IJMMS 30:1 (2002) 49-56 PII. S0161171202007986 http://ijmms.hindawi.com © Hindawi Publishing Corp.

DOUBT FUZZY BCI-ALGEBRAS

ZHAN JIANMING and TAN ZHISONG

Received 10 August 2001

The aim of this note is to introduce the notion of doubt fuzzy p-ideals in BCI-algebras and to study their properties. We also solve the problem of classifying doubt fuzzy p-ideals and study fuzzy relations on BCI-algebras.

2000 Mathematics Subject Classification: 03G25, 06F35, 03E72.

1. Introduction and preliminaries. The concept of a fuzzy set is applied to generalize some of the basic concepts of general topology [2]. Rosenfeld [6] constituted a similar application to the elementary theory of groupoids and groups. Xi [7] applied the concept of fuzzy set to BCK-algebras. Jun [4] defined a doubt fuzzy subalgebra, doubt fuzzy ideal, doubt fuzzy implicative ideal, and doubt fuzzy prime ideal in BCI-algebras, and got some results about it. In this note, we define a doubt fuzzy p-ideal of a BCI-algebra and investigate its properties.

A mapping $f: X \to Y$ of BCI-algebras is called homomorphism if f(x * y) = f(x) * f(y) for all $x, y \in X$. A nonempty subset I of a BCI-algebra X is called an ideal of X if (i) $0 \in I$, (ii) $x * y \in I$ and $y \in I$ imply that $x \in I$. We recall that a fuzzy subset μ of a set X is a function μ from X into [0,1]. Let Im μ denote the image set of μ . We will write $a \wedge b$ for min $\{a,b\}$, and $a \vee b$ for max $\{a,b\}$, where a and b are any real numbers.

Given a fuzzy set μ and $t \in [0,1]$, let $\mu_t = \{x \in X \mid \mu(x) \ge t\}$ and $\mu^t = \{x \in X \mid \mu(x) \le t\}$. These could be empty sets. The set $\mu_t \ne \emptyset$ (resp., $\mu^t \ne \emptyset$) is called the t-confidence (resp., t-doubt) set of μ (see [3]).

DEFINITION 1.1 (see [7]). For any x, y in a BCI-algebra X,

- (i) if $\mu(x * y) \ge \mu(x) \land \mu(y)$, then μ is called a fuzzy subalgebra of X;
- (ii) if $\mu(0) \ge \mu(x)$ and $\mu(x) \ge \mu(x * y) \land \mu(y)$, then μ is called a fuzzy ideal of X.

DEFINITION 1.2 (see [4]). Let X be a BCI-algebra. A fuzzy set μ in X is called (i) a doubt fuzzy subalgebra (briefly, DF-subalgebra) of X if $\mu(x * y) \le \mu(x) \lor \mu(y)$ for all $x, y \in X$; and (ii) a doubt fuzzy ideal (briefly, DF-ideal) of X if $\mu(0) \le \mu(x)$ and $\mu(x) \le \mu(x * y) \lor \mu(y)$ for all $x, y \in X$.

DEFINITION 1.3 (see [5]). A nonempty subset I of BCI-algebra X is called p-ideal if (i) $0 \in I$;

(ii) $(x*z)*(y*z) \in I$ and $y \in I$ imply that $x \in I$ for all $x, y, z \in X$.

DEFINITION 1.4 (see [5]). A fuzzy subset μ of a BCI-algebra X is called a fuzzy p-ideal of X if

- (i) $\mu(0) \ge \mu(x)$ for any $x \in X$;
- (ii) $\mu(x) \ge \mu((x*z)*(y*z)) \land \mu(y)$ for any $x, y, z \in X$.

2. Doubt fuzzy *p*-ideals

DEFINITION 2.1. A fuzzy subset μ of a BCI-algebra X is called a doubt fuzzy p-ideal (briefly, DF p-ideal) of X if

- (i) $\mu(0) \le \mu(x)$ for any $x \in X$;
- (ii) $\mu(x) \le \mu((x*z)*(y*z)) \lor \mu(y)$ for any $x, y, z \in X$.

EXAMPLE 2.2. Let $X = \{0, a, b, c\}$ in which * is defined by

*	0	а	b	С
0	0	а	b	С
а	а	0	С	b
b	b	С	0	а
С	С	С	b	0

Then (X;*,0) is a BCI-algebra. Let $t_0,t_1,t_2 \in [0,1]$ be such that $t_0 < t_1 < t_2$. Define $\mu: X \to [0,1]$ by $\mu(0) = t_0$, $\mu(a) = t_1$, and $\mu(b) = \mu(c) = t_2$. Routine calculations give that μ is a DF p-ideal of X.

PROPOSITION 2.3. If μ is a DF p-ideal of a BCI-algebra X, then $\mu(x) \le \mu(0*(0*x))$ for all $x \in X$.

PROOF. Since
$$\mu$$
 is a DF p -ideal of X , we have $\mu(x) \le \mu((x*x)*(0*x)) \lor \mu(0) = \mu(0*(0*x)) \lor \mu(0) = \mu(0*(0*x))$.

PROPOSITION 2.4. Every DF p-ideal is a DF-ideal.

PROOF. Let
$$\mu$$
 be a DF p -ideal of X . We have $\mu(x) \ge \mu((x*0)*(y*0)) \lor \mu(y) = \mu(x*y) \lor \mu(y)$ for all $x, y \in X$. Hence μ is a DF-ideal.

REMARK 2.5. The converse of Proposition 2.4 is not true in general as shown in the following example.

EXAMPLE 2.6. Let $X = \{0, a, 1, 2, 3\}$ in which * is defined by

*	0	а	1	2	3
0	0	0 0 1 2 3	3	2	1
а	а	0	3	2	1
1	1	1	0	3	2
2	2	2	1	0	3
3	3	3	2	1	0

Then X is a BCI-algebra. Let $t_0, t_1, t_2 \in [0,1]$ be such that $t_0 < t_1 < t_2$. Define μ : $X \to [0,1]$ by $\mu(0) = t_0$, $\mu(a) = t_1$, and $\mu(1) = \mu(2) = \mu(3) = t_3$. Routine calculations give that μ is a DF-ideal of X. But μ is not a DF p-ideal of X, because $\mu(a) = t_1$, and $\mu((a*1)*(0*1)) \vee \mu(0) = \mu(0) = t_0$, that is, $\mu(a) > \mu((a*1)*(0*1)) \vee \mu(0)$.

PROPOSITION 2.7. If μ is a DF p-ideal of a BCI-algebra X, then $\mu(x * y) \ge \mu((x * z) * (y * z))$ for all $x, y, z \in X$.

PROOF. Note that in a BCI-algebra X the inequality $(x*z)*(y*z) \le x*y$ holds. It follows that ((x*z)*(y*z))*(x*y) = 0. Since μ is a DF-ideal by Proposition 2.4.

We have $\mu((x*z)*(y*z)) \ge \mu(((x*z)*(y*z))*(x*y)) \lor \mu(x*y) = \mu(0) \lor \mu(x*y) = \mu(x*y)$. This completes the proof.

PROPOSITION 2.8. Let μ be a DF-ideal of a BCI-algebra X. If μ satisfies $\mu(x * y) \le \mu((x*z)*(y*z))$ for any $x,y,z \in X$, then μ is a DF p-ideal of X.

PROOF. Let μ be a DF-ideal of X satisfying $\mu(x * y) \le \mu((x * z) * (y * z))$ for all $x, y, z \in X$. Then $\mu((x * z) * (y * z)) \lor \mu(y) \ge \mu(x)$. This completes the proof. \square

PROPOSITION 2.9. Let μ be a DF-ideal of a BCI-algebra X. Then $\mu(0*(0*x)) \le \mu(x)$ for all $x \in X$.

PROOF. We have that $\mu(0*(0*x)) \le \mu((0*(0*x))*x) \lor \mu(x) = \mu(0) \lor \mu(x) = \mu(x)$ for all $x \in X$.

PROPOSITION 2.10. Let μ be a DF-ideal of a BCI-algebra X satisfying $\mu(0*(0*x)) \ge \mu(x)$ for all $x \in X$.

PROOF. Let $x, y, z \in X$. Then

$$\mu((x*z)*(y*z)) \ge \mu(0*(0*((x*z)*(y*z))))$$

$$= \mu((0*y)*(0*x))$$

$$= \mu(0*(0*(x*y)))$$

$$\ge \mu(x*y).$$
(2.1)

It follows from Proposition 2.8 that μ is a DF p-ideal of X.

THEOREM 2.11. Let μ be a fuzzy subset of a BCI-algebra X. If μ is a DF p-ideal of X, then the set $I = \{x \in X \mid \mu(x) = \mu(0)\}$ is a p-ideal of X.

PROOF. Assume that μ is a DF p-ideal of X. Clearly $0 \in I$. Let $(x*z)*(y*z) \in I$ and $y \in I$. Then $\mu(x) \le \mu((x*z)*(y*z)) \lor \mu(y) = \mu(0)$. But $\mu(0) \le \mu(x)$ for all $x \in X$. Thus $\mu(0) = \mu(x)$. Hence $x \in I$. This completes the proof.

DEFINITION 2.12 (see [6]). Let f be a mapping defined on a set X. If μ is a fuzzy subset of X, then the fuzzy subset v of f(x), defined by

$$v(y) = \inf_{x \in f^{-1}(y)} \mu(x)$$
 (2.2)

for all $y \in f(x)$, is called the image of μ under f. Similarly, if v is a fuzzy subset of f(x), then the fuzzy subset $\mu = v \circ f$ in X (i.e., the fuzzy subset defined by $\mu(x) = v(f(x))$ for all $x \in X$) is called the preimage of v under f.

THEOREM 2.13. An onto homomorphic preimage of a DF p-ideal is also a DF p-ideal.

PROOF. Let $f: X \to X'$ be an onto homomorphism of BCI-algebras, v a DF p-ideal of X', and μ the preimage of v under f. Then $v(f(x)) = \mu(x)$ for all $x \in X$. Since $f(x) \in X'$ and v is a DF p-ideal of X', it follows that $v(0') \le v(f(x)) = \mu(x)$ for all $x \in X$, where 0' is the zero element of X'. But $v(0') = v(f(0) = \mu(0))$, and so $\mu(0) \le \mu(x)$ for all $x \in X$.

Since v is a DF p-ideal, we have $\mu(x) = v(f(x)) \le v((f(x)*z')*(y'*z')) \lor v(y')$ for any $y',z' \in X'$. Since f is onto, there exist $y,z \in X$ such that f(y) = y' and f(z) = z'. Then

$$\mu(x) \le v((f(x) * z') * (y' * z')) \lor v(y')$$

$$= v((f(x) * f(z)) * (f(y) * f(z)))$$

$$= v(f(x * z) * f(y * z)) \lor v(f(y))$$

$$= v(f(x * z) * (y * z)) \lor v(f(y))$$

$$= \mu((x * z) * (y * z)) \lor \mu(y).$$
(2.3)

Since y' and z' are arbitrary elements of X', the above result is true for all $y, z \in X$, that is, $\mu(x) \le \mu((x*z)*(y*z)) \lor \mu(y)$ for all $x, y, z \in X$. This completes the proof.

DEFINITION 2.14 (see [6]). A fuzzy subset μ of X has inf property if for any subset T of X, there exists $t_0 \in T$ such that

$$\mu(t_0) = \inf_{t \in T} \mu(t). \tag{2.4}$$

THEOREM 2.15. An onto homomorphic image of a DF p-ideal with inf property is a DF p-ideal.

PROOF. Let $f: X \to X'$ be an onto homomorphism of BCI-algebras, μ a DF p-ideal of X with inf property, and v the image of μ under f. Since μ is a DF p-ideal of X, we have $\mu(0) \le \mu(x)$ for all $x \in X$. Note that $0 \in f^{-1}(0')$, where 0 and 0' are the zero elements of X and X', respectively. Thus $v(0') = \inf_{t \in f^{-1}(0')} \mu(t) = \mu(0) \le \mu(x)$ for all $x \in X$, which implies that $v(0') \le \inf_{t \in f^{-1}(x')} \mu(t) = v(x')$ for any $x' \in X'$. For any $x', y', z' \in X'$, let $x_0 \in f^{-1}(x')$, $y_0 \in f^{-1}(y')$, and $z_0 \in f^{-1}(z')$ be such that

$$\mu(x_0) = \inf_{t \in f^{-1}(x')} \mu(t), \qquad \mu(y_0) = \inf_{t \in f^{-1}(y')} \mu(t),$$

$$\mu((x_0 * z_0) * (y_0 * z_0)) = \inf_{t \in f^{-1}((x' * z') * (y' * z'))} \mu(t).$$
(2.5)

Then

$$v(x') = \inf_{t \in f-1(x')} \mu(t)$$

$$= \mu(x_0) \le \mu((x_0 * z_0) * (y_0 * z_0)) \lor \mu(y_0)$$

$$= \inf_{t \in f^{-1}((x'*z') * (y'*z'))} \mu(t) \lor \inf_{t \in f^{-1}(y')} \mu(t)$$

$$= v((x'*z') * (y'*z')) \lor v(y').$$
(2.6)

Hence v is a DF p-ideal of X'.

THEOREM 2.16. A fuzzy subset μ of a BCI-algebra X is a DF p-ideal if and only if, for every $t \in [0,1]$, μ^t is a p-ideal of X, when $\mu^t \neq \emptyset$.

PROOF. Assume that μ is a DF p-ideal of X. By Definition 2.1, we have $\mu(0) \leq \mu(x)$ for any $x \in X$. Therefore, $\mu(0) \leq \mu(x) \leq t$ for $x \in \mu^t$, and so $0 \in \mu^t$. Let $(x*z)*(y*z) \in \mu^t$ and $y \in \mu^t$. Since μ is a DF p-ideal, it follows that $\mu(x) \leq \mu((x*z)*(y*z)) \vee \mu(y) \leq t$, and that $x \in \mu^t$. Hence μ^t is a p-ideal of X. Conversely, we only need to show that μ is a DF p-ideal of X. If Definition 2.1(i) is not true, then there exists $x' \in X$ such that $\mu(0) > \mu(x')$. If we take $t' = (\mu(x') + \mu(0))/2$, then $\mu(0) > t'$ and $0 \leq \mu(x') < t' \leq 1$. Thus $x' \in \mu^{t'}$ and $\mu^{t'} \neq \emptyset$. As $\mu^{t'}$ is a p-ideal of X, we have $0 \in \mu^{t'}$, and so $\mu(0) \leq t'$. This is a contradiction. Now assume that Definition 2.1(ii) is not true. Suppose that there exist $x', y', z' \in X$ such that $\mu(x') > \mu((x'*z')*(y'*z')) \vee \mu(y')$. Putting $t' = (\mu(x') + \mu((x'*z')*(y'*z')) \vee \mu(y'))/2$, then $\mu(x') > t'$ and $0 \leq \mu((x'*z')*(y'*z')) \vee \mu(y') \leq 1$. Hence, $\mu((x'*z')*(y'*z')) < t'$ and $\mu(y') < t'$, which imply that $\mu(x') \leq t'$. This is also a contradiction. Hence, μ is a DF μ -ideal of μ .

COROLLARY 2.17. If a fuzzy subset μ of a BCI-algebra X is a DF p-ideal, then for every $t \in \text{Im } \mu$, μ^t is a p-ideal of X, when $\mu^t \neq \emptyset$.

3. Doubt Cartesian product of doubt fuzzy p-ideals

DEFINITION 3.1 (see [1]). A fuzzy relation on any set *S* is a fuzzy subset $\mu : S \times S \rightarrow [0,1]$.

DEFINITION 3.2. If μ is a fuzzy relation on a set S and v is a fuzzy subset of S, then μ is a doubt fuzzy relation on v if $\mu(x, y) \ge \mu(x) \lor \mu(y)$ for all $x, y \in S$.

DEFINITION 3.3. Let μ and ν be fuzzy subsets of a set S. The doubt Cartesian product of μ and ν is defined by $(\mu \times \nu)(x,y) = \mu(x) \vee \nu(y)$ for all $x,y \in S$.

LEMMA 3.4. Let μ and ν be fuzzy subsets of a set S. Then (i) $\mu \times \nu$ is a fuzzy relation on S; (ii) $(\mu \times \nu)_t = \mu_t \times \nu_t$ for all $t \in [0,1]$.

DEFINITION 3.5. If v is a fuzzy subset of a set S, the smallest doubt fuzzy relation on S that is a doubt fuzzy relation on v is μ_v , given by $\mu_v(x,y) = v(x) \lor v(y)$ for all $x,y \in S$.

LEMMA 3.6. For a given fuzzy subset v of a set S, let μ_v be the smallest doubt fuzzy relation on a set S. Then for $t \in [0,1]$, $(\mu_v)_t = v_t \times v_t$.

PROPOSITION 3.7. For a given fuzzy subset v of a BCI-algebra X, let μ_v be the smallest doubt fuzzy relation on X. If μ_v is a DF p-ideal of $X \times X$, then $v(x) \ge v(0)$ for all $x \in X$.

PROOF. Since μ_v is a DF p-ideal of $X \times X$, it follows that $\mu_v(x,x) \ge \mu_v(0,0)$, where (0,0) is the zero element of $X \times X$. But this means that $v(x) \lor v(x) \ge v(0) \lor v(0)$, which implies that $v(x) \ge v(0)$.

THEOREM 3.8. Let μ and v be DF p-ideal of a BCI-algebra X. Then $\mu \times v$ is a DF p-ideal of $X \times X$.

PROOF. Note first that for every $(x, y) \in X \times X$, $(\mu \times v)(0, 0) = \mu(0) \lor v(0) \le v(x) \lor v(y) = (\mu \times v)(x, y)$. Now let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X$. Then

$$(\mu \times \nu) (((x_{1}, x_{2}) * (z_{1}, z_{2})) * ((y_{1}, y_{2}) * (z_{1}, z_{2}))) \vee (\mu \times \nu) (y_{1}, y_{2})$$

$$= (\mu \times \nu) ((x_{1} * z_{1}, x_{2} * z_{2}) * (y_{1} * z_{1}, y_{2} * z_{2})) \vee (\mu \times \nu) (y_{1}, y_{2})$$

$$= (\mu \times \nu) ((x_{1} * z_{1}) * (y_{1} * z_{1}), (x_{2} * z_{2}) * (y_{2} * z_{2})) \vee (\mu \times \nu) (y_{1}, y_{2})$$

$$= (\mu ((x_{1} * z_{1}) * (y_{1} * z_{1})) \vee \nu ((x_{2} * z_{2}) * (y_{2} * z_{2}))) \vee (\mu (y_{1}) \vee \nu (y_{2}))$$

$$= (\mu ((x_{1} * z_{1}) * (y_{1} * z_{1})) \vee \mu (y_{1})) \vee (\nu ((x_{2} * z_{2}) * (y_{2} * x_{2})) \vee \nu (y_{2}))$$

$$\leq \mu (x_{1}) \vee \nu (x_{2})$$

$$= (\mu \times \nu) (x_{1}, x_{2}).$$
(3.1)

This completes the proof.

THEOREM 3.9. Let μ and v be fuzzy subsets of a BCI-algebra X such that $\mu \times v$ is a DF p-ideal of $X \times X$. Then

- (i) either $\mu(x) \ge \mu(0)$ or $\nu(x) \ge \nu(0)$ for all $x \in X$;
- (ii) if $\mu(x) \ge \mu(0)$ for all $x \in X$, then either $\mu(x) \ge v(0)$ or $v(x) \ge v(0)$;
- (iii) if $v(x) \ge v(0)$ for all $x \in X$, then either $\mu(x) \ge \mu(0)$ or $v(x) \ge \mu(0)$;
- (iv) either μ or ν is a DF p-ideal of X.

PROOF. (i) Suppose that $\mu(x) < \mu(0)$ and $\nu(y) < \nu(0)$ for some $x, y \in X$. Then

$$(\mu \times \nu)(x, y) = \mu(x) \vee \nu(y) < \mu(0) \vee \nu(0) = (\mu \times \nu)(0, 0). \tag{3.2}$$

This is a contradiction and we obtain (i).

- (ii) Assume that there exist $x, y \in X$ such that $\mu(x) < v(0)$ and v(y) < v(0). Then $(\mu \times v)(0,0) = \mu(0) \lor v(0) = v(0)$. It follows that $(\mu \times v)(x,y) = \mu(x) \lor v(y) < v(0) = (\mu \times v)(0,0)$, which is a contradiction. Hence (ii) holds.
 - (iii) Its proof follows by a similar method to (ii).
- (iv) Since by (i) either $\mu(x) \ge \mu(0)$ or $v(x) \ge v(0)$ for all $x \in X$; without loss of generality, we may assume that $v(x) \ge v(0)$ for all $x \in X$. From (iii) it follows that either $\mu(x) \ge \mu(0)$ or $v(x) \ge \mu(0)$. If $v(x) \ge \mu(0)$ for any $x \in X$, then $(\mu \times v)(0, x) = \mu(0) \lor v(x) = v(x)$. Let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X$, since $\mu \times v$ is a DF p-ideal of $X \times X$. We have $(\mu \times v)(x_1, x_2) \le (\mu \times v)(((x_1, x_2) * (z_1, z_2)) * ((y_1, y_2) * (z_1, z_2))) \lor (\mu \times v)(y_1, y_2) = (\mu \times v)((x_1 * z_1) * (y_1, z_1), (x_2 * z_2) * (y_2 * x_2)) \lor (\mu \times v)(y_1, y_2)$. If we take $x_1 = y_1 = z_1 = 0$, then $v(x_2) = (\mu \times v)(0, x_2) \le (\mu \times v)(0, (x_2 * z_2) * (y_2 * z_2)) \lor (\mu \times v)(0, y_2) = (\mu(0) \lor v((x_2 * z_2) * (y_2 * z_2))) \lor (\mu(0) \lor v(y_2)) = v((x_2 * z_2) * (y_2 * z_2)) \lor v(y_2)$. This proves that v is a DF p-ideal of X. Now we consider the case $\mu(x) \ge \mu(0)$ for all $x \in X$, suppose that $v(y) < \mu(0)$ for some $y \in X$. Then $v(0) \le v(y) < \mu(0)$, since $\mu(x) \ge \mu(0)$. It follows that $\mu(x) > v(0)$ for any $x \in X$. Hence $(\mu \times v)(x,0) = \mu(x) \lor v(0) = \mu(x)$. Taking $x_2 = y_2 = x_2 = 0$, then $\mu(x_1) = x_1 = x_2 = 0$.

 $(\mu \times v)(x_1,0) \le (\mu \times v)((x_1 * z_1) * (y_1 * z_1),0) \lor (\mu \times v)(y_1,0) = \mu((x_1 * z_1) * (y_1 * z_1)) \lor \mu(y_1)$, which proves that μ is a DF p-ideal of X. Hence either μ or v is a DF p-ideal of X.

THEOREM 3.10. Let v be a fuzzy subset of a BCI-algebra X and let μ_v be the smallest doubt fuzzy relation on X. Then v is a DF p-ideal of X if and only if μ_v is a DF p-ideal of $X \times X$.

PROOF. Assume that v is a DF p-ideal of X, we note that $\mu_v(0,0) = v(0) \lor v(0) \le v(x) \lor v(y)$ for all $(x,y) \in X \times X$

$$\mu_{\nu}(x_{1},x_{2}) = \nu(x_{1}) \vee \nu(x_{2})$$

$$\leq (\nu((x_{1}*z_{1})*(y_{1}*z_{1})) \vee \nu(y_{1})) \vee (\nu((x_{2}*z_{2})*(y_{1}*z_{2})) \vee \nu(y_{2}))$$

$$= (\nu((x_{1}*z_{1})*(y_{1}*z_{1})) \vee \nu((x_{2}*z_{2})*(y_{2}*z_{2}))) \vee (\nu(y_{2}) \vee \nu(y_{2}))$$

$$= \mu_{\nu}((x_{1}*z_{1})*(y_{1}*z_{1}), (x_{2}*z_{2})*(y_{2}*z_{2})) \vee \mu_{\nu}(y_{1},y_{2})$$

$$= \mu_{\nu}((x_{1}*z_{1},x_{2}*z_{2})*(y_{1}*z_{1},y_{2}*x_{2})) \vee \mu_{\nu}(y_{1},y_{2})$$

$$= \mu_{\nu}(((x_{1},x_{2})*(z_{1},z_{2}))*((y_{1},y_{2})*(z_{1},z_{2}))) \vee \mu_{\nu}(y_{1},y_{2}),$$
(3.3)

for all $(x_1,x_2),(y_1,y_2),(z_1,z_2) \in X \times X$. Hence μ_{ν} is a DF p-ideal of $X \times X$.

Conversely, suppose that μ_v is a DF p-ideal of $X \times X$. Then for all $(x_1, x_2) \in X \times X$, $v(0) \lor v(0) = \mu_v(0,0) \le \mu_v(x,x) = v(x) \lor v(x)$. It follows that $v(0) \le v(x)$ for all $x \in X$. Now let $(x_1,x_2), (y_1,y_2), (z_1,z_2) \in X \times X$. Then

$$v(x_{1}) \vee v(x_{2}) = \mu_{v}(x_{1}, x_{2})$$

$$\leq \mu_{v}(((x_{1}, x_{2}) * (z_{1}, z_{2})) * ((y_{1}, y_{2}) * (z_{1}, z_{2}))) \vee \mu_{v}(y_{1}, y_{2})$$

$$= \mu_{v}((x_{1} * x_{2}, x_{2} * z_{2}) * (y_{1} * z_{1}, y_{2} * z_{2})) \vee \mu_{v}(y_{1}, y_{2})$$

$$= \mu_{v}((x_{1}, z_{1}) * (y_{1} * z_{1}), (x_{2} * z_{2}) * (y_{2} * z_{2})) \vee \mu_{v}(y_{1}, y_{2})$$

$$= (v((x_{1} * z_{1}) * (y_{1} * z_{1})) \vee v(y_{1})) \vee (v((x_{2} * z_{2}) * (y_{2} * x_{2})) \vee v(y_{2})).$$
(3.4)

In particular, if we take $x_2 = y_2 = z_2 = 0$ (resp., $x_1 = y_1 = z_1 = 0$) then $v(x_1) \le v((x_1 * z_1) * (y_1 * z_1)) \lor v(y_1)$ (resp., $v(x_2) \le ((x_2 * z_2) * (y_2 * z_2)) \lor v(y_2)$). This completes the proof.

REFERENCES

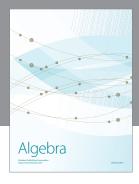
- [1] P. Bhattacharya and N. P. Mukherjee, *Fuzzy relations and fuzzy groups*, Inform. Sci. **36** (1985), no. 3, 267–282.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] F. Y. Huang, *Another definition of fuzzy BCI-algebras*, Selected Papers on BCK/BCI-Algebras (China), vol. 1, 1992, pp. 91–92.
- [4] Y. B. Jun, Doubt fuzzy BCK/BCI-algebras, Soochow J. Math. 20 (1994), no. 3, 351-358.
- Y. B. Jun and J. Meng, Fuzzy p-ideals in BCI-algebras, Math. Japon. 40 (1994), no. 2, 271–282.
- [6] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517.

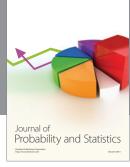
[7] O. Xi, Fuzzy BCK-algebra, Math. Japon. 36 (1991), no. 5, 935-942.

Zhan Jianming: Department of Mathematics, Hubei Institute for Nationalities, Enshi City, Hubei Province, 445000, China

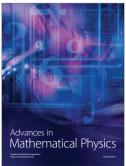
E-mail address: zhanjianming@hotmail.com

Tan Zhisong: Department of Mathematics, Hubei Institute Enshi, Hubei Province, 44500, China





Submit your manuscripts at http://www.hindawi.com



Journal of Discrete Mathematics

