 19 (for uniform boundedness of 𝐺(𝑡) in 𝑀
𝑠

𝑝,𝑞
, see

[9]). Let 𝑠 ∈ R, 1 ≤ 𝑝 ≤ ∞, and 0 < 𝑞 < ∞. One has
󵄩󵄩󵄩󵄩𝐺(𝑡)𝑓

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,𝑞

≤ 𝐶(1 + |𝑡|)
𝑛|1/2−1/𝑝|󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,𝑞

, (54)

where the constant C depends only on p, q, s, and n.

One can also find these estimates in [10] and a more
general estimate on 𝑒

𝑖𝑡(𝑚
2
𝐼+|Δ|)

1/2

with 𝑚 ̸= 0, 𝑡 ≥ 1 in Chen
and Fan [11]. Chen and Fan also showed that the exponent
|1/𝑝−1/2| is the best possible in the factor 𝑡|1/𝑝 − 1/2| if 𝑛 equals
1 [11].

Lemma 20 (for truncated decay estimate of 𝐺(𝑡), see
Proposition 4.2 in [2]). Let 𝑠 ∈ R, 2 ≤ 𝑝 < ∞, 1/𝑝+1/𝑝󸀠 = 1,
and 0 < 𝑞 < ∞, 𝜃 ∈ [0, 1];

2𝜎 (𝑝) = (𝑛 + 2) (
1

2
−
1

𝑝
) . (55)

One has
󵄩󵄩󵄩󵄩𝐺(𝑡)𝑓

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,𝑞

≤ 𝐶(1 + |𝑡|)
−𝑛𝜃(1/2−1/𝑝)󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑀
𝑠+𝜃2𝜎(𝑝)

𝑝󸀠,𝑞

, (56)

where the constant C depends only on p, q, s, and n.

Lemma 21 (algebra property [4]). Let 𝑚 ∈ Z+, 𝑠 ≥ 0.
Assume that 1/𝑝

1
+ ⋅ ⋅ ⋅ + 1/𝑝

𝑚
= 1/𝑝

0
, 1/𝑞

1
+ ⋅ ⋅ ⋅ + 1/𝑞

𝑚
=

𝑚 − 1 + 1/𝑞
0
with 0 < 𝑝

𝑖
≤ ∞, 1 ≤ 𝑞

𝑖
≤ ∞ for 1 ≤ 𝑖 ≤ 𝑚.

One has
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∏

𝑖=1

𝑢
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝0,𝑞0

≤ 𝐶

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝𝑖 ,𝑞𝑖

, (57)

where C is independent of 𝑢
𝑖
.

Lemma 22 (Leibniz rule for modulation space [3]). Let 𝑚 ∈

Z+, 𝑠 ≥ 0 and 1/𝑝
1
+ ⋅ ⋅ ⋅ + 1/𝑝

𝑚
= 1/𝑝

0
, 1/𝑞

1
+ ⋅ ⋅ ⋅ + 1/𝑞

𝑚
=

𝑚 − 1 + 1/𝑞
0
, and 0 < 𝑝

𝑖
≤ ∞, 1 ≤ 𝑞

𝑖
≤ ∞ for 1 ≤ 𝑖 ≤ 𝑚.

One has
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∏

𝑖=1

𝑢
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝0,𝑞0

≤ 𝐶

𝑚

∑

𝑗=1

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩𝑀
𝛿(𝑖,𝑗)𝑠

𝑝𝑖 ,𝑞𝑖

, (58)
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where C is independent of 𝑢
𝑖
, and 𝛿(𝑖, 𝑗) = 1 if 𝑖 = 𝑗 and

vanishes otherwise. Particularly, if we choose 𝑢
𝑖
to be 𝑢 or 𝑢,

𝑝
𝑖
= ∞ and 𝑞

𝑖
= 1 for 𝑖 = 0, 1, . . . , 𝑚. We have

󵄩󵄩󵄩󵄩󵄩
𝜋 (𝑢

𝑘+1

)
󵄩󵄩󵄩󵄩󵄩𝑀𝑠
∞,1

≤ 𝐶‖𝑢‖
𝑀
𝑠
∞,1
‖𝑢‖

𝑘

𝑀
0
∞,1

. (59)

Lemma23 (for Bernsteinmultiplier theorem, see Proposition
1.11 in [10]). Let 𝐿 ∈ Z, 𝐿 > 𝑛/2, 𝜕𝛼

𝑥𝑖
𝜌 ∈ 𝐿

2

, 𝑖 =

1, 2, . . . , 𝑛, 0 ≤ 𝛼 ≤ 𝐿. Then, 𝜌 is a multiplier on 𝐿
𝑝
, 1 ≤

𝑝 ≤ ∞. Moreover, there exists a constant 𝐶 such that

󵄩󵄩󵄩󵄩𝜌
󵄩󵄩󵄩󵄩𝑀𝑝

≤ 𝐶
󵄩󵄩󵄩󵄩𝜌
󵄩󵄩󵄩󵄩

1−𝑛/2𝐿

𝐿
2 (

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝜕
𝐿

𝑥𝑖
𝜌
󵄩󵄩󵄩󵄩󵄩𝐿2
)

𝑛/2𝐿

. (60)

Lemma 24. Let 𝑠 ∈ R, 0 < 𝑝, 𝑞 < ∞, and let Ω be a compact
subset of R𝑛. Then, SΩ = {𝑓 : 𝑓 ∈ S and Supp𝑓 ⊂ Ω} is
dense in𝑀𝑠

𝑝,𝑞
.

Definition 25 (𝑘-𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑎𝑖𝑟). One calls the exponent
(𝑝, 𝑟) 𝑘-admissible if there exists another exponent 𝛾 such
that

1

𝛾
+
𝑘

𝑟
= 1,

1

𝑘 + 1
≤
1

𝛾
≤

𝑛

𝑛 + 2
∧ 𝑛(

1

2
−
1

𝑝
) ,

1

𝑘 + 2
≤
1

𝑝
<
1

2
−

1

𝑛 (𝑘 + 1)
.

(61)

Remark 26. From Definition 25, if (𝑝, 𝑟) is 𝑘-admissible, we
can easily verify that

𝑘 + 1 ≤ 𝑟 < ∞, 𝑟𝑛 (
1

2
−
1

𝑝
) > 1. (62)

Moreover, we have the following inequality:

󵄩󵄩󵄩󵄩𝐺(𝑡 − 𝑡0)𝑢0
󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(R,𝑀𝑠

𝑝,1
)

≲

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 + |𝑡 − 𝑡
0
|)
−𝑛(1/2−1/𝑝)󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝󸀠,1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(R)

≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝󸀠,1

.

(63)

Remark 27. If 1/(𝑘 + 2) + 1/𝑛(𝑘 + 1) < 1/2, there exist 𝑘-
admissible pairs. The condition 1/(𝑘 + 2) + 1/𝑛(𝑘 + 1) < 1/2

can ensure that 2 < 𝑘𝑛.

Definition 28. One defines the strong 𝑀
𝑠

𝑝,1
solution to (1)

as follows: the distribution 𝑢 ∈ 𝐶(𝐼,𝑀
𝑠

𝑝,1
) ∩ 𝐶

1

(𝐼,𝑀
𝑠−1

𝑝,1
) is

the solution to (1) in the sense of (45) with the initial data
(𝑢(𝑡

0
), 𝑢

𝑡
(𝑡
0
)) = (𝑢

0
, 𝑢
1
) ∈ 𝑀

𝑠

𝑝,1
×𝑀

𝑠−1

𝑝,1
.

We establish the following nonlinear estimate.

Proposition 29 (nonlinear estimate). Let 𝑡
0
∈ 𝐼, 𝐹(𝑢) =

∏
𝑘+1

𝑖=1
𝑢
𝑖
. For any 𝑘-admissible pair (𝑝, 𝑟), one has

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝐾 (𝑡 − 𝜏) 𝐹 (𝑢 (𝜏)) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲ ‖𝐹(𝑢)‖
𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲

𝑘+1

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
.

(64)

Proof. Observe that 𝐾(𝑡)𝜔1/2 = (𝐺(𝑡) − 𝐺(−𝑡))/2𝑖. For
any 𝑘-admissible pair (𝑝, 𝑟), using the general Minkowski
inequality, Proposition 18, and Lemma 20, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝐾(𝑡 − 𝜏)𝐹(𝑢(𝜏))𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

‖𝐾 (𝑡 − 𝜏) 𝐹 (𝑢 (𝜏))‖
𝑀
𝑠
𝑝,1
𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼)

≲

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

(1 + |𝑡 − 𝜏|)
−𝑛𝜃(1/2−1/𝑝)

‖𝐹(𝑢)‖
𝑀
𝑠+𝜃2𝜎(𝑝)−1

𝑝󸀠,1

𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(R)

≲

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
R

(1 + |𝑡 − 𝜏|)
−𝑛𝜃(1/2 −1/𝑝)

‖𝐹(𝑢)‖
𝑀
𝑠+𝜃2𝜎(𝑝)−1

𝑝󸀠,1

𝜒
𝐼
(𝜏)𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(R)

(65)

for any 𝜃 ∈ [0, 1].
If 1/𝛾 = 𝑛/(𝑛 + 2) ∧ 𝑛(1/2 − 1/𝑝), then 1/𝛾 < 1 and there

exists 𝜃 ∈ (0, 1] such that

1

𝛾
= 𝜃𝑛(

1

2
−
1

𝑝
) =

𝑛

𝑛 + 2
∧ 𝑛(

1

2
−
1

𝑝
) . (66)

With this 𝜃, we have 𝜃2𝜎(𝑝)− 1 ≤ 0. Observing Definition 25
and Remark 27, we have

1

𝑟
=
𝑘 + 1

𝑟
−
1 − 𝑛𝜃 (1/2 − 1/𝑝)

1

(67)

and 𝑟/(𝑘 + 1) > 1. So in this case we choose 𝜃 satisfying (66)
and exploit Lemma 17 and the Hardy-Littlewood-Sobolev
inequality to have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝐾(𝑡 − 𝜏)𝐹(𝑢(𝜏))𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
R

(1 + |𝑡 − 𝜏|)
−𝑛𝜃(1/2 − 1/𝑝)

× ‖𝐹(𝑢)‖
𝑀
𝑠

𝑝󸀠,1

𝜒
𝐼
(𝜏)𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(R)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(‖𝐹 (𝑢)‖

𝑀
𝑠

𝑝󸀠,1

𝜒
𝐼
(𝑡))
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∗(1 + |𝑡|)
−𝑛𝜃(1/2−1/𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩‖𝐿𝑟
𝑡
(R)

≲

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
‖𝐹(𝑢)‖

𝑀
𝑠

𝑝󸀠,1

𝜒
𝐼
(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡

= ‖𝐹 (𝑢)‖
𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)
.

(68)

If (1/𝛾) < 𝑛/(𝑛 + 2) ∧ 𝑛(1/2 − 1/𝑝), then there exists 𝜃 ∈
[0, 1] such that

1

𝛾
< 𝜃𝑛(

1

2
−
1

𝑝
) ≤

𝑛

𝑛 + 2
∧ 𝑛(

1

2
−
1

𝑝
) . (69)

With this 𝜃, we have 𝛾𝜃𝑛(1/2 − 1/𝑝) > 1 and 𝜃2𝜎(𝑝) −

1 ≤ 0. Taking advantage of Young’s inequality and Hölder’s
inequality, we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝐾(𝑡 − 𝜏)𝐹(𝑢(𝜏))𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲
󵄩󵄩󵄩󵄩󵄩
(1 + |𝑡|)

−𝑛𝜃(1/2−1/𝑝)
󵄩󵄩󵄩󵄩󵄩𝐿
𝛾

𝑡

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
‖𝐹(𝑢)‖

𝑀
𝑠

𝑝󸀠,1

𝜒
𝐼
(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡

≲ ‖𝐹(𝑢)‖
𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)
.

(70)

In general, we get the first result. Now, by Lemma 21 and
Hölder’s inequality, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝐾(𝑡 − 𝜏)𝐹(𝑢(𝜏))𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲ ‖𝐹(𝑢)‖
𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)

≲ (∫
𝐼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑘+1

∏

𝑖=1

𝑢
𝑖
(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑟/(𝑘+1)

𝑀
𝑠
𝑝󸀠,1

𝑑𝜏)

(𝑘+1)/𝑟

≲ (∫
𝐼

𝑘+1

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑢𝑖 (𝜏)
󵄩󵄩󵄩󵄩

𝑟/(𝑘+1)

𝑀
𝑠

(𝑘+1)𝑝󸀠,1

𝑑𝜏)

(𝑘+1)/𝑟

≲

𝑘+1

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡)
󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠

(𝑘+1)𝑝󸀠,1
)
.

(71)

By the fact 𝑝 ≤ 𝑘 + 2 and the embedding theorem
(Lemma 17), we obtain

𝑘+1

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑢𝑖 (𝑡)
󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠

(𝑘+1)𝑝󸀠,1
)
≲

𝑘+1

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑢𝑖(𝑡)
󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
. (72)

From Proposition 29, we have an immediate corollary as
follows.

Corollary 30. Let 𝑘 ∈ N, 𝑓(𝑢) = 𝜋(𝑢𝑘+1), and then one has
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝐾(𝑡 − 𝜏)𝑓(𝑢(𝜏))𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲
󵄩󵄩󵄩󵄩𝑓 (𝑢)

󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲ ‖𝑢‖
𝑘+1

𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
.

(73)

3. Local Well-Posedness

In this section, we establish the local theory for the Cauchy
problem (1). In the rest of this paper, we assume that 𝑘, 𝑛
satisfy 1/(𝑘+2)+1/𝑛(𝑘+1) < 1/2, so there exist 𝑘-admissible
exponents by Remark 27.

3.1. Proof of Existence Part of Theorem 1. We use the fixed
point argument to construct a local solution. Let 𝐵

𝑎
= {𝑢 :

‖𝑢‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 𝑎}, and define a mapJ on 𝐵

𝑎
:

J (V) = 𝐾
󸀠

(𝑡 − 𝑡
0
) 𝑢

0
+ 𝐾 (𝑡 − 𝑡

0
) 𝑢

1

− ∫

𝑡

𝑡0

𝐾 (𝑡 − 𝜏) 𝑓 (V) 𝑑𝜏.
(74)

We want to choose suitable 𝑎 and 𝜂 so thatJ : 𝐵
𝑎
→ 𝐵

𝑎
is a

contraction. By corollary of Proposition 29, we have

‖J(V)‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 𝜂 + 𝐶𝑎

𝑘+1

. (75)

Let 𝜂
1
satisfy 𝐶(2𝜂

1
)
𝑘

= 1/2 and choose 𝜂 ≤ 𝜂
1
, and then we

haveJ : 𝐵
2𝜂

→ 𝐵
2𝜂
. Indeed,

‖J(V)‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 𝜂 + 𝐶(2𝜂)

𝑘+1

≤ 𝜂 + 𝐶(2𝜂
1
)
𝑘

(2𝜂) ≤ 2𝜂.

(76)

We also have

‖J(𝑢) −J(V)‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓(𝑢) − 𝑓(V)

󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)

≤ 𝐶 (𝑘 + 1) 2𝜂
𝑘

‖𝑢 − V‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
,

(77)

if ‖𝑢‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
, ‖V‖

𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
∈ 𝐵

2𝜂
.

So we can shrink 𝜂
1
to 𝜂

2
so that 𝐶(𝑘 + 1)2𝜂

𝑘

2
≤ 1/2

and find a possible smaller constant 𝜂
0
≤ 𝜂

2
. Then, when

‖𝑒
𝑖(𝑡−𝑡0)Δ𝑢

0
‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 𝜂 ≤ 𝜂

0
, we have J : 𝐵

2𝜂
→ 𝐵

2𝜂
and

it is nothing but a contraction map. We now obtain 𝑢 ∈ 𝐵
2𝜂

which is the fixed point of J that solves Cauchy problem (1)
in the sense of integral form. Of course, ‖𝑢‖

𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 2𝜂.

3.2. Proof of Strong Solution Part of Theorem 1. In this sub-
section, we will verify that the local solution 𝑢 ∈ 𝐿

𝑟

𝑡
(𝐼,𝑀

𝑠

𝑝,1
)

is a 𝑀𝑠

𝑝,1
strong solution in the sense that 𝑢 ∈ 𝐶(𝐼,𝑀

𝑠

𝑝,1
) ∩

𝐶
1

(𝐼,𝑀
𝑠−1

𝑝,1
).



8 Abstract and Applied Analysis

3.2.1. To Prove 𝑢 ∈ 𝐶(𝐼,𝑀𝑠

𝑝,1
). It is equivalent to prove that

󵄩󵄩󵄩󵄩𝑢(𝑡𝑛, ⋅) − 𝑢(𝑡, ⋅)
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

󳨀→ 0 (78)

as 𝑡
𝑛
→ 𝑡. We may assume without loss of generality that

𝑡
0
= 0,

󵄩󵄩󵄩󵄩𝑢(𝑡𝑛, ⋅) − 𝑢(𝑡, ⋅)
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≤
󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡
𝑛
)𝑢
0
− 𝐾

󸀠

(𝑡)𝑢
0

󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩𝐾(𝑡𝑛)𝑢1 − 𝐾(𝑡)𝑢1

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡𝑛

0

𝐾(𝑡
𝑛
− 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏

− ∫

𝑡

0

𝐾(𝑡 − 𝜏)𝑓(𝑢(𝜏))𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≜ 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.

(79)

Recall that 𝑢
0
, 𝐽
−1

𝑢
1
∈ 𝑀

𝑠

𝑝,1
. For 𝐼, 𝐼𝐼, by density Lemma 24,

Lemma 19, triangle inequality, and the definition of 𝐺(𝑡), we
only need to prove that 𝐺(𝑡)V ∈ 𝐶(𝐼,𝑀𝑠

𝑝,1
) for V ∈ SΩ.

Using Hausdorff-Young inequality, we have
󵄩󵄩󵄩󵄩◻𝑘(𝐺(𝑡𝑛)V − 𝐺(𝑡)V)

󵄩󵄩󵄩󵄩𝑝

≲

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜎
𝑘
(𝑒
𝑖𝑡𝑛(1+|𝜉|

2
)

1/2

− 𝑒
𝑖𝑡(1+|𝜉|

2
)

1/2

) V̂(𝜉)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝󸀠

≲

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑒
𝑖𝑡𝑛(1+|𝜉|

2
)

1/2

− 𝑒
𝑖𝑡(1+|𝜉|

2
)

1/2

) V̂(𝜉)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝
.

(80)

Since V̂ ∈ S, so ‖(𝑒
𝑖𝑡𝑛(1+|𝜉|

2
)

1/2

− 𝑒
𝑖𝑡(1+|𝜉|

2
)

1/2

)V̂(𝜉)‖
𝑝

→ 0 as
𝑡
𝑛

→ 𝑡, by Lebesgue’s dominated convergence theorem.
Since V ∈ SΩ, there exists only the finite number of 𝑘 such
that ◻

𝑘
(𝐺(𝑡

𝑛
)V − 𝐺(𝑡)V) ̸= 0, so we have

󵄩󵄩󵄩󵄩𝐺(𝑡𝑛)V − 𝐺(𝑡)V
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

󳨀→ 0 as 𝑡
𝑛
󳨀→ 𝑡. (81)

Thus,

𝐼 =
󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡
𝑛
)𝑢
0
− 𝐾

󸀠

(𝑡)𝑢
0

󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

󳨀→ 0 as 𝑡
𝑛
󳨀→ 𝑡,

𝐼𝐼 =
󵄩󵄩󵄩󵄩𝐾(𝑡𝑛)𝑢1 − 𝐾(𝑡)𝑢1

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

󳨀→ 0 as 𝑡
𝑛
󳨀→ 𝑡.

(82)

For 𝐼𝐼𝐼,

𝐼𝐼𝐼 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡𝑛

0

𝐾(𝑡
𝑛
− 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏

−∫

𝑡

0

𝐾(𝑡 − 𝜏)𝑓(𝑢(𝜏))𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡𝑛

0

𝐾(𝑡
𝑛
− 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏

−∫

𝑡𝑛

0

𝐾(𝑡 − 𝜏)𝑓(𝑢(𝜏))𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡𝑛

0

𝐾 (𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏

−∫

𝑡

0

𝐾 (𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≜ 𝐼 + 𝐼𝐼.

(83)

First, by the Minkowski inequality, we have that

𝐼 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡𝑛

0

(𝐾 (𝑡
𝑛
− 𝜏) − 𝐾 (𝑡 − 𝜏)) 𝑓 (𝑢 (𝜏)) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≤ ∫

𝑡𝑛

0

󵄩󵄩󵄩󵄩(𝐾(𝑡𝑛 − 𝜏) − 𝐾(𝑡 − 𝜏))𝑓(𝑢(𝜏))
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

𝑑𝜏.

(84)

For ‖(𝐾(𝑡
𝑛
− 𝜏) − 𝐾(𝑡 − 𝜏))𝑓(𝑢(𝜏))‖

𝑀
𝑠
𝑝,1

≲ ‖𝑓(𝑢(𝜏))‖
𝑀
𝑠

𝑝󸀠,1

≲

‖𝑢‖
𝑘+1

𝑀
𝑠
𝑝,1

and 𝑘 + 1 ≤ 𝑟, we have ‖𝑢‖
𝑘+1

𝑀
𝑠
𝑝,1

∈ 𝐿
1,

so ‖(𝐾(𝑡
𝑛
− 𝜏) − 𝐾(𝑡 − 𝜏))𝑓(𝑢(𝜏))‖

𝑀
𝑠
𝑝,1

∈ 𝐿
1. Since

‖(𝐾(𝑡
𝑛
− 𝜏) − 𝐾(𝑡 − 𝜏))𝑓(𝑢(𝜏))‖

𝑀
𝑠
𝑝,1

→ 0, as 𝑡
𝑛

→ 𝑡,
therefore, 𝐼 → 0, as 𝑡

𝑛
→ 𝑡.

Secondly, as in the proof of Proposition 29,we get that

𝐼𝐼 ≲ ∫

𝑡

𝑡𝑛

(1 + |𝑡 − 𝜏|)
−𝑛(1/2 − 1/𝑝)

×
󵄩󵄩󵄩󵄩𝑓 (𝑢 (𝜏))

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝󸀠,1

𝑑𝜏

≲ ∫

𝑡

𝑡𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑢 (𝜏))
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝󸀠,1

𝑑𝜏.

(85)

Since ‖𝑓(𝑢)‖
𝑀
𝑠

𝑝󸀠,1

≲ ‖𝑢‖
𝑘+1

𝑀
𝑠
𝑝,1

, ‖𝑢‖𝑘+1
𝑀
𝑠
𝑝,1

∈ 𝐿
1. We have

𝐼𝐼 󳨀→ 0, as 𝑡
𝑛
󳨀→ 𝑡. (86)

Because 𝐼𝐼𝐼 ≤ 𝐼 + 𝐼𝐼, it leads to

𝐼𝐼𝐼 󳨀→ 0, as 𝑡
𝑛
󳨀→ 𝑡. (87)

Accordingly, (78) holds; that is, 𝑢 ∈ 𝐶(𝐼,𝑀𝑠

𝑝,1
).

3.2.2. 𝑢
𝑡
(𝑡) Exists and Is Continuous in 𝑀𝑠−1

𝑝,1
Sense. First of

all, we consider the existence of derivative in𝑀𝑠−1

𝑝,1
sense.

Recall that

𝑢 (𝑡) = 𝐾
󸀠

(𝑡 − 𝑡
0
) 𝑢

0
+ 𝐾 (𝑡 − 𝑡

0
) 𝑢

1

− ∫

𝑡

𝑡0

𝐾 (𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏.

(88)

For 𝑢
0
, 𝐽−1𝑢

1
∈ 𝑀

𝑠

𝑝,1
, and the definition of 𝐺(𝑡), we should

only deal with the derivatives of 𝐺(𝑡)𝜓(𝑥) for 𝜓 ∈ 𝑀
𝑠

𝑝,1
and

∫
𝑡

𝑡0

𝐾(𝑡 − 𝜏)𝑓(𝑢(𝜏))𝑑𝜏.
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By the density Lemma 24, for every 𝜀 > 0, there exists
V ∈ SΩ ∩ 𝑀𝑠

𝑝,1
, such that ‖𝜓 − V‖

𝑀
𝑠
𝑝,1

< 𝜀. For the derivative
of 𝐺(𝑡)𝜓(𝑥) at 𝑡 = 𝑡

3
for 𝜓 ∈ 𝑀

𝑠

𝑝,1
, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐺(𝑡)𝜓 − 𝐺(𝑡
3
)𝜓

𝑡 − 𝑡
3

− 𝑖𝜔
1/2

𝐺(𝑡
3
)𝜓

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐺(𝑡)𝜓 − 𝐺(𝑡
3
)𝜓

(𝑡 − 𝑡
3
)𝜔1/2

− 𝑖𝐺(𝑡
3
)𝜓

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐺(𝑡)(𝜓 − V) − 𝐺(𝑡
3
)(𝜓 − V)

(𝑡 − 𝑡
3
)𝜔1/2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐺(𝑡)V − 𝐺(𝑡
3
)V

(𝑡 − 𝑡
3
)𝜔1/2

− 𝑖𝐺(𝑡
3
)V
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩𝑖𝐺(𝑡3)(𝜓 − V)󵄩󵄩󵄩󵄩𝑀𝑠−1

𝑝,1

≜ 𝐼𝑉 + 𝑉 + 𝑉𝐼.

(89)

For 𝑉, by the Hausdorff-Young inequality and the Lebesgue
dominated convergence theorem, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

◻
𝑘
(
𝐺 (𝑡) V − 𝐺 (𝑡

3
) V

(𝑡 − 𝑡
3
) 𝜔1/2

− 𝑖𝐺 (𝑡
3
) V)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

≲

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜎
𝑘
(
𝑒
𝑖𝑡⟨𝜉⟩

− 𝑒
𝑖𝑡3⟨𝜉⟩

(𝑡 − 𝑡
3
) ⟨𝜉⟩

− 𝑖𝑒
𝑖𝑡3⟨𝜉⟩) V̂

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝󸀠

󳨀→ 0 as 𝑡 󳨀→ 𝑡
3
.

(90)

As V ∈ SΩ ∩𝑀𝑠

𝑝,1
, so there is only the finite number of 𝑘 such

that ◻
𝑘
((𝐺(𝑡)V − 𝐺(𝑡

3
)V)/(𝑡 − 𝑡

3
)𝜔
1/2

− 𝑖𝐺(𝑡
3
)V) ̸= 0. Thus, we

get 𝑉 → 0 as 𝑡 → 𝑡
3
; that is, (𝐺(𝑡)V(𝑥))

𝑡
= 𝑖𝜔

1/2

𝐺(𝑡)V(𝑥) in
𝑀
𝑠−1

𝑝,1
, for V ∈ SΩ ∩𝑀𝑠

𝑝,1
.

For 𝐼𝑉, by the Bernstein multiplier theorem, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

◻
𝑙

𝐺(𝑡)(𝜓 − V) − 𝐺(𝑡
3
)(𝜓 − V)

(𝑡 − 𝑡
3
)𝜔1/2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑝

≲ ‖ 𝜓 − V ‖
𝑝
. (91)

Using the almost orthogonality of modulation space, we
obtain 𝐼𝑉 ≲ 𝜓 − V

𝑀
𝑠
𝑝,1

< 𝜀.
For𝑉𝐼, by Lemma 19, we have𝑉𝐼 = ‖𝑖𝐺(𝑡

3
)(𝜓 − V)‖

𝑀
𝑠
𝑝,1

≲

‖𝜓 − V‖
𝑀
𝑠
𝑝,1

< 𝜀.
Accordingly, for 𝜓 ∈ 𝑀

𝑠

𝑝,1
,

(𝐺 (𝑡) 𝜓)
𝑡
= 𝑖𝜔

1/2

𝐺 (𝑡) 𝜓 in 𝑀
𝑠−1

𝑝,1
. (92)

For the nonlinear part,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑡

𝑡0

𝐾 (𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏 − ∫
𝑡3

𝑡0

𝐾(𝑡
3
− 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏

𝑡 − 𝑡
3

− ∫

𝑡3

𝑡0

𝐾
󸀠

(𝑡
3
− 𝜏)𝑓(𝑢(𝜏))𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑡3

𝑡0

(𝐾 (𝑡 − 𝜏) − 𝐾 (𝑡
3
− 𝜏)) 𝑓 (𝑢 (𝜏)) 𝑑𝜏

𝑡 − 𝑡
3

− ∫

𝑡3

𝑡0

𝐾
󸀠

(𝑡
3
− 𝜏)𝑓(𝑢(𝜏))𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑡

𝑡3

𝐾(𝑡 − 𝜏)𝑓(𝑢(𝜏))𝑑𝜏

𝑡 − 𝑡
3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡3

𝑡0

(
(𝐾 (𝑡 − 𝜏) − 𝐾 (𝑡

3
− 𝜏))

𝑡 − 𝑡
3

− 𝐾
󸀠

(𝑡
3
− 𝜏))

× 𝑓(𝑢(𝜏))𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑡

𝑡3

𝐾(𝑡 − 𝜏)𝑓(𝑢(𝜏))𝑑𝜏

𝑡 − 𝑡
3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

≲ ∫

𝑡3

𝑡0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
(𝐾 (𝑡 − 𝜏) − 𝐾 (𝑡

3
− 𝜏))

𝑡 − 𝑡
3

− 𝐾
󸀠

(𝑡
3
− 𝜏))

× 𝑓 (𝑢 (𝜏))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

𝑑𝜏

+ max
𝜏∈[𝑡,𝑡3]or[𝑡3 ,𝑡]

󵄩󵄩󵄩󵄩𝐾(𝑡 − 𝜏)𝑓(𝑢(𝜏))
󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

.

(93)

If 𝜔(𝑡, 𝑥) ∈ 𝐶(𝐼,𝑀
𝑠

𝑝,1
), then we have 𝐾(𝑡)𝜔(𝑡, 𝑥) ∈

𝐶(𝐼,𝑀
𝑠−1

𝑝,1
). In fact, taking advantage of (92) and the Lebesgue

dominated convergence theorem, we can get
󵄩󵄩󵄩󵄩𝐾(𝑡)𝜔(𝑡, 𝑥) − 𝐾(𝑡3)𝜔(𝑡3, 𝑥)

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

≤
󵄩󵄩󵄩󵄩(𝐾(𝑡) − 𝐾(𝑡3))𝜔(𝑡3, 𝑥)

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

+
󵄩󵄩󵄩󵄩𝐾(𝑡)(𝜔(𝑡, 𝑥) − 𝜔(𝑡3, 𝑥))

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

󳨀→ 0 as 𝑡 󳨀→ 𝑡
3
.

(94)

Recall that𝑓(𝑢) ∈ 𝐶(𝐼,𝑀𝑠

𝑝,1
) and apply (92) and the Lebesgue

dominated convergence theorem to the first term of (93); we
have

(∫

𝑡

𝑡0

𝐾 (𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏)

󸀠

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑡3

= ∫

𝑡3

𝑡0

𝐾
󸀠

(𝑡
3
− 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏 in 𝑀

𝑠−1

𝑝,1
.

(95)
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Consequently,

𝑢
𝑡
(𝑡) = − 𝐽

2

𝐾(𝑡 − 𝑡
0
) 𝑢

0
+ 𝐾

󸀠

(𝑡 − 𝑡
0
) 𝑢

1

− ∫

𝑡

𝑡0

𝐾
󸀠

(𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏 in 𝑀
𝑠−1

𝑝,1
.

(96)

Next, the proof of time continuity of 𝑢
𝑡
is similar to 𝑢.

It only needs to take care of the difference of smoothness
and the action of the Bessel potential. Finally, we obtain 𝑢 ∈

𝐶(𝐼,𝑀
𝑠

𝑝,1
)∩𝐶

1

(𝐼,𝑀
𝑠−1

𝑝,1
); that is, it is the strong𝑀𝑠

𝑝,1
solution.

3.3. Global Well-Posedness for Small Fine Data. Let us con-
struct a time decaying norm as

Γ (𝑢) = sup
𝑡∈R

(1 + |𝑡|)
𝑛(1/2−1/𝑝)

‖𝑢‖
𝑀
𝑠
𝑝,1
. (97)

This idea for theNLS can be traced back to thework of Strauss
[12] and Wang and Hudzik [2]. We consider the following
mapping:

T : 𝑢 (𝑡) 󳨅→ 𝐾
󸀠

(𝑡) 𝑢
0
+ 𝐾 (𝑡) 𝑢

1

− ∫

𝑡

0

𝐾 (𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏

(98)

in the metric spaceD = {𝑢 : Γ(𝑢) ≤ 𝑀} with 𝑑(𝑢, V) = Γ(𝑢 −

V). For any 𝑢 ∈ D, in view of Lemma 20, we get that

Γ (T𝑢) ≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀
𝑠+2𝜎(𝑝)

𝑝󸀠,1

+
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩𝑀
𝑠+2𝜎(𝑝)−1

𝑝󸀠,1

+ Γ(∫

𝑡

0

𝐾 (𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏)

(99)

and (recall the notation that ⟨𝑡⟩ = 1 + |𝑡|)

Γ(∫

𝑡

0

𝐾 (𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏)

≲ sup
𝑡∈R

⟨𝑡⟩
𝑛(1/2−1/𝑝)

× ∫

𝑡

0

⟨𝑡 − 𝜏⟩
−𝑛(1/2−1/𝑝)

× ‖𝑢‖
𝑀
𝑠
𝑝,1
𝑑𝜏

≲ (Γ (𝑢))
𝑘+1sup

𝑡∈R

⟨𝑡⟩
𝑛(1/2−1/𝑝)

× ∫

𝑡

0

⟨𝑡 − 𝜏⟩
−𝑛(1/2−1/𝑝)

× ⟨𝜏⟩
−𝑛(1/2−1/𝑝)(𝑘+1)

𝑑𝜏.

(100)

Owing to 𝑛(1/2 − 1/𝑝)(𝑘 + 1) > 1, it follows that

∫

𝑡/2

0

⟨𝑡 − 𝜏⟩
−𝑛(1/2−1/𝑝)

⟨𝜏⟩
−𝑛(1/2−1/𝑝)(𝑘+1)

𝑑𝜏

≲ ⟨𝑡⟩
−𝑛(1/2−1/𝑝)

∫

𝑡/2

0

⟨𝜏⟩
−𝑛(1/2−1/𝑝)(𝑘+1)

𝑑𝜏

≲ ⟨𝑡⟩
−𝑛(1/2−1/𝑝)

(101)

and that

∫

𝑡

𝑡/2

⟨𝑡 − 𝜏⟩
−𝑛(1/2−1/𝑝)

⟨𝜏⟩
−𝑛(1/2−1/𝑝)(𝑘+1)

𝑑𝜏

= ∫

𝑡/2

0

⟨𝜏⟩
−𝑛(1/2−1/𝑝)

⟨𝑡 − 𝜏⟩
−𝑛(1/2−1/𝑝)(𝑘+1)

𝑑𝜏

≲ ⟨𝑡⟩
−𝑛(1/2−1/𝑝)

⟨𝑡⟩
−𝑘𝑛(1/2−1/𝑝)

∫

𝑡/2

0

⟨𝜏⟩
−(1/2−1/𝑝)

𝑑𝜏

≲ ⟨𝑡⟩
−𝑛(1/2−1/𝑝)

.

(102)

Combining the above four inequalities, we have

Γ (T𝑢) ≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀
𝑠+2𝜎(𝑝)

𝑝󸀠,1

+
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩𝑀
𝑠+2𝜎(𝑝)−1

𝑝󸀠,1

+ Γ(𝑢)
𝑘+1

. (103)

Hence, if we choose 𝛿 ≲ 𝑀/2 and 𝑀 small enough,
then using the standard contraction mapping argument the
Cauchy problem (1) has a unique solution satisfying (13).

3.4. Uniqueness. In order to prove the uniqueness in a
category of strong solution, we only need to verify it locally;
that is, to prove that the set {𝑡 ∈ 𝐼 : 𝑢 = V} is open. If
𝑢(𝑡

1
) = V(𝑡

1
) for 𝑡

1
∈ 𝐼, we can choose an interval 𝐼

1
sufficient

small so that 𝑡
1
∈ 𝐼

1
⊂ 𝐼 and

‖𝑢 − V‖
𝐿
∞
𝑡
(𝐼1 ,𝑀

𝑠
𝑝,1
)

≤ 𝐶 (
󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨 , 𝑘)max {‖𝑢‖

𝐿
∞
𝑡
(𝐼1 ,𝑀

𝑠
𝑝,1
)
,

‖V‖
𝐿
∞
𝑡
(𝐼1 ,𝑀

𝑠
𝑝,1
)
}

× ‖𝑢 − V‖
𝐿
∞
𝑡
(𝐼1 ,𝑀

𝑠
𝑝,1
)

≤
1

2
‖𝑢 − V‖

𝐿
∞
𝑡
(𝐼1 ,𝑀

𝑠
𝑝,1
)
.

(104)

So 𝑢 = V on 𝐼
1
, which concludes that 𝑡

1
is an interior point.

So 𝐼 is open.

3.5. Blowup Criterion. We assume that ‖𝑢‖
𝐿
𝑟
𝑡
([𝑡0 ,𝑇],𝑀

𝑠
𝑝,1
)
< ∞,

write the integral equation on [𝑡
𝑚
, 𝑇], and use nonlinear

estimate to deduce that
󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡 − 𝑡
𝑚
)𝑢(𝑡

𝑚
) + 𝐾 (𝑡 − 𝑡

𝑚
) 𝑢

𝑡
(𝑡
𝑚
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
([𝑡𝑚 ,𝑇],𝑀

𝑠
𝑝,1
)

≲ ‖𝑢‖
𝐿
𝑟
𝑡
([𝑡𝑚 ,𝑇],𝑀

𝑠
𝑝,1
)
+ ‖𝑢‖

𝑘+1

𝐿
𝑟
𝑡
([𝑡𝑚 ,𝑇],𝑀

𝑠
𝑝,1
)
.

(105)

Then, let 𝑡
𝑚

close to 𝑇 sufficiently enough so that
‖𝐾

󸀠

(𝑡 − 𝑡
𝑚
)𝑢(𝑡

𝑚
) + 𝐾(𝑡 − 𝑡

𝑚
)𝑢
𝑡
(𝑡
𝑚
)‖
𝐿
𝑟
𝑡
([𝑡𝑚 ,𝑇],𝑀

𝑠
𝑝,1
)
< (1/2)𝜂

0
,

where 𝜂
0
is the onewe chose inTheorem 1.Then,∃𝛿 > 0, such

that ‖𝐾󸀠(𝑡 − 𝑡
𝑚
)𝑢(𝑡

𝑚
) + 𝐾(𝑡 − 𝑡

𝑚
)𝑢
𝑡
(𝑡
𝑚
)‖
𝐿
𝑟
𝑡
([𝑡𝑚 ,𝑇+𝛿],𝑀

𝑠
𝑝,1
)
≤ 𝜂

0
,

so we can extend 𝑢 on [𝑡
0
, 𝑇 + 𝛿] by local existence and

uniqueness, a contradiction.

3.6. Persistence of Regularity. We want the norm which can
hold the continuation of solution to be as low regularity
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as possible. It is interesting to make an assertion that the
boundedness of low regularity norm ‖𝑢(𝑡)‖

𝑀
𝑠2
𝑝2,1

suffices to
ensure the boundedness of high regularity norm ‖𝑢(𝑡)‖

𝑀
𝑠1
𝑝1,1

and thus ensure the continuation of strong𝑀𝑠1

𝑝1 ,1
solution. By

the improved version of product lemma (Lemma 22) and the
embedding theorems of modulation spaces, we can establish
Lemmas 31 and 32 to achieve our goal.

Firstly, we “reduce” the regularity index from 𝑝 to∞.

Lemma 31. Let 𝐼 be a bounded time interval containing 𝑡
0
, let

𝑝 ∈ [1,∞], and let 𝑢 ∈ 𝐶(𝐼,𝑀𝑠

𝑝,1
) be a strong𝑀𝑠

𝑝,1
solution to

(1). If the quantity ‖𝑢‖
𝐿
𝑘
𝑡
(𝐼,𝑀
𝑠
∞,1
)
is finite, then one has

‖𝑢(𝑡)‖
𝐿
∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲ 𝐶 (|𝐼|) (
󵄩󵄩󵄩󵄩𝑢 (𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩𝑢𝑡 (𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

)

× exp(∫
𝐼

𝐶 (|𝐼|) ‖𝑢(𝜏)‖
𝑘

𝑀
𝑠
∞.1

𝑑𝜏) ,

(106)

where 𝐶(|𝐼|) is some positive constant associated with the
length of 𝐼.

Proof. Without loss of generality, we may assume 𝑡
0
= inf 𝐼

and 𝐼 = [𝑡
0
, 𝑇] for some𝑇 > 𝑡

0
.Writing the integral equation,

using Lemma 19, and embedding, we have

‖𝑢(𝑡)‖
𝑀
𝑠
𝑝,1
≲ 𝐶 (|𝐼|) (

󵄩󵄩󵄩󵄩𝑢(𝑡0)
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩𝑢𝑡 (𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

+ ∫

𝑡

𝑡0

󵄩󵄩󵄩󵄩𝑓 (𝑢 (𝜏))
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

𝑑𝜏)

≲ 𝐶 (|𝐼|) (
󵄩󵄩󵄩󵄩𝑢 (𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩𝑢𝑡 (𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

+∫

𝑡

𝑡0

‖(𝑢(𝜏))‖
𝑘

𝑀
𝑠
∞,1

‖(𝑢(𝜏))‖
𝑀
𝑠
𝑝,1
𝑑𝜏)

(107)

for 𝑡 ∈ [𝑡
0
, 𝑇]. Let 𝐴(𝑡) = ‖𝑢(𝑡)‖

𝑀
𝑠
𝑝,1
and 𝐵(𝑡) = ‖(𝑢(𝑡))‖

𝑘

𝑀
𝑠
∞,1

,
and both 𝐴 and 𝐵 are continuous and nonnegative on [𝑡

0
, 𝑇].

Using Gronwall inequality, we have

‖𝑢(𝑡)‖
𝑀
𝑠
𝑝,1
≲ 𝐶 (|𝐼|) (

󵄩󵄩󵄩󵄩𝑢 (𝑡0)
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩𝑢𝑡 (𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

)

× exp(∫
𝑡

𝑡0

𝐶 (|𝐼|) ‖𝑢(𝜏)‖
𝑘

𝑀
𝑠
∞.1

𝑑𝜏)

(108)

for 𝑡 ∈ [𝑡
0
, 𝑇] and obtain the conclusion immediately.

Secondly, we reduce another regularity index from 𝑠 to 0.
By the Leibniz rules for modulation space Lemma 22, we can
deduce the following lemma.The proof of this lemma is very
similar to the proof of Lemma 31, so we omit the details.

Lemma 32. Let 𝐼 be a bounded time interval containing 𝑡
0
,

𝑠 ≥ 0, and let 𝑢 ∈ 𝐶(𝐼,𝑀𝑠

∞,1
) be a strong𝑀𝑠

∞,1
solution to (1).

If the quantity ‖𝑢‖
𝐿
𝑘
𝑡
(𝐼,𝑀
0
∞,1
)
is finite, then one has

‖𝑢 (𝑡)‖
𝐿
∞
𝑡
(𝐼,𝑀
𝑠
∞,1
)

≲ 𝐶 (|𝐼|) (
󵄩󵄩󵄩󵄩𝑢 (𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠
∞,1

+
󵄩󵄩󵄩󵄩𝑢𝑡 (𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠−1
∞,1

)

× exp(∫
𝐼

𝐶 (|𝐼|) ‖𝑢 (𝜏)‖
𝑘

𝑀
0
∞,1

𝑑𝜏) ,

(109)

where 𝐶(|𝐼|) is some positive constant associated with the
length of 𝐼.

So, for any strong𝑀𝑠

𝑝,1
solution 𝑢 in a bounded interval

𝐼, if it keeps 𝐿𝑘
𝑡
(𝐼,𝑀

0

∞,1
) norm bounded, it will keep 𝑀

𝑠

𝑝,1

norm bounded in the same interval. Conversely, if ‖𝑢(𝑡)‖
𝑀
𝑠
𝑝,1

is bounded in a bounded time interval 𝐼, by embedding
𝑀
𝑠

𝑝,1
⊂ 𝑀

0

∞,1
, 𝑢(𝑡) will be in 𝐿

𝑘

𝑡
(𝐼,𝑀

0

∞,1
). Thus, one can

extend a strong solution in 𝑀
𝑠

𝑝,1
if and only if the quantity

‖𝑢‖
𝐿
𝑘
𝑡
(𝐼,𝑀
0
∞,1
)
remains bounded. This implies that the blowup

phenomenon is independent of exact 𝑝 and 𝑠, so if an initial
data (𝑢(𝑡

0
), 𝑢

𝑡
(𝑡
0
)) lies in both𝑀𝑠1

𝑝1 ,1
×𝑀

𝑠1−1

𝑝1,1
and𝑀𝑠2

𝑝2,1
×𝑀

𝑠2−1

𝑝2,1

(1 ≤ 𝑝
1
, 𝑝
2
≤ ∞, 0 < 𝑠

1
, 𝑠
2
< ∞), they have the same

maximal existence interval.

4. Scattering Theorems

The goal of this section is to derive scattering results.

4.1. Proof of Scattering Theorem. Without loss of generality,
we assume 𝑡

0
= 0, and let

2V
1
(𝑡) = 𝑢

0
+

𝑢
1

𝑖𝜔1/2
− ∫

𝑡

0

𝐺 (−𝜏) 𝑓 (𝑢 (𝜏))

𝑖𝜔1/2
𝑑𝜏,

2V
2
(𝑡) = 𝑢

0
−

𝑢
1

𝑖𝜔1/2
+ ∫

𝑡

0

𝐺 (𝜏) 𝑓 (𝑢 (𝜏))

𝑖𝜔1/2
𝑑𝜏.

(110)

For 0 < 𝑠 < 𝑡,

V
1
(𝑡) − V

1
(𝑠) = −∫

𝑡

𝑠

𝐺 (−𝜏) 𝑓 (𝑢 (𝜏))

𝑖𝜔1/2
𝑑𝜏. (111)

By the fact we used in Section 3.2.1 that is from Definition 25
for 𝑘-admissible pair (𝑝, 𝑟), there exists 𝛾 ≥ 1 such that

1

𝛾
+
𝑘 + 1

𝑟
= 1, 𝛾𝑛 (

1

2
−
1

𝑝
) > 1. (112)
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Take advantage of the nonlinear estimate andHölder inequal-
ity:

󵄩󵄩󵄩󵄩V1 (𝑡) − V
1
(𝑠)
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≲ ∫

𝑡

𝑠

(1 + |𝜏|)
−𝑛(1/2 − 1/𝑝)

×
󵄩󵄩󵄩󵄩𝑓 (𝑢 (𝜏))

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝󸀠,1

𝑑𝜏

≲ ∫

𝑡

𝑠

(1 + |𝜏|)
−𝑛(1/2 − 1/𝑝)

× ‖𝑢‖
𝑘+1

𝑀
𝑠
𝑝,1

𝑑𝜏

≲
󵄩󵄩󵄩󵄩󵄩
(1 + |𝑡|)

−𝑛(1/2 − 1/𝑝)
󵄩󵄩󵄩󵄩󵄩𝐿
𝛾

𝑡

×
󵄩󵄩󵄩󵄩󵄩󵄩
‖𝑢‖

𝑘+1

𝑀
𝑠
𝑝,1

󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
([𝑠,𝑡])

≲
󵄩󵄩󵄩󵄩󵄩
(1 + |𝑡|)

−𝛾𝑛(1/2 − 1/𝑝)
󵄩󵄩󵄩󵄩󵄩

1/𝛾

𝐿
1
𝑡

× ‖𝑢‖
𝑘+1

𝐿
𝑟
𝑡
([𝑠,𝑡],𝑀

𝑠
𝑝,1
)

≲ ‖𝑢‖
𝑘+1

𝐿
𝑟
𝑡
([𝑠,𝑡],𝑀

𝑠
𝑝,1
)
.

(113)

Since ‖𝑢‖
𝐿
𝑟
𝑡
(R,𝑀𝑠

𝑝,1
)
≤ 𝑀, we have

󵄩󵄩󵄩󵄩V1 (𝑡) − V
1
(𝑠)
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≲ ‖𝑢‖
𝑘+1

𝐿
𝑟
𝑡
([𝑠,𝑡],𝑀

𝑠
𝑝,1
)
󳨀→ 0 (114)

as 𝑡, 𝑠 → ∞. This implies that V(𝑡) is Cauchy in𝑀𝑠

𝑝,1
as 𝑡 󳨀→

∞. Denote V+
1
to be the limit:

2V+
1
= lim
𝑡→+∞

2V
1
(𝑡)

= 𝑢
0
+

𝑢
1

𝑖𝜔1/2
− ∫

+∞

0

𝐺 (−𝜏) 𝑓 (𝑢 (𝜏))

𝑖𝜔1/2
𝑑𝜏,

2V−
1
= lim
𝑡→−∞

2V
1
(𝑡)

= 𝑢
0
−

𝑢
1

𝑖𝜔1/2
+ ∫

−∞

0

𝐺 (𝜏) 𝑓 (𝑢 (𝜏))

𝑖𝜔1/2
𝑑𝜏.

(115)

In a similar way, we obtain

V+
2
= lim
𝑡→+∞

V
2
(𝑡) , V−

2
= lim
𝑡→−∞

V
2
(𝑡) . (116)

Recall that V+ = 𝐺(𝑡)V+
1
+𝐺(−𝑡)V+

2
; so taking advantage of the

nonlinear estimates, we get

󵄩󵄩󵄩󵄩𝑢 (𝑡) − V+󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

+∞

𝑡

𝐾 (𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≲
󵄩󵄩󵄩󵄩󵄩
(1 + |𝑡|)

−𝛾𝑛(1/2−1/𝑝)
󵄩󵄩󵄩󵄩󵄩

1/𝛾

𝐿
1
𝑡

× ‖𝑢‖
𝑘+1

𝐿
𝑟
𝑡
([𝑡,∞],𝑀

𝑠
𝑝,1
)
󳨀→ 0

(117)

as 𝑡 → +∞. So is V−, respectively. In fact, in our proof, we
also have V+

1
∈ 𝑀

𝑠

𝑝,1
.

One may ask whether there exists a global𝑀𝑠

𝑝,1
solution

to Cauchy problem (1) which is scattering associated with
V+
1
, V+
2
∈ 𝑀

𝑠

𝑝,1
. The following remark gives us a partial answer.

Remark 33. Let V+
1
, V+
2

∈ 𝑀
𝑠

𝑝,1
and 𝐺(𝑡)V+

1
+ 𝐺(−𝑡)V+

2
∈

𝐿
𝑟

𝑡
([𝑇

1
,∞),𝑀

𝑠

𝑝,1
), and then there exists a solution 𝑢 of (1) on

𝐼 = [𝑇,∞) for some 𝑇 > 𝑇
1
such that

󵄩󵄩󵄩󵄩𝑢(𝑡) − (𝐺 (𝑡) V
+

1
+ 𝐺 (−𝑡) V+

2
)
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

󳨀→ 0 (118)

as 𝑡 → +∞.

To construct 𝑢, we only need to solve the Cauchy problem
from 𝑡 = +∞ to some finite time 𝑡 = 𝑇 > 𝑇

1
with initial data

at 𝑡 = +∞, that is, to solve the following equation:

𝑢 (𝑡) = 𝐺 (𝑡) V+
1
+ 𝐺 (−𝑡) V+

2

+ ∫

+∞

𝑡

𝐺 (𝑡 − 𝜏) + 𝐺 (𝜏 − 𝑡)

2𝑖𝜔1/2
𝑓 (𝑢) 𝑑𝜏

(119)

on 𝐼 = [𝑇,∞). In fact, we have
‖𝐺(𝑡)V+

1
+ 𝐺(−𝑡)V+

2
‖
𝐿
𝑟
𝑡
([𝑇,∞),𝑀𝑠

𝑝,1
)
< 𝜂

0
. If we choose 𝑇 > 𝑇

1

large enough, where 𝜂
0
is as in Theorem 1, then we can solve

this equation by the same technique used in the proof of
Theorem 1 and deduce that there exists a solution to (1) on
𝐼 = [𝑇,∞) and ‖𝑢(𝑡)‖

𝐿
𝑟
𝑡
([𝑇1,∞),𝑀𝑠𝑝,1) < ∞. So, if 𝑡 is large

enough, we have

󵄩󵄩󵄩󵄩𝑢 (𝑡) − (𝐺 (𝑡) V
+

1
+ 𝐺 (−𝑡) V+

2
)
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

∞

𝑡

𝐾 (𝑡 − 𝜏) 𝑓 (𝑢 (𝜏)) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≲ ‖𝑢‖
𝑘+1

𝐿
𝑟
𝑡
([𝑡,∞],𝑀

𝑠
𝑝,1
)
󳨀→ 0

(120)

as 𝑡 → ∞. A similar argument applies in the situation 𝑡 →
−∞.

5. Stability Theory

In this section, we will derive the stability theory including
short-time result and long-time result and deduce some
corollaries.
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5.1. Proof of Short-Time Perturbations. By time symmetry, we
may assume that 𝑡

0
= inf 𝐼. Let V = 𝑢− �̃�. Then, V satisfies the

following initial value problem:

(𝜕
𝑡𝑡
+ 𝐼 − Δ) V = 𝑓 (�̃� + V) − 𝑓 (�̃�) − 𝑒,

V (𝑡
0
, 𝑥) = 𝑢 (𝑡

0
, 𝑥) − �̃� (𝑡

0
, 𝑥) ,

V
𝑡
(𝑡
0
, 𝑥) = 𝑢

𝑡
(𝑡
0
, 𝑥) − �̃�

𝑡
(𝑡
0
, 𝑥) .

(121)

The integral equation is

V (𝑡) = 𝐾
󸀠

(𝑡 − 𝑡
0
) V (𝑡

0
) + 𝐾 (𝑡 − 𝑡

0
) V
𝑡
(𝑡
0
)

− ∫

𝑡

𝑡0

𝐾 (𝑡 − 𝜏) (𝑓 (�̃� + V) − 𝑓 (�̃�) − 𝑒) 𝑑𝜏.
(122)

For 𝑇 ∈ 𝐼, define

𝑆 (𝑇) =
󵄩󵄩󵄩󵄩(𝜕𝑡𝑡 + 𝐼 − Δ)V + 𝑒

󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
([𝑡0 ,𝑇],𝑀

𝑠

𝑝󸀠,1
)
. (123)

By nonlinear estimate and the smallness condition, for every
𝑇 ∈ 𝐼,

‖V(𝑡)‖
𝐿
𝑟
𝑡
([𝑡0 ,𝑇],𝑀

𝑠
𝑝,1
)

≲ 𝜀 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

(𝐾 (𝑡 − 𝜏) (𝜕
𝑡𝑡
+ 𝐼 − Δ) V

+ 𝑒) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
([𝑡0 ,𝑇],𝑀

𝑠
𝑝,1
)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝐾 (𝑡 − 𝜏) 𝑒 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
([𝑡0 ,𝑇],𝑀

𝑠
𝑝,1
)

≲ 𝜀 +
󵄩󵄩󵄩󵄩(𝜕𝑡𝑡 + 𝐼 − Δ) V + 𝑒

󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
([𝑡0 ,𝑇],𝑀

𝑠

𝑝󸀠,1
)

+ ‖𝑒‖
𝐿
𝑟/(𝑘+1)

𝑡
([𝑡0 ,𝑇],𝑀

𝑠

𝑝󸀠,1
)

≲ 𝜀 + 𝑆 (𝑇) .

(124)

By Product Lemma 21, we deduce

𝑆 (𝑇) =
󵄩󵄩󵄩󵄩𝑓(�̃� + V) − 𝑓(�̃�)󵄩󵄩󵄩󵄩𝐿𝑟/(𝑘+1)

𝑡
([𝑡0 ,𝑇],𝑀

𝑠

𝑝󸀠,1
)

≲ ‖V(𝑡)‖𝑘+1
𝐿
𝑟
𝑡
([𝑡0 ,𝑇],𝑀

𝑠
𝑝,1
)
+ ‖V(𝑡)‖𝑘

𝐿
𝑟
𝑡
([𝑡0 ,𝑇],𝑀

𝑠
𝑝,1
)

× ‖�̃�(𝑡)‖
𝐿
𝑟
𝑡
([𝑡0 ,𝑇],𝑀

𝑠
𝑝,1
)

+ ⋅ ⋅ ⋅ + ‖V(𝑡)‖
𝐿
𝑟
𝑡
([𝑡0 ,𝑇],𝑀

𝑠
𝑝,1
)

× ‖�̃�(𝑡)‖
𝑘

𝐿
𝑟
𝑡
([𝑡0 ,𝑇],𝑀

𝑠
𝑝,1
)
.

(125)

Noticing that ‖�̃�(𝑡)‖
𝐿
𝑟
𝑡
([𝑡0 ,𝑇],𝑀

𝑠
𝑝,1
)
≤ 𝜀

𝑐
, we have

𝑆 (𝑇) ≲ (𝜀 + 𝑆(𝑇))
𝑘+1

+ (𝜀 + 𝑆(𝑇))
𝑘

𝜀
𝑐

+ ⋅ ⋅ ⋅ + (𝜀 + 𝑆 (𝑇)) 𝜀
𝑘

𝑐

(126)

for every 𝑇 ∈ 𝐼.

A standard continuity argument then shows that if we
shrink 𝜀

𝑐
sufficiently small, then

𝑆 (𝑇) ≲ 𝜀 (127)

for any 𝑇 ∈ 𝐼, which implies (23). Using (124) and (127), one
can easily obtain (24). By Lemma 19, we have

󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡 − 𝑡
0
)V(𝑡

0
) + 𝐾(𝑡 − 𝑡

0
)V
𝑡
(𝑡
0
)
󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲ 𝐶 (𝐼) (
󵄩󵄩󵄩󵄩𝑢(𝑡0) − �̃�(𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩𝑢𝑡 (𝑡0) − �̃�𝑡 (𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

)

≲ 𝐶 (𝐼) (𝑀
󸀠

+𝑀󸀠) ,

󵄩󵄩󵄩󵄩󵄩
−𝐽
2

𝐾(𝑡 − 𝑡
0
)V(𝑡

0
) + 𝐾

󸀠

(𝑡 − 𝑡
0
)V
𝑡
(𝑡
0
)
󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠−1
𝑝,1
)

≲ 𝐶 (𝐼) (𝑀
󸀠

+𝑀󸀠) .

(128)

By Lemma 20 and Hölder inequality, we have that for every
𝑡 ∈ 𝐼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝐾 (𝑡 − 𝜏) (𝑓 (�̃� + V) − 𝑓 (�̃�))𝑑𝜏
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

≲ ∫
𝐼

(1 + |𝑡 − 𝜏|)
−𝑛(1/2−1/𝑝)

×
󵄩󵄩󵄩󵄩𝑓 (�̃� + V) − 𝑓 (�̃�)󵄩󵄩󵄩󵄩𝑀𝑠

𝑝󸀠,1

𝑑𝜏

≲ ∫
𝐼

󵄩󵄩󵄩󵄩𝑓 (�̃� + V) − 𝑓 (�̃�)󵄩󵄩󵄩󵄩𝑀𝑠
𝑝󸀠,1

𝑑𝜏

≲ |𝐼|
𝛽󵄩󵄩󵄩󵄩𝑓 (�̃� + V) − 𝑓 (�̃�)󵄩󵄩󵄩󵄩𝐿𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)

≲ 𝐶 (𝐼) 𝜀.

(129)

Similarly, we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝐾
󸀠

(𝑡 − 𝜏) (𝑓 (�̃� + V) − 𝑓 (�̃�))𝑑𝜏
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

≲ 𝐶 (𝐼) 𝜀,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝐾 (𝑡 − 𝜏) 𝑒 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲ 𝐶 (𝐼) 𝜀,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

𝑡0

𝐾
󸀠

(𝑡 − 𝜏) 𝑒 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠−1
𝑝,1
)

≲ 𝐶 (𝐼) 𝜀,

(130)

and then we use the integral equation to conclude (25) and
(26). Finally, (27) and (28) are easy conclusions from (25),
(26), and (20).

After proof of short-time perturbations, we will derive
long-time perturbations by an iterative procedure. In long-
time perturbations, the smallness condition ‖�̃�‖

𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 𝜀

𝑐

will be replaced by a bound condition ‖�̃�‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≤ 𝐿. In our

proof, we need to divide interval 𝐼 into several subintervals 𝐼
𝑗

to gain a small size of ‖�̃�‖
𝐿
𝑟
𝑡
(𝐼𝑗 ,𝑀

𝑠
𝑝,1
)
.The 𝑘-admissible condition

which ensures 𝑟 < ∞ allows us to do so.
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5.2. Proof of Long-Time Perturbations. For convenience, we
also assume that 𝑡

0
= inf 𝐼. We subdivide 𝐼 into 𝑁

subintervals 𝐼
𝑗
= [𝑡

𝑗
, 𝑡
𝑗+1
], 𝑗 = 0, . . . , 𝑁 − 1 such that

‖�̃�‖
𝐿
𝑟
𝑡
(𝐼𝑗 ,𝑀

𝑠
𝑝,1
)
≤ 𝜀

𝑐
, (131)

where 𝜀
𝑐
is as in Theorem 11. Choose 𝜀

1
≤ 𝜀

𝑐
in Theorem 12

and apply short-time perturbations on 𝐼
0
to obtain

󵄩󵄩󵄩󵄩(𝜕𝑡𝑡 + 𝐼 − Δ)(𝑢 − �̃�) + 𝑒
󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
(𝐼0 ,𝑀

𝑠

𝑝󸀠,1
)
≲ 𝜀,

‖𝑢 − �̃�‖
𝐿
𝑟
𝑡
(𝐼0 ,𝑀

𝑠
𝑝,1
)
≲ 𝜀.

(132)

Using the integral equation on 𝐼
1
, we have

󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡 − 𝑡
1
) V (𝑡

1
) + 𝐾 (𝑡 − 𝑡

1
) V
𝑡
(𝑡
1
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼1 ,𝑀

𝑠
𝑝,1
)

≲
󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡 − 𝑡
0
)V(𝑡

1
) − 𝐾(𝑡 − 𝑡

0
)V
𝑡
(𝑡
1
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼1 ,𝑀

𝑠
𝑝,1
)

+
󵄩󵄩󵄩󵄩(𝜕𝑡𝑡 + 𝐼 − Δ)V + 𝑒

󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
([𝑡0 ,𝑡1],𝑀

𝑠

𝑝󸀠,1
)

+ ‖𝑒‖
𝐿
𝑟/(𝑘+1)

𝑡
([𝑡0 ,𝑡1],𝑀

𝑠

𝑝󸀠,1
)

≲ 𝜀 + 𝜀 + 𝜀.

(133)

So we can shrink 𝜀
1
such that

󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡 − 𝑡
1
)V(𝑡

1
) + 𝐾(𝑡 − 𝑡

1
)V
𝑡
(𝑡
1
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≤ 𝜀
𝑐
. (134)

We also have

‖𝑒‖
𝐿
𝑟/(𝑘+1)

𝑡
(𝐼1 ,𝑀

𝑠

𝑝󸀠,1
)
≤ ‖𝑒‖

𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)
≤ 𝜀 ≤ 𝜀

𝑐
. (135)

So we can use the short-time perturbations to obtain
󵄩󵄩󵄩󵄩(𝜕𝑡𝑡 + 𝐼 − Δ)(𝑢 − �̃�) + 𝑒

󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
(𝐼1 ,𝑀

𝑠

𝑝󸀠,1
)
≲ 𝐶 (1) 𝜀,

‖𝑢 − �̃�‖
𝐿
𝑟
𝑡
(𝐼1 ,𝑀

𝑠
𝑝,1
)
≲ 𝐶 (1) 𝜀.

(136)

For 𝐼
2
, repeat the process above to shrink 𝜀

1
to continue

the inductive argument. Accordingly, after a finite number of
“shrinks” of 𝜀

1
, we have, for all 𝑚 ∈ [1,𝑁 − 1],

󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡 − 𝑡
𝑚
)V(𝑡

𝑚
) + 𝐾(𝑡 − 𝑡

𝑚
)V
𝑡
(𝑡
𝑚
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

< 𝜀 (137)

and then, for some 0 < 𝜀 < 𝜀
1
and 0 ≤ 𝑗 ≤ 𝐽, we have

󵄩󵄩󵄩󵄩(𝜕𝑡𝑡 + 𝐼 − Δ)(𝑢 − �̃�) + 𝑒
󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
(𝐼𝑗 ,𝑀

𝑠

𝑝󸀠,1
)
≲ 𝐶 (𝑗) 𝜀,

‖𝑢 − �̃�‖
𝐿
𝑟
𝑡
(𝐼𝑗 ,𝑀

𝑠
𝑝,1
)
≲ 𝐶 (𝑗) 𝜀,

(138)

where 𝐶(𝑗) only depends on 𝑗. So we have
󵄩󵄩󵄩󵄩(𝜕𝑡𝑡 + 𝐼 − Δ)(𝑢 − �̃�) + 𝑒

󵄩󵄩󵄩󵄩𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)

≲

𝑁−1

∑

𝑗=0

𝐶 (𝑗) 𝜀 ≲ 𝐶 (𝐿) 𝜀.

(139)

By smallness assumption, we also have

‖𝑢 − �̃�‖
𝐿
𝑟
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≲ 𝐶 (𝐿) 𝜀. (140)

Using integral equation

V (𝑡) = 𝐾
󸀠

(𝑡 − 𝑡
0
) V (𝑡

0
) + 𝐾 (𝑡 − 𝑡

0
) V
𝑡
(𝑡
0
)

− ∫

𝑡

𝑡0

𝐾 (𝑡 − 𝜏) (𝑓 (�̃� + V) − 𝑓 (�̃�) − 𝑒) 𝑑𝜏
(141)

and Hölder inequality, we conclude that

‖V(𝑡)‖
𝐿
∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲ 𝐶 (|𝐼|) (
󵄩󵄩󵄩󵄩V(𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩V𝑡(𝑡0)

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

)

+ 𝐶 (|𝐼|) (
󵄩󵄩󵄩󵄩𝑓 (�̃� + V) − 𝑓(�̃�)󵄩󵄩󵄩󵄩𝐿𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)

+ ‖𝑒‖
𝐿
𝑟/(𝑘+1)

𝑡
(𝐼,𝑀
𝑠

𝑝󸀠,1
)
)

≲ 𝐶 (|𝐼| , 𝐿) (𝑀
󸀠

+𝑀󸀠 + 𝜀) .

(142)

In the same way, we have
󵄩󵄩󵄩󵄩V𝑡(𝑡)

󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠−1
𝑝,1
)
≲ 𝐶 (|𝐼| , 𝐿) (𝑀

󸀠 +𝑀
󸀠

+ 𝜀) . (143)

Finally, we can use (29) to deduce (37) and (38).

5.3. Proof of Continuous Dependence. Since 1/(𝑘+2) ≤ 1/𝑝 <
1/2 − 1/𝑛(𝑘 + 1), (𝑝, 𝑘 + 1) is a 𝑘-admissible pair. For every
compact interval 𝐼 ⊂ (𝑇min(𝑢0), 𝑇max(𝑢0)), noticing that
󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠

(𝑡 − 𝑡
0
) (𝑢

0,𝑛
− 𝑢

0
) + 𝐾 (𝑡 − 𝑡

0
) (𝑢

1,𝑛
− 𝑢

1
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑘+1
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)

≲ 𝐶 (|𝐼|) (
󵄩󵄩󵄩󵄩𝑢0,𝑛 − 𝑢0

󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩𝑢1,𝑛 − 𝑢1

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

) ,

(144)

we apply long-time perturbations with 𝑟 = 𝑘 + 1 and
𝑒 = 0 to conclude that there exists a small constant 𝜀

2
=

𝜀
2
(|𝐼|, ‖𝑢‖

𝐿
𝑘+1
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
) such that if

󵄩󵄩󵄩󵄩𝑢0,𝑛 − 𝑢0
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,1

+
󵄩󵄩󵄩󵄩𝑢1,𝑛 − 𝑢1

󵄩󵄩󵄩󵄩𝑀𝑠−1
𝑝,1

≤ 𝜀
2
, (145)

then (1) has a strong solution 𝑢
𝑛
on 𝐼 with the initial data

𝑢
𝑛
(𝑡
0
) = 𝑢

0,𝑛
and

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
󵄩󵄩󵄩󵄩𝐿∞
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
≲ 𝐶(|𝐼| , ‖𝑢‖

𝐿
𝑘+1
𝑡
(𝐼,𝑀
𝑠
𝑝,1
)
) 𝜀
2
. (146)

So is ‖ 𝑢
𝑛
− 𝑢‖

𝐿
∞
𝑡
(𝐼,𝑀
𝑠−1
𝑝,1
)
.

The proof of Corollary 14 is similar, and we omit it here.
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