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A particle swarm optimization algorithm (PSO) has been used to solve the single machine total weighted tardiness problem
(SMTWT) with unequal release date. To find the best solutions three different solution approaches have been used. To prepare
subhybrid solution system, genetic algorithms (GA) and simulated annealing (SA) have been used. In the subhybrid system (GA
and SA), GA obtains a solution in any stage, that solution is taken by SA and used as an initial solution. When SA finds better
solution than this solution, it stops working and gives this solution to GA again. After GA finishes working the obtained solution is
given to PSO. PSO searches for better solution than this solution. Later it again sends the obtained solution to GA. Three different
solution systems worked together. Neurohybrid system uses PSO as the main optimizer and SA and GA have been used as local
search tools. For each stage, local optimizers are used to perform exploitation to the best particle. In addition to local search tools,
neurodominance rule (NDR)has beenused to improve performance of last solution of hybrid-PSO system.NDRchecked sequential
jobs according to total weighted tardiness factor. All system is named as neurohybrid-PSO solution system.

1. Introduction

Particle swarm optimization (PSO) is an evolutionary com-
putation technique developed by Eberhart and Kennedy [1].
Its working principle is based on modelling the motion style
of the birds. GA is a search technique based on population.
The algorithm operates on the given population along the
search procedure. There is no filtering procedure. Because of
this feature, it differs from genetic algorithms. In this study, a
hybrid system based on PSO has been proposed to solve sin-
gle machine total weighted tardiness problem with unequal
release date. Only one job can proceed in the single machine
system that will be solved. It has a processing time, a due date,
penalty of tardiness, and release date for each job. There is
no preemption. The single machine total weighted tardiness
problem with unequal release date can be seen in the manu-
facturing industry, chemical process industry, electronic and

computer engineering, service systems, and many areas as
well. One of the most studied scheduling problems is single
machine total weighted tardiness (SMTWT). Computation
method of SMTWT can be seen in Table 4. SMTWT with
unequal release date problem is an NP-hard. Recently, some
metaheuristics such as particle swarm optimization (PSO),
genetic algorithm (GA), simulated annealing (SA), and ant
colony optimization (ACO) have been applied to solve the
single machine scheduling problems.

Generally, the exact solution of SMTWT problem can be
done by using branch-and-bound algorithm (Kan et al. [2],
Potts and Van Wassenhove [3], and Abdul-Razaq et al. [4])
and dynamic programming (Held and Karp [5] and Baker
and Schrage [6, 7]). Another effective heuristic method is
adjacent pairwise interchange (API) method to minimize
mean tardiness. API was developed by Fry et al. [8].
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Single machine total weighted tardiness problem with
unequal release date is presented as follows: 1 |𝑟𝑗|Σ𝑤𝑖𝑇𝑖.
A new dominance rule for 1 |𝑟𝑗|Σ𝑤𝑖𝑇𝑖 problem can be
used in reducing the number of alternatives in any exact
approach by Akturk and Ozdemir [9]. A neurodominance
rule has been used for single machine tardiness problemwith
unequal release dates by Cakar [10]. Mahnam and Moslehi
[11] studied on the problem of the minimization of the sum
of maximum earliness and tardiness on a single machine
with unequal release times in their paper. It has been proven
that this problem is NP-hard in the strong sensation and a
branch-and-bound algorithm has been developed as an exact
method. Eren [12] considered single machine scheduling
problem with unequal release dates and a learning effect in
his paper. The problem of scheduling 𝑛 jobs with release
dates, due dates, weights, and equal process times on a single
machine has been studied by Van den Akker et al. [13]. The
target is the minimization of total weighted tardiness. Kooli
and Serairi [14] solved the SMTWTwith unequal release date
using mixed integer programming approach. Yin et al. [15]
used several dominance properties and branch-and-bound
algorithmwith honey bees optimization algorithm (MBO) to
solve the SMTWT with unequal release date. Wu et al. [16]
applied simulated annealing approach to solve the SMTWT
with unequal release date.

Matsuo et al. [17] used simulated annealing algorithm for
single machine total weighted tardiness (SMTWT) problem.
Crauwels et al. [18] presented a comparative study of a few
heuristic methods such as TS (Tabu search), GA, and SA for
SMTWT problem. The best one among these heuristics was
TS. Den Besten et al. [19] and Merckle and Middendorf [20]
used ant colony optimization (ACO) for SMTWT problem.
Laguna et al. [21] presented a paper about the discussion
of the use of three local search strategies within a Tabu
search method for the approximate solution of a single
machine scheduling problem. Cheng et al. [22] proposed a
hybrid algorithm to minimize total tardiness based on ACO
metaheuristic.

Tasgetiren et al. [23] used PSO to solve SMTWTproblem;
furthermore, ACO and ILS (iterative local search) have been
compared in his study. Panneerselvam [24] proposed a simple
heuristic to solve single machine scheduling problem. Sen
et al. [25] published a detailed survey paper about SMTWT.
Additionally, a review study about SMTWT has been done
by Koulamas [26]. Yang et al. [27] proposed a combined
approach with PSO and SA to improve performance of PSO.

PSO, GA, and SA are search algorithms based on different
search topologies. Since each method has different search
mechanisms, obtained best solutions and the steps to reach
the best solution may differ. But if these algorithms are used
as a hybrid system in other words as a combined system, the
quality of the obtained best solution and the process time
are improved. Therefore, GA and SA are used together with
PSO based algorithm. Designed search system that consists
of GA and SA is named as subhybrid solution system and
works interactively to search for the best solution. Here, SA
supports GA. SA gets the best solution found by GA as
initial solution and when it finds better solution than this
solution, it transfers this better solution to GA. When SA

supported GA and subhybrid solution system, finds the best
solution, and stops working, then it sends this obtained best
solution to PSO algorithm. PSO gets this best solution into
its population and tries to find better solution. The system
including subhybrid solution system and PSO is named as
hybrid-PSO system. Then, when PSO finishes working, it
sends the obtained solution again toGA and the solution loop
will keep going like this. This continuous working system
also prevents PSO to stop in any local minima. Sometimes
all solutions in the swarm may be the same and to escape
from this unwanted situation different algorithms are used
to support PSO. Here in the proposed solution system PSO
has no chance to stop in any local minima since subhybrid
solution system based on combination of GA and SA is used.
When the final solution is obtained by hybrid solution system,
neurodominance rule (NDR) is applied to this solution.
NDR checks the obtained final solution if there is any one
violating other one’s order and if there is, it warns. The
criterion of NDR about changing sequentially coming jobs
is TWT criterion. This overall solution system is named as
neurohybrid-PSO system. In this study, the performances of
PSO and neurohybrid-PSO systems have been compared. It
is observed that neurohybrid-PSO has better performance.

This paper is organized as follows. Section 2 explained the
computational structure of PSO. In Section 3, solution steps
and used parameters of PSO are discussed. Section 4 shows
the explanation of how SPV rule works. Section 5 discussed
genetic algorithms. Section 6 discussed simulated anneal-
ing algorithm. Section 7 shows the working structure of
neurodominance rule presented. In Section 8, neurohybrid-
PSO solution system is explained with working mechanisms.
In Section 9, experimental design, computational results,
and analysis about neurohybrid-PSO solution system are
reported.

2. Computational Structure of Particle
Swarm Optimization

Particle swarm optimization (PSO) is a population based
evolutionary algorithm found by Russell Eberhart and James
Kennedy in 1995.This algorithm has beenmodelled based on
the actions of the bird and the fish swarms when they are
looking for food and how they are escaping from any dan-
gerous case. Pseudo code of PSO can be seen in Algorithm 1.
Since PSO finds solution faster, requires less parameters, and
lacks possibility of stopping in localminima, it has superiority
on other algorithms.

PSO consists of the elements named as particle, where
each particle generates different solution alternatives to the
related problem. These particles community is named as
swarm. All particles in the swarm begin to search for process
by getting random values in the solution space. Each particle
has two vectorial components that are position (𝑃) and
velocity (V) vector. The position vector keeps the position
information of the particle and the velocity vector keeps
amount of the displacement and direction of the particle. In
PSO, which is an iterative algorithm, the velocity components
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START
Population let velocity and position values to the piece of particle
REPEAT

FOR 𝐼 = 1 to POPULATION
Compute the fitness value;
Update the 𝑃best value;
Update 𝐺best value;
Update the velocity and position values;

END of FOR
UNTIL Defined stopping criterion
END

Algorithm 1: PSO algorithm.

and thereby position component are updated in each itera-
tion.The new velocity value of a particle is calculated by using
the experience obtained in the previous iterations, the general
experience of the swarm and randomness:

V
𝑧𝑘
(𝑖 + 1) = 𝜇V

𝑧𝑘
(𝑖) + 𝑐1𝑅1 (𝑃best

𝑧𝑘

(𝑖) −𝑋
𝑧𝑘
(𝑖))

+ 𝑐2𝑅2 (𝐺best
𝑘

(𝑖) −𝑋
𝑧𝑘
(𝑖)) ,

(1)

where 𝑖: is the number of iterations, 𝑐
1
is a self-learning factor,

𝑐
2
is a social learning factor, 𝑅

1
, 𝑅
2
are randomly generated

numbers between [0-1], 𝜇 is the inertia weight, 𝑃best is the
best position value found by particle in the latest iteration and
named as local the best value, and 𝐺best is the best position
value in the swarm found until that time and named as
global the best value. The new velocity value of the particle is
calculated by using the previous velocity value and the local
best value and global best value.

The new position vector is computed by adding the new
position vector value to the old position vector as shown in

𝑋
𝑧𝑘
(𝑖 + 1) = 𝑋

𝑧𝑘
(𝑖) + V

𝑧𝑘
(𝑖 + 1) . (2)

The position values of particles are taken and the quality of
proposed solutions is determined by using fitness function.
The fitness function is an evaluation function, which gets
the position values of particles as input parameters and
generates numerical values. In the minimizations problems
the particles having smaller fitness values are preferred to
the particles having greater fitness values; on the other hand,
in the maximization problems, the particles having greater
fitness values are preferred to the particles having smaller
fitness values, reversely.

As a result, each particle in PSO is started to search for
random position and velocity values. In each iteration, the
velocity and position values are updated and a fitness value
is generated by using fitness function. Additionally, in each
iteration the best local value of the particle and the best global
value of the swarm are updated. After a certain number of
iterations the best value of the swarm will be the solution
presented by PSO algorithm for the given problem [28].

3. Solution Steps and Used Parameters of
Particle Swarm Optimization Algorithms

Step 1. Assigning initialization values, one has to do the
following.

(A) Set 𝑖 = 0 as iteration counter starting value.
(B) Generate particles as randomly.

The continuous values belonging positions are randomly
established. The following equation is used for the uniformly
construction of the initial continuous position values belong-
ing to the particle:

𝑋
0
𝑧𝑘
= 𝑋MIN + (𝑋MAX −𝑋MIN) ∗ 𝑅1. (3)

In this equation, 𝑋MIN = −5.0, 𝑋MAX = 5.0, and 𝑅1 is a
uniform random number between 0 and 1. 𝑅1 = 𝐸(0, 1):

𝑋
𝑍𝐾
= [𝑋MIN, 𝑋MAX] = [−5.0, 5.0] . (4)

Population size has been taken as 30.

(C) Initial velocities are generated by a similar formula as
follows:

𝑉
0
𝑧𝑘
= 𝑉MIN + (𝑉MAX −𝑉MIN) ∗ 𝑅2. (5)

Continuous velocity values are restricted to some range:

𝑉
𝑍𝐾
= [𝑉MIN, 𝑉MAX] = [−5.0, 5.0] . (6)

𝑅2 is a uniform random number between 0 and 1: 𝑅2 =

𝐸(0, 1).

(D) Apply the smallest position value (SPV) to find a
sequence performing personal best.

(E) Evaluate each particle in the swarm using fitness
function. Compute the personal best (𝑃best).

(F) Obtain the best fitness value (𝐺best) comparing all of
the personal best.

Step 2. Running the counter, one has

𝑖 = 𝑖 + 1. (7)
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Step 3. Updating inertia weight, 𝛼 is a decreasing factor:

𝜇 (𝑖 + 1) = 𝜇 (𝑖) ∗ 𝛼

𝜇 = [𝜇MIN, 𝜇MAX] = [4.0, 9.0]

Decrement factor 𝛼 = 0.975.

(8)

Step 4. Updating velocity,

V
𝑧𝑘
(𝑖 + 1) = 𝜇V

𝑧𝑘
(𝑖) + 𝑐1𝑅1 (𝑃best

𝑧𝑘

(𝑖) −𝑋
𝑧𝑘
(𝑖))

+ 𝑐2𝑅2 (𝐺best
𝑘

(𝑖) −𝑋
𝑧𝑘
(𝑖)) .

(9)

Social and cognitive parameters have been taken as 𝑐
1
=

𝑐
2
= 2, and 𝑅

1
and 𝑅

2
can be described as uniform random

numbers between (0, 1).

Step 5. Updating position,

𝑋
𝑧𝑘
(𝑖 + 1) = 𝑋

𝑧𝑘
(𝑖) + V

𝑧𝑘
(𝑖 + 1) . (10)

Step 6. Find the sequence applying SPV rule.

Step 7. Compute the 𝑃best using new sequences, compare
previous personal best and current personal best, and select
the successful particle.

Step 8. Update the global best (𝐺best).

Step 9. Stopping criterion, if program reaches the maximum
number of iterations, then stop.

4. The Application of the SPV Rule and
Demonstration of a Particle

The solution space to be searched in SPO can be shown as
a matrix. Each row of this matrix represents a particle, and
it represents a job order for SMTWT problem with unequal
release date. The total weighted tardiness of each job order
gives personal best, and the best of them will give the global
best:

𝑋 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥11 𝑥12 ⋅ ⋅ ⋅ 𝑥1𝑛

𝑥21 𝑥22 ⋅ ⋅ ⋅ 𝑥2𝑛

...
...

...
...

...
...

𝑥
𝑛1 𝑥
𝑛2 ⋅ ⋅ ⋅ 𝑥

𝑛𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (11)

A job order will be found according to 𝑋 value by using
SPV rule, and according to this job order TWT value will
be calculated. Computation method of complete time can be
seen in Figure 2.

Here, to find the job schedule the ordering is done starting
from the smallest 𝑋 value to the biggest 𝑋 value and by this
way 𝑆

𝑖𝑗
job schedule is found. As it is seen from Table 1, the

job schedule is as 4-6-5-8-1-7-2-3.

Table 1: Solution analysis of a particle using NPV rule.

𝐽 1 2 3 4 5 6 7 8
𝑋
𝑖𝑗

1.75 2.86 3.12 −0.97 1.12 −0.68 2.22 1.58
𝑆
𝑖𝑗

4 6 5 8 1 7 2 3

5. Genetic Algorithms

The genetic algorithms are search and optimization meth-
ods based on natural selection principles. The principles
of the genetic algorithms have been firstly presented by
John Holland. After the presentation of these fundamental
principles of the genetic algorithms, many scientific studies
have been published. The genetic algorithms, which are
different from traditional optimization methods, do not use
parameter set, but they use their coded forms. The genetic
algorithms working based on probabilistic rules need only
target function. They do not search for all of the solution
space, but they only search for a certain part of the solution
space.Thus, they implement an efficient search and reach the
solution in a shorter time. Another important superiority of
the GA is to examine the population composed of solutions
simultaneously and not to stop in local solutions by this way.

The genetic algorithms do not deal with the problem,
but they deal with their codes. The code modelling is done
based on the structure of the problem.The initial population
is formed. The operations are done based on determined
crossover and mutation rates, and in each population the
ranking is done based on the best fitness value.The algorithm
is ended when the defined population number is reached, or
the determined fitness value is obtained.

The application of GA for the solution of SMTWT
problem with unequal release date can be described in the
following form. Each chromosome represents one job order.
The fitness function is TWT. Linear Order Crossover (LOX)
method has been used as a crossover method. Working
principle of LOXmethod can be seen inCakar [29] andCakar
[10].The determined rates and values regarding solution have
been given below:

crossover rate: 100%,
mutation rate: 4%,
number of the population: 250,
population size: 100.

6. Simulated Annealing

Simulated annealing (SA) is a heuristic algorithm too much
successfully applied to the combinatorial optimization prob-
lems. SA algorithm is a technic, which gets model and
reference the annealing process of the melt metals during
the cooling. The target function of the order of the produced
solutions by this method will show a general decrement.
However, due to the structure of the algorithm in some cases
some solutions with higher target function values are also
accepted. By this way the algorithm does not stop because of
a local minimum solution and it will keep going the search
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Start

Initial solution
(A)

Is the
solution

Update the current solution

Is it necessary to change
temperature (T)?

Decrease temperature

Are stopping criteria
satisfied?

Optimal solution

Yes

Yes

Yes

No

No

No

Start;

Initialize (A, C, T);

Repeat

For I = 1 to C do

N= Perturb(A); (generete new

neighborhood solution)

D = C(N) − C(A)

If C(N) ≤ C(A) or

(exp(−D/T) > Random

Then A = N; (accept the

movement)

End if

End for;

Until (stopping criteria satisfied)

End;

Generate a new
solution (N)

(0, 1))

Figure 1: Flowchart and pseudocode of the simulating algorithm.

1 4 2 3 5
1 3 5 9 12 15 19 24 26 32

r1 r2 r3r4 r5

Figure 2: Gantt chart of the last job sequence.

or a better solution or for a better local minima. The SA
algorithm is a useful heuristic search algorithm, which has
given the solutions near the best solutions for especially
combinatorial optimization problems.

In Figure 1 the flowchart and pseudocode of SA algorithm
have been given [30, 31]. As seen in the figure, the SA is
starting with an initial solution (𝐴), initial temperature (𝑇),
and an iteration number (𝐶). The role of the temperature is

to control the possibility of the acceptance of the disturbing
solution. On the other hand, the reason of the usage of the
iteration number is to decide the number of repetitions until
a solution is found on a stable state under the temperature
[32, 33]. The temperature may get the following implicit
flexibility index meaning. At the beginning of the searches,
in other words, at high temperature situation, some flexibility
may be moved to a worse solution cases; however, less of this
flexibility is existing in the searches done later, which means
at lower temperature. Based on these𝑇,𝐶 through a heuristic
perturbation on the existing solutions, a new neighborhood
solution (𝑁) is generated. In case of improvement on the
change of an objective function, the neighborhood solution
(𝑁) will be a good solution. Even if the change of an objective
function is not improved, the neighborhood solutionwill be a
new solution with a suitable probability based on 𝑒−𝐷/𝑇. This
situation removes the possibility of finding a global optimum
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solution out of a local optimum. In case of no change after
certain iterations, the algorithm is stopped. If there is still
improvement on the new solution, the algorithm continues
with a new temperature value.

To generate new solution two different operators have
been used: swap and inverse operator. Swap operator is the
same asmutation process of GA. During the inverse operator,
a sequential job group is randomly chosen and then reversely
ordered. Thus, a new solution alternative is obtained:

Solution 1 2 3 4 5 6 7 8 9

New Solution 1 2 6 5 4 3 7 8 9
. (12)

7. Neurodominance Rule

Neurodominance rule is a system obtained based on training
of a backpropagation neural network (BPANN) by using the
data prepared with the implementation of API method. It is
an intelligent system, which decides the priority of sequential
two jobs based on TWT criteria. If any sequence violates
the neurodominance rule, then violating jobs are switched
according to the total weighted tardiness criterion.

The starting time of job 𝑖, the processing time of job 𝑖, due
date of job 𝑖, the weight of job 𝑖, the processing time of job 𝑗,
the due date of job 𝑗, the weight of job 𝑗, release date of job 𝑖,
and release date of job 𝑗 were given as inputs to the BPANN.
“0” and “1” values were used to determine the precedence of
the jobs. If output value of the BPANN is “0,” then 𝑖 should
precede 𝑗. If output value of the BPANN is “1,” then 𝑗 should
precede 𝑖 [10].

Working mechanism of neurodominance rule has been
explained with an example; see Tables 2 and 3.

8. Neurohybrid System Based on PSO

In this system PSO systemworks primarily and later it tries to
improve the obtained solution by using GA and SA together
as a hybrid system to find better solution. GA and SA work
interactively. SA gets the best solution found by GA, and it
improves this solution and sends the obtained better one to
GA again. When working of GA finishes, obtaining the best
solution by subhybrid solution is transferred to the initial
population of PSO algorithm to search for better solution.
The best solution found by PSO (hybrid-PSO solution) is sent
to GA again, and GA and SA work interactively to search
for a better solution. This loop stops if the obtained solution
is fitting with predefined stopping criterion. As a result of
working of these three search algorithms interactively, since
each algorithm has different search mechanisms, faster and
better solutions may be found. Then, neurodominance rule
(NDR) is applied to obtained final solution and based on
total weighted tardiness criterion, the violating orders are
corrected, and the solution gets more excellent. The overall
system is named as neurohybrid-PSO. The general working
principle of the proposed solution system has been shown in
Figure 3; on the other hand, detailedworking systemhas been
presented in Figures 4 and 5.

Table 2: Data for example problem.

𝑖 𝑡
𝑖

𝑑
𝑖

𝑤
𝑖

𝑟
𝑖

1 2 10 2 1
2 3 15 5 3
3 5 20 6 4
4 4 10 3 2
5 6 10 1 2

Table 3: Working mechanism of neurodominance rule.

Solution Total weighted
tardiness Result of NDR Decision

1-5-4-2-3 134 0 Do not switch
1-5-4-2-6 134 1 Switch
1-4-5-2-3 119 1 Switch
1-4-2-5-3 85 1 Switch
1-4-2-3-5 46 — —

Table 4: Computing total weighted tardiness (TWT).

𝑖
𝐶
𝑖

(complete time)
𝑑
𝑖

(due date) 𝑇
𝑖

𝑤
𝑖

Weighted
tardiness

1 3 10 0 2 0
2 15 15 0 5 0
3 24 20 4 6 24
4 9 10 0 3 0
5 32 10 22 1 22

Total weighted tardiness 46
𝐶
𝑖
: complete time of each job can be seen in Figure 2.
𝑇
𝑖
: tardiness, 𝑇

𝑖
= max(0, (𝐶

𝑖
− 𝑑
𝑖
)).

TWT = 𝑤
𝑖
∗ 𝑇
𝑖
.

Table 5: Parameters of generated problems.

Elements Distribution range
Processing time ranges [1–10], [1–50], [1–100]
Weight ranges [1–10], [1–50], [1–100]
Number of jobs 50, 70, 100, 120, 150, 200, 250, 300, 400
TF 0.1, 0.3, 0.5, 0.7, 0.9
RDD 0.1, 0.3, 0.5, 0.7, 0.9
𝛽 0.0, 0.5, 1.0, 1.5

9. Experimental Design and Solutions

In this problem, the success of the PSO based neurohybrid
system (NHPSO) has been repeated 100 times by using ran-
domly generated 8100-sample set. Upper and lower bound-
ing schemes have been used as performance measurement
criteria. Processing times intervals, weights intervals, and
the number of jobs have been shown in Table 5. And both
of them are integers. The proportional range belonging due
dates (RDD) and average tardiness factor (TFF) were selected
from the following set: {0.1, 0.3, 0.5, 0.7, 0.9}. 𝑑

𝑖
, an integer

due date from the distribution [𝑃(1−TF−RDD/2),𝑃(1−TF+
RDD/2)]was generated for each job 𝑖; here,𝑃 represents total



Computational Intelligence and Neuroscience 7

Single machine total weighted
tardiness problem with

unequal release date (SMTWTU)

Neurodominance rule

Solution of SMTWTU problem

Stopping criteria for hybrid particle
swarm optimization

Final solution of SMTWTU problem

Yes

No

Genetic
algorithms

Simulated
annealing

optimization
Particle swarm

Figure 3: The structure of the proposed neurohybrid solution system based on PSO.

processing time,∑𝑛
𝑖=1 𝑝𝑖. Release dates are produced based on

a uniform distribution between 0 and 𝛽∑𝑝
𝑗
.

TheCOVERT, ATC,WSPT,WDD,WPD, EDD, LPT, SPT,
and CR priority rules are primarily applied to the randomly
generated problems. COVERT andATC are dynamic priority
rules and the others are static rules.The formula and working
principle are as given below. The initial population of PSO
has been constituted using the obtained solutions by using
implementation of the priority rules mentioned above:

(1) COVERT

max[
𝑤
𝑖

𝑝
𝑖

max(0, 1−
max (0, 𝑑

𝑖
− 𝑡 − 𝑝

𝑖
)

𝑘𝑝
𝑖

)] . (13)

(2) ATC

max[
𝑤
𝑖

𝑝
𝑖

exp(−
max (0, 𝑑

𝑖
− 𝑡 − 𝑝

𝑖
)

𝑘𝑝
)] . (14)

(3) EDD

min (𝑑
𝑖
) . (15)

(4) SPT

min (𝑝
𝑖
) . (16)

(5) LPT

max (𝑝
𝑖
) . (17)

(6) CR

min(
𝑑
𝑖

𝑝
𝑖

) . (18)

(7) WSPT

max(
𝑤
𝑖

𝑝
𝑖

) . (19)

(8) WDD

max(
𝑤
𝑖

𝑑
𝑖

) . (20)



8 Computational Intelligence and Neuroscience

Initial population of
genetic algorithms

Crossover

Reproduction

Subhybrid system solution

New population
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population of GA
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annealing process
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Take the solution to initial population
of particle swarm optimization

Criteria for stopping

Criteria for stopping

Hybrid-PSO solution

Last solution of
hybrid-PSO

Yes

Yes

No

No

Mutation

Figure 4: Working mechanism of hybrid-PSO system.

(9) WPD

max(
𝑤
𝑖

𝑝
𝑖
𝑑
𝑖

) . (21)

(10) FCFS

First Come First Served. (22)

In Table 6, the average of the best values of PSO in the
initial population and then the obtained best solutions by
the implementation of PSO have been compared, and the
amount of the improvement has been reported. Furthermore,
NHPSO has been applied to the same problems and the
amount of improvements comparing to the initial solutions
have also been given. As it is evidently seen in Table 6, hybrid
solution system has shown better improvement. Additionally,
the contribution of the used NDR to the hybrid system is also
demonstrated in Table 6. Also, comparison of GA and SA can
be seen in Tables 7 and 8.

The solution values given by PSO and NHPSO for 100
generations have been presented in the graphical represen-
tation on Figure 6. It is evident that the proposed NHPSO

is working better, reaching the solution quicker and giving
better solution in a certain generation. These features are
given to the NHPSO by interactive working SA, GA, and
NDRapplying these to the final solution. Comparison of PSO,
GA, and SA can be seen in Figure 7.

The linear lower bound has been originally obtained
by Potts and Van Wassenhove [34] based on using the
Lagrangian relaxation approach with subproblems that are
total weighted completion time problems. An additional
derivation of it has been presented by Abdul-Razaq et al. [4]
based on the reduction of the total weighted tardiness crite-
rion to a linear function, that is, total weighted completion
time problem. The parameters can be described as given in
the following form for the job 𝐼: 𝐼 = 1 to 𝑛, 𝑤

𝑖
≥ V
𝑖
≥ 0 and

𝐶
𝑖
is the completion time of job 𝐼, and the author has

𝑤
𝑖
𝑇
𝑖
= 𝑤
𝑖
max {𝐶

𝑖
−𝑑
𝑖
, 0} ≥ V

𝑖
max {𝐶

𝑖
−𝑑
𝑖
, 0}

≥ V
𝑖
(𝐶
𝑖
−𝑑
𝑖
) .

(23)

Assume that V = (V
1
, . . . , V

𝑛
) is a vector of linear weights, that

is, weights belonging to the linear function 𝐶
𝑖
−𝑑
𝑖
, chosen so
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Take the last solution of hybrid-PSO and use it
as initial solution for NDR

Take the parameters from solution to apply
neurodominance rule

Interim solution of the NDR system

Neurodominance rule (NDR)

Make a decision about job interchange or not

Obtain the interim solution

Finish all jobs in order

Last solution of neurohybrid-PSO system

Yes

No

Figure 5: How neurodominance rule works as a part of neurohybrid-PSO solution system.

Table 6: Comparison of PSO and neurohybrid-PSO according to upper bound (TWT).

Number of
jobs

Average of the best
initial solutions

Upper bound for only
using PSO Upper bound for NHPSO Effect of NDR

After PSO Improvement (%) After hybrid
systems Improvement (%) Improvement (%)

50 158256 141254 2.12 101698 2.38 0.05
70 152513 143574 2.58 99536 2.79 0.06
100 204415 165287 3.76 164118 3.98 0.06
120 242018 237521 4.02 235245 4.42 0.07
150 301764 297052 4.86 296027 5.12 0.09
200 402135 397233 5.64 394948 5.89 0.10
250 516287 511064 6.06 508420 6.45 0.12
300 609042 603245 6.69 598956 7.01 0.11
400 815371 809672 7.09 804896 7.82 0.12

that 0 ≤ V
𝑖
≤ 𝑤
𝑖
. If so a lower bound can be written by using

given linear function below:

LBLIN (V) =
𝑛

∑
𝑖=1

V
𝑖
(𝐶
𝑖
−𝑑
𝑖
) ≤

𝑛

∑
𝑖=1
𝑤
𝑖
max {𝐶

𝑖
−𝑑
𝑖
, 0} . (24)

This situation demonstrates that the solution of the total
weighted completion time problem takes a lower bound on
the total weighted tardiness problem. The lower bounding
scheme has also been used by Akturk and Yildirim [35] and
Cakar [10] in their studies.

In Tables 9–11, it is clearly seen that SA, GA, PSO, and
NHPSO are improving the linear lower bound for the given
different number of jobs. Proposed method NHPSO is doing

improvement better than PSO, GA, and SA. Furthermore,
NDR is also contributing to the improvement of lower bound
here.

The number of better, equal, or worse lower bounds
obtained for the given examples has been presented in
Tables 12–14. The amount of improvement is noteworthy at
%99.5 confidence level.

10. Conclusion

In this study, we proposed a neurohybrid-PSO system to solve
total weighted tardiness problem with unequal release date.
It is known that hybrid intelligent systems work better than
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Table 7: Comparison of GA and neurohybrid-PSO according to upper bound (TWT).

Number of
jobs

Average of the best
initial solutions

Upper bound for only
using GA Upper bound for NHPSO Effect of NDR

After GA Improvement (%) After hybrid
systems Improvement (%) Improvement (%)

50 158256 144367 1.96 102048 2.46 0.06
70 152513 147085 2.02 100236 2.98 0.06
100 204415 179398 2.89 165284 4.25 0.07
120 242018 239125 3.58 236012 4.99 0.07
150 301764 299025 3.24 296983 5.83 0.08
200 402135 399889 4.22 396288 5.94 0.11
250 516287 513182 4.98 509121 6.98 0.12
300 609042 606032 5.33 599987 7.82 0.12
400 815371 812234 6.80 807348 7.96 0.12

Table 8: Comparison of SA and neurohybrid-PSO according to upper bound (TWT).

Number of
jobs

Average of the best
initial solutions

Upper bound for only
using SA Upper bound for NHPSO Effect of NDR

After SA Improvement (%) After hybrid
systems Improvement (%) Improvement (%)

50 158256 144958 1.82 103257 2.59 0.06
70 152513 148025 1.96 106783 3.01 0.07
100 204415 176838 2.56 168021 4.14 0.06
120 242018 240528 2.89 237044 4.82 0.07
150 301764 298457 2.91 296875 5.99 0.08
200 402135 400569 3.58 395459 6.05 0.11
250 516287 514071 4.02 509149 6.99 0.11
300 609042 607822 4.88 599214 7.88 0.10
400 815371 813057 5.76 805648 7.98 0.12

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Neurohybird-PSO
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20000

40000

60000

80000

100000

120000

Figure 6: Comparison of PSOandNHPSO results according to total
weighted tardiness factor for an example problem.

0

20000

40000

60000

80000

100000

120000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

PSO

PSO

GA

GA

SA

SA

Figure 7: Comparison of PSO, GA, and SA for a SMTWT problem.

the others. In the proposed hybrid system, GA and SA work
interactively with each other to support PSO and increase the
performance of the PSO algorithm. It has been shown in the
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Table 9: Comparison of linear lower bound results for PSO and NHPSO.

Number of
jobs

Linear lower
bound before PSO

and NHPSO

Linear lower bound
For only using PSO

Linear lower bound for
NHPSO Effect of NDR

After PSO Improvement (%) After hybrid
systems Improvement (%) Improvement (%)

50 850712 851034 0.621 851988 0.631 0.082
70 1211347 1212534 0.663 1212129 0.676 0.081
100 1829357 1831273 0.690 1831983 0.703 0.084
120 2139270 2140238 0.684 2141389 0.701 0.085
150 2653907 2654384 0.612 2654875 0.628 0.080
200 3109726 3110853 0.705 3111340 0.778 0.083
250 3467201 3468217 0.673 3469032 0.679 0.084
300 4103482 4107492 0.697 4108674 0.706 0.088
400 4976219 4977602 0.665 4978045 0.672 0.087

Table 10: Comparison of linear lower bound results for GA and NHPSO.

Number of
jobs

Linear lower
bound before GA
and NHPSO

Linear lower bound
For only using GA

Linear lower bound for
NHPSO Effect of NDR

After GA Improvement (%) After hybrid
systems Improvement (%) Improvement (%)

50 850712 851352 0.601 851884 0.636 0.081
70 1211347 1212048 0.628 1212856 0.682 0.082
100 1829357 1830639 0.630 1831238 0.705 0.083
120 2139270 2140112 0.672 2141022 0.722 0.087
150 2653907 2654026 0.528 2654135 0.631 0.078
200 3109726 3111492 0.637 3112027 0.782 0.072
250 3467201 3468939 0.593 3469251 0.682 0.083
300 4103482 4105832 0.603 4107336 0.710 0.086
400 4976219 4977012 0.598 4978879 0.683 0.088

Table 11: Comparison of linear lower bound results for SA and NHPSO.

Number of
jobs

Linear lower
bound before SA
and NHPSO

Linear lower bound
for only using SA

Linear lower bound for
NHPSO Effect of NDR

After SA Improvement (%) After hybrid
systems Improvement (%) Improvement (%)

50 850712 851262 0.588 851988 0.638 0.080
70 1211347 1212715 0.601 1212129 0.684 0.080
100 1829357 1830249 0.601 1831983 0.707 0.082
120 2139270 2140305 0.588 2141389 0.736 0.084
150 2653907 2654223 0.511 2654875 0.633 0.081
200 3109726 3110542 0.582 3110340 0.785 0.083
250 3467201 3468284 0.566 3469032 0.686 0.082
300 4103482 4104560 0.582 4108674 0.714 0.083
400 4976219 4977114 0.583 4978045 0.688 0.086

paper that the proposed neurohybrid-PSO works better than
PSO. NDRmethod has been applied to the solution obtained
from hybrid-PSO which has been working interactively with
GA and SA, to improve the solution more. Computational
results showed that NDR improves the hybrid-PSO system’s

performance. It can be seen that neurohybrid-PSO solution
system can improve the upper and lower bounding schemes.
In the future, the proposed solution systemmay be applied to
single machine total weighted tardiness problem with double
due date.
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Table 12: Results of linear lower bound for 810000 examples (PSO).

Number of
jobs Better Equal Worst Total 𝑡-test

50 4237 85437 326 90000 5.88
70 9846 79322 832 90000 5.34
100 7645 78765 3590 90000 5.22
120 6953 81751 1296 90000 6.37
150 7021 79730 3249 90000 5.69
200 7112 80015 2873 90000 7.48
250 7745 81221 1034 90000 5.32
300 6903 78881 4216 90000 6.01
400 6766 79390 3844 90000 6.22

Table 13: Results of linear lower bound for 810000 examples (GA).

Number of
jobs Better Equal Worst Total 𝑡-test

50 4312 85344 344 90000 6.01
70 9923 79165 912 90000 5.77
100 7836 78542 3622 90000 5.36
120 6986 81689 1325 90000 4.82
150 7231 79457 3312 90000 5.23
200 7236 79801 2963 90000 6.86
250 7822 81066 1112 90000 4.87
300 6996 78715 4298 90000 5.04
400 6793 79282 3925 90000 4.93

Table 14: Results of linear lower bound for 810000 examples (SA).

Number of
jobs Better Equal Worst Total 𝑡-test

50 4344 85305 351 90000 5.11
70 9901 79274 852 90000 6.27
100 7873 78483 3644 90000 4.36
120 7001 81666 1333 90000 7.02
150 7288 79330 3382 90000 6.33
200 7301 79712 2987 90000 4.26
250 7944 80931 1125 90000 5.68
300 7012 78686 4302 90000 4.48
400 6832 79212 3956 90000 5.01
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