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The simplest equation method has been used for finding the exact solutions of coupled sine-Gordon equations. Such equations
have some useful applications in physics and biology, so finding their exact solutions is of great importance.

1. Introduction

Recently, the coupled sine-Gordon equations

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

= −𝛿
2 sin (𝑢 − 𝜔)

𝜔
𝑡𝑡
− 𝛼
2
𝜔
𝑥𝑥

= sin (𝑢 − 𝜔)

𝛼 > 0, 𝛿 > 0,

(1)

have been introduced by Khusnutdinova and Pelinovsky [1].
The coupled sine-Gordon equations generalize the Frenkel-
Kontorova dislocation model [2, 3]. System (1) with 𝛼 = 1

was also proposed to describe the open states in DNAmodel
[4].

Very recently, system (1) was studied bymany researchers
and various methods. It was studied by Salas, using a special
rational exponential ansatz [5]. Zhao et al. obtained some
new solutions including Jacobi elliptic function solutions,
hyperbolic function solutions, and trigonometric function
solutions by the Jacobi elliptic function expansion method
[6], the hyperbolic auxiliary function method [7], and the
symbolic computation method [8].

In the past four decades, the study of nonlinear partial
differential equations (NLEEs) modelling physical phenom-
ena has become an important research topic. Seeking exact
solutions of NLEEs has long been one of the central themes
of perpetual interest in mathematics and physics. With the

development of symbolic computation packages like Maple
and Mathematica, many powerful methods for finding exact
solutions have been proposed, such as the homogeneous
balancemethod [9, 10], the auxiliary equationmethod [11, 12],
the Exp-function method [13, 14], the Darboux transforma-
tion [15, 16], the tanh-function method [17], and the (𝐺/𝐺)-
expansion method [18, 19].

The simplest equation method is a very powerful math-
ematical technique for finding exact solutions of nonlinear
ordinary differential equations. It has been developed by
Kudryashov [20, 21] and used successfully by many authors
for finding exact solutions of ODEs in mathematical physics
[22, 23].

In this paper, we will apply the simplest equation method
[24] to obtain some new and more general explicit exact
solutions of the coupled sine-Gordon equations.

2. The Simplest Equation Method

In this section, we will give the detailed description of the
simplest equation method.

Step 1. Suppose that we have a nonlinear partial differential
equation (PDE) for 𝑢(𝑥, 𝑡) in the form

𝑁(𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑡
, 𝑢
𝑥𝑥
, . . .) = 0, (2)

where𝑁 is a polynomial in its arguments.
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Step 2. By taking 𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 − 𝑐𝑡, we look
for traveling wave solutions of (2) and transform it to the
ordinary differential equation (ODE)

𝑁(𝑢, −𝑐𝑢

, 𝑢

, 𝑐
2
𝑢

, −𝑐𝑢

, 𝑢

, . . .) = 0. (3)

Step 3. Suppose that the solution 𝑢 of (3) can be expressed as
a finite series in the form

𝑢 =

𝑛

∑

𝑖=0

𝐴
𝑖
(𝐻 (𝜉))

𝑖
, (4)

where 𝐻(𝜉) satisfies the Bernoulli or Riccati equation, 𝑛
is a positive integer that can be determined by balancing
procedure [21], and 𝐴

𝑖
(𝑖 = 0, 1, 2, . . . , 𝑛) are parameters to

be determined.
The Bernoulli equation we consider in this paper is

𝐻

(𝜉) = 𝑎𝐻 (𝜉) + 𝑏𝐻

2
(𝜉) , (5)

where 𝑎 and 𝑏 are constants. Its solutions can be written as

𝐻(𝜉) =

−𝑎𝐷
1

𝑏 (𝐷
1
+ cosh (𝑎 (𝜉 + 𝐶)) − sinh (𝑎 (𝜉 + 𝐶)))

,

𝐻 (𝜉) =

−𝑎 (cosh (𝑎 (𝜉 + 𝐶)) + sinh (𝑎 (𝜉 + 𝐶)))
𝑏 (𝐷
2
+ cosh (𝑎 (𝜉 + 𝐶)) + sinh (𝑎 (𝜉 + 𝐶)))

,

(6)

where𝐷
1
,𝐷
2
, and 𝐶 are constants.

For the Riccati equation

𝐻

(𝜉) = 𝑎𝐻

2
(𝜉) + 𝑏𝐻 (𝜉) + 𝑠, (7)

where 𝑎, 𝑏, and 𝑠 are constants, we will use the solutions

𝐻(𝜉) = −

𝑏

2𝑎

−

𝜃

2𝑎

tanh [𝜃
2

(𝜉 + 𝐶)] ,

𝐻 (𝜉) = −

𝑏

2𝑎

−

𝜃

2𝑎

tanh(𝜃
2

𝜉)

+

sech (𝜃𝜉/2)
𝐶 cosh (𝜃𝜉/2) − (2𝑎/𝜃) sinh (𝜃𝜉/2)

,

(8)

where 𝜃2 = 𝑏
2
− 4𝑎𝑠.

Step 4. Substituting (4) into (3) with (5) (or (7)), then the
left hand side of (3) is converted into a polynomial in 𝐻(𝜉),
and equating each coefficient of the polynomial to zero yields
a set of algebraic equations for 𝐴

𝑖
, 𝑎, 𝑏 (𝑖 = 0, 1, 2, . . . , 𝑛).

Solving the algebraic equations by symbolic computation, we
can determine those parameters explicitly.

Step 5. Assuming that the constants𝐴
𝑖
, 𝑎, 𝑏 (𝑖 = 0, 1, 2, . . . , 𝑛)

can be obtained in Step 4 and substituting the results into (4),
then we obtain the exact traveling wave solutions for (2).

Remark 1. In (5), when 𝑎 = 𝐴 and 𝑏 = −1 we obtain the
Bernoulli equation

𝐻

(𝜉) = 𝐴𝐻 (𝜉) − 𝐻

2
(𝜉) . (9)

Equation (9) admits the following exact solutions:

𝐻(𝜉) =

𝐴

2

(1 + tanh(𝐴
2

(𝜉 + 𝐶))) , (10)

when 𝐴 > 0, and

𝐻(𝜉) =

𝐴

2

(1 − tanh(𝐴
2

(𝜉 + 𝐶))) , (11)

when 𝐴 < 0.

3. Exact Solutions of the Coupled
Sine-Gordon Equations

In this section, we solve the coupled sine-Gordon equations
by the simplest equation method.

In order to solve (1), we introduce a new unknown
function 𝜑 = 𝜑(𝑥, 𝑡) by the formula

𝜑 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − 𝜔 (𝑥, 𝑡) , (12)

so that 𝜔(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝜑(𝑥, 𝑡). According to (1), we have

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥

= −𝛿
2 sin𝜑,

𝑢
𝑡𝑡
− 𝜑
𝑡𝑡
− 𝛼
2
(𝑢
𝑥𝑥
− 𝜑
𝑥𝑥
) = sin𝜑.

(13)

Let
𝜉 = 𝜇 (𝑥 − 𝑐𝑡) ,

𝜑 = 2 arctan (𝜐 (𝜉)) = 2 arctan (𝜐 (𝜇 (𝑥 − 𝑐𝑡))) ,
(14)

then

sin𝜑 = sin (2 arctan 𝜐 (𝜉)) = 2𝜐 (𝜉)

1 + 𝜐
2
(𝜉)

. (15)

Substitution (14)–(15) into (13), we get the following
coupled system of nonlinear differential equations:

𝜇
2
(𝑐
2
− 1) (1 + 𝜐

2
(𝜉)) 𝑢


(𝜉) + 2𝛿

2
𝜐 (𝜉) = 0,

2𝜇
2
(𝑐
2
− 𝛼
2
) 𝜐
2
(𝜉) (𝑢


(𝜉) − 𝜐


(𝜉))

+ 𝜇
2
(𝑐
2
− 𝛼
2
) (𝑢

(𝜉) − 2𝜐


(𝜉))

+ 𝜇
2
(𝑐
2
− 𝛼
2
) 𝜐
4
(𝜉) 𝑢

(𝜉)

+ 𝜐 (𝜉) (4𝜇
2
(𝑐
2
− 𝛼
2
) 𝜐
2
(𝜉) − 2) − 2𝜐

3
(𝜉) = 0.

(16)

According to the first equation of (16), we have

𝑢

(𝜉) = −

2𝛿
2
𝜐 (𝜉)

𝜇
2
(𝑐
2
− 1) (1 + 𝜐

2
(𝜉))

. (17)

Substituting (17) into the second equation of (16), we
obtain a single nonlinear second-order differential equation
in the unknown 𝜐 = 𝜐(𝜉):

(𝑐
2
− 1) 𝜇

2
(𝑐
2
− 𝛼
2
) (𝜐
2
(𝜉) + 1) 𝜐


(𝜉)

− 2𝜇
2
(𝑐
2
− 1) (𝑐

2
− 𝛼
2
) 𝜐 (𝜉) 𝜐

2
(𝜉)

+ (𝜐
3
(𝜉) + 𝜐 (𝜉)) (𝛿

2
(𝑐
2
− 𝛼
2
) + 𝑐
2
− 1) = 0.

(18)
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As we can see, it suffices to find analytic solutions to (18).
Observe that if 𝜐(𝜉) is a solution of (18), then −𝜐(𝜉) is also a
solution.

3.1. Solutions of (18) Using the Bernoulli Equation as the
Simplest Equation. The balancing procedure yields 𝑛 = 1.
Thus, the solution of (18) is of the form

𝜐 (𝜉) = 𝐴
0
+ 𝐴
1
𝐻(𝜉) . (19)

Substituting (19) into (18) andmaking use of the Bernoulli
equation (5) and then equating the coefficients of the func-
tions𝐻𝑖(𝜉) to zero, we obtain an algebraic systemof equations
in terms of 𝐴

𝑖
(𝑖 = 0, 1), 𝑎, and 𝑏. Solving this system of

algebraic equations, with the aid of Maple, one possible set
of values of 𝐴

𝑖
(𝑖 = 0, 1), 𝑎, and 𝑏 is

𝐴
0
= ±𝑖, 𝐴

1
= ±

2𝑏𝑖

𝑎

, 𝛿 = ±
√

1 − 𝑐
2

𝑐
2
− 𝛼
2
.

(20)

Therefore, using solutions (6) of (5), ansatz (19), we obtain
the following exact solution of (18):

𝜐
1
(𝜉) = ±𝑖 ∓

2𝑖𝐷
1

𝐷
1
+ cosh (𝑎 (𝜉 + 𝐶)) − sinh (𝑎 (𝜉 + 𝐶))

, (21)

𝜐
2
(𝜉) = ±𝑖 ∓

2𝑖 (cosh (𝑎 (𝜉 + 𝐶)) + sinh (𝑎 (𝜉 + 𝐶)))
𝐷
2
+ cosh (𝑎 (𝜉 + 𝐶)) + sinh (𝑎 (𝜉 + 𝐶))

. (22)

Substituting (21) into (17) with (12), the exact traveling
wave solution to (1) can be written as

𝑢
1
(𝜉)

=∓ (𝑖 ((𝐷
2

1
−1) cosh (𝑎 (𝜉+𝐶))+(𝐷2

1
+1) sinh (𝑎 (𝜉+𝐶))))

× (2𝑎
2
(𝑐
2
− 𝛼
2
) 𝜇
2
𝐷
1
)

−1

+ 𝐶
1
𝜉 + 𝐶
2
,

𝜔
1
(𝜉)

= ∓ (𝑖 ((𝐷
2

1
− 1) cosh (𝑎 (𝜉 + 𝐶))

+ (𝐷
2

1
+ 1) sinh (𝑎 (𝜉 + 𝐶))))

× (2𝑎
2
(𝑐
2
− 𝛼
2
) 𝜇
2
𝐷
1
)

−1

+ 𝐶
1
𝜉 + 𝐶
2
− 𝜑
1
,

𝜑
1

= 2 arctan(±𝑖 ∓ 2𝑖𝐷
1

𝐷
1
+ cosh (𝑎 (𝜉 + 𝐶)) − sinh (𝑎 (𝜉 + 𝐶))

) ,

(23)

where 𝜉 = 𝜇(𝑥 − 𝑐𝑡), 𝛿 = ±√(1 − 𝑐
2
)/(𝑐
2
− 𝛼
2
), and 𝐷

1
, 𝑎, 𝐶,

𝐶
1
, 𝐶
2
are arbitrary parameters.

Now, to obtain some special cases of the above solutions,
we set𝐷

1
= 𝑖, 𝑎 = 1, 𝐶 = 0, “±” take “+”; we have

𝑢
2
(𝜉) =

𝛿
2 cosh (𝜉)
𝜇
2
(𝑐
2
− 1)

+ 𝐶
1
𝜉 + 𝐶
2
,

𝜔
2
(𝜉) =

𝛿
2 cosh (𝜉)
𝜇
2
(𝑐
2
− 1)

+ 𝐶
1
𝜉 + 𝐶
2
− 𝜑
2
,

𝜑
2
= 2 arctan(−𝑖 − 2

𝑖 + cosh (𝜉) − sinh (𝜉)
)

= 2 arctan(−1 + 𝑖 sinh (𝜉)
cosh (𝜉)

) ,

(24)

where 𝜉 = 𝜇(𝑥 − 𝑐𝑡), 𝑐 = ±√(1 + 𝛿
2
𝛼
2
)/(1 + 𝛿

2
).

The equations in (24) are the same as those in (36) of [7].
If we set𝐷

1
= 1, 𝑎 = 1, 𝐶 = 0, we have

𝑢
3
(𝜉) = ∓

𝑖𝛿
2 sinh (𝜉)

𝜇
2
(𝑐
2
− 1)

+ 𝐶
1
𝜉 + 𝐶
2
,

𝜔
3
(𝜉) = ∓

𝑖𝛿
2 sinh (𝜉)

𝜇
2
(𝑐
2
− 1)

+ 𝐶
1
𝜉 + 𝐶
2
− 𝜑
3
,

𝜑
3
= ∓2 arctan(𝑖 − 2𝑖

1 + cosh (𝜉) − sinh (𝜉)
)

= ±2𝑖 arctanh( sinh (𝜉)
1 + cosh (𝜉)

) ,

(25)

where 𝜉 = 𝜇(𝑥 − 𝑐𝑡), 𝑐 = ±√(1 + 𝛿
2
𝛼
2
)/(1 + 𝛿

2
).

The equations in (25) are the same as those in (32) of [7].
Substituting (22) into (17) with (12), the exact traveling

wave solution to (1) can be written as

𝑢
4
(𝜉)

= ± (𝑖 ((𝐷
2

2
− 1) cosh (𝑎 (𝜉 + 𝐶))

− (𝐷
2

2
+ 1) sinh (𝑎 (𝜉 + 𝐶))))

× (2𝑎
2
(𝑐
2
− 𝛼
2
) 𝜇
2
𝐷
2
)

−1

+ 𝐶
1
𝜉 + 𝐶
2
,

𝜔
4
(𝜉)

= ± (𝑖 ((𝐷
2

2
− 1) cosh (𝑎 (𝜉 + 𝐶))

− (𝐷
2

2
+ 1) sinh (𝑎 (𝜉 + 𝐶))))

× (2𝑎
2
(𝑐
2
− 𝛼
2
) 𝜇
2
𝐷
2
)

−1

+ 𝐶
1
𝜉 + 𝐶
2
− 𝜑
4
,

𝜑
4

= 2 arctan(±𝑖 ∓ 2𝑖 (cosh (𝑎 (𝜉 + 𝐶)) + sinh (𝑎 (𝜉 + 𝐶)))
𝐷
2
+ cosh (𝑎 (𝜉 + 𝐶)) + sinh (𝑎 (𝜉 + 𝐶))

) ,

(26)

where 𝜉 = 𝜇(𝑥 − 𝑐𝑡), 𝛿 = ±√(1 − 𝑐
2
)/(𝑐
2
− 𝛼
2
).
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Substituting (19) along with (9) into (18) and setting all
the coefficients of powers 𝐻𝑖(𝜉) to be zero, then we obtain a
system of nonlinear algebraic equations and by solving it, we
obtain

𝐴
0
= ±𝑖, 𝐴

1
= ∓

2𝑖

𝐴

, 𝛿 = ±
√

1 − 𝑐
2

𝑐
2
− 𝛼
2
.

(27)

Therefore, using solutions (10) and (11) of (9), ansatz (19),
we obtain the following exact solution of (18):

𝜐
3
(𝜉) = ∓𝑖 tanh(𝐴

2

(𝜉 + 𝐶)) . (28)

Then the exact solution to (1) can be written as

𝑢
5
(𝜉) = ∓

𝑖 sinh (𝐴 (𝜉 + 𝐶))

𝐴
2
𝜇
2
(𝑐
2
− 𝛼
2
)

+ 𝐶
1
𝜉 + 𝐶
2
,

𝜔
5
(𝜉) = ∓

𝑖 sinh (𝐴 (𝜉 + 𝐶))

𝐴
2
𝜇
2
(𝑐
2
− 𝛼
2
)

+ 𝐶
1
𝜉 + 𝐶
2
− 𝜑
5
,

𝜑
5
= 2 arctan(∓𝑖 tanh(𝐴

2

(𝜉 + 𝐶))) ,

(29)

where 𝜉 = 𝜇(𝑥 − 𝑐𝑡), 𝛿 = ±√(1 − 𝑐
2
)/(𝑐
2
− 𝛼
2
), and 𝐴, 𝐶, 𝐶

1
,

𝐶
2
are arbitrary parameters.
Now, to obtain some special cases of the above solutions,

we set 𝐴 = 2, 𝐶 = 0; we have

𝑢
6
(𝜉) = ∓

𝑖𝛿
2 sinh (2𝜉)

4𝜇
2
(1 − 𝑐

2
)

+ 𝐶
1
𝜉 + 𝐶
2
,

𝜔
6
(𝜉) = ∓

𝑖𝛿
2 sinh (2𝜉)

4𝜇
2
(1 − 𝑐

2
)

+ 𝐶
1
𝜉 + 𝐶
2
− 𝜑
6
,

𝜑
6
= 2 arctan (∓𝑖 tanh (𝜉)) = ±2𝑖 arctanh (tanh (𝜉)) ,

(30)

where 𝜉 = 𝜇(𝑥 − 𝑐𝑡), 𝑐 = ±√(1 + 𝛿
2
𝛼
2
)/(1 + 𝛿

2
).

The equations in (30) are the same as those in (31) of [7].

3.2. Solutions of (18) Using Riccati Equation as the Simplest
Equation. The balancing procedure yields 𝑛 = 1. Thus, the
solution of (18) is of the form

𝜐 (𝜉) = 𝐵
0
+ 𝐵
1
𝐻(𝜉) . (31)

Substituting (31) into (18) and making use of the Riccati
Equation (7) and then equating the coefficients of the func-
tions𝐻𝑖(𝜉) to zero, we obtain an algebraic systemof equations
in terms of 𝐵

𝑖
(𝑖 = 0, 1), 𝑎, 𝑏, and 𝑠. Solving this system of

algebraic equations, with the aid of Maple, one possible set of
values of 𝐵

𝑖
(𝑖 = 0, 1), 𝑎, 𝑏, and 𝑠 is

𝐵
1
=

2𝑎𝐵
0

𝑏

, 𝑠 =

𝑏
2
(1 + 𝐵

2

0
)

4𝑎𝐵
2

0

, 𝛿 = ±
√

1 − 𝑐
2

𝑐
2
− 𝛼
2
.

(32)

Therefore, using solutions (8) of (7), ansatz (31), we obtain
the following exact solution of (18):

𝜐
1
(𝜉) = tan(𝑏 (𝜉 + 𝐶)

2𝐵
0

) , (33)

𝜐
2
(𝜉) = −

𝐶𝑏 sin ((𝑏/2𝐵
0
) 𝜉) + 2𝐵

0
𝑎 cos ((𝑏/2𝐵

0
) 𝜉)

−𝐶𝑏 cos ((𝑏/2𝐵
0
) 𝜉) + 2𝐵

0
𝑎 sin ((𝑏/2𝐵

0
) 𝜉)

.

(34)

Substituting (33) into (17) with (12), the exact traveling
wave solution to (1) can be written as

𝑢
1
(𝜉) = −

𝐵
2

0
sin ((𝑏/𝐵

0
) (𝜉 + 𝐶))

(𝑐
2
− 𝛼
2
) 𝜇
2
𝑏
2

+ 𝐶
1
𝜉 + 𝐶
2
,

𝜔
1
(𝜉) = −

𝐵
2

0
sin ((𝑏/𝐵

0
) (𝜉 + 𝐶))

(𝑐
2
− 𝛼
2
) 𝜇
2
𝑏
2

+ 𝐶
1
𝜉 + 𝐶
2
− 𝜑
1
,

𝜑
1
= 2 arctan(tan( 𝑏

2𝐵
0

(𝜉 + 𝐶))) ,

(35)

where 𝜉 = 𝜇(𝑥 − 𝑐𝑡), 𝛿 = ±√(1 − 𝑐
2
)/(𝑐
2
− 𝛼
2
).

Substituting (34) into (17) with (12), the exact traveling
wave solution to (1) can be written as

𝑢
2
(𝜉)

= −(𝐶
2
𝐵
2

0
sin( 𝑏

𝐵
0

𝜉)

+

4𝑎𝐵
3

0

𝑏
2

(𝑏𝐶 cos( 𝑏

𝐵
0

𝜉) − 𝐵
0
𝑎 sin( 𝑏

𝐵
0

𝜉)))

× ((𝑐
2
− 𝛼
2
) 𝜇
2
(𝐶
2
𝑏
2
+ 4𝐵
2

0
𝑎
2
))

−1

+ 𝐶
1
𝜉 + 𝐶
2
,

𝜔
2
(𝜉)

= −(𝐶
2
𝐵
2

0
sin( 𝑏

𝐵
0

𝜉)

+

4𝑎𝐵
3

0

𝑏
2

(𝑏𝐶 cos( 𝑏

𝐵
0

𝜉) − 𝐵
0
𝑎 sin( 𝑏

𝐵
0

𝜉)))

× ((𝑐
2
− 𝛼
2
) 𝜇
2
(𝐶
2
𝑏
2
+ 4𝐵
2

0
𝑎
2
))

−1

+ 𝐶
1
𝜉 + 𝐶
2
− 𝜑
2
,

𝜑
2
=2 arctan(−

𝐶𝑏 sin ((𝑏/2𝐵
0
) 𝜉)+2𝐵

0
𝑎 cos ((𝑏/2𝐵

0
) 𝜉)

−𝐶𝑏 cos ((𝑏/2𝐵
0
) 𝜉)+2𝐵

0
𝑎 sin ((𝑏/2𝐵

0
) 𝜉)

) ,

(36)

where 𝜉 = 𝜇(𝑥 − 𝑐𝑡), 𝛿 = ±√(1 − 𝑐
2
)/(𝑐
2
− 𝛼
2
).

Remark 2. Compared with [7], the exact solutions of this
paper are more general, such that when 𝐷

1
= 𝑖, 𝑎 = 1, and

𝐶 = 0 in (23), the solutions become as those in (36) of [7].
When𝐷

1
= 1, 𝑎 = 1, and 𝐶 = 0 in (23), the solutions become

as those in (32) of [7]. When 𝐴 = 2 and 𝐶 = 0 of (29), the
solutions become as those in (31) of [7]. There are many such
examples; thus, it is easy to see that the study of [7] is a special
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case in this paper. So the exact solutions of this paper aremore
general, and all the solutions are new solutions which are not
reported in the relevant literature reported.

4. Conclusions

In this paper, we obtained some exact solutions of the cou-
pled sine-Gordon equations by using the simplest equation
method. The Bernoulli equation and Riccati equation have
been used as the simplest equation. The solutions obtained
may be significant and important for the explanation of some
practical physical problems.The method may also be applied
to other nonlinear partial differential equations. Also, we have
verified that the solutions that we have found are indeed
solutions to the original nonlinear evolution equations.
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