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We address the issue of why Calabi-Yau manifolds exist with a mirror pair. We observe that the irreducible spinor representation of
the Lorentz group Spin(6) requires us to consider the vector spaces of two forms and four forms on an equal footing. The doubling
of the two-form vector space due to the Hodge duality doubles the variety of six-dimensional spin manifolds. We explore how
the doubling is related to the mirror symmetry of Calabi-Yau manifolds. Via the gauge theory formulation of six-dimensional
Riemannian manifolds, we show that the curvature tensor of a Calabi-Yau manifold satisfies the Hermitian Yang-Mills equations
on the Calabi-Yaumanifold.Therefore, the mirror symmetry of Calabi-Yaumanifolds can be recast as the mirror pair of Hermitian
Yang-Mills instantons. We discuss the mirror symmetry from the gauge theory perspective.

1. Introduction

String theory predicts [1] that six-dimensional Riemannian
manifolds have to play an important role in explaining our
four-dimensional world. They serve as an internal geom-
etry of string theory with six extra dimensions and their
shapes and topology determine a detailed structure of the
multiplets for elementary particles and gauge fields through
the Kaluza-Klein compactification. This program, initiated
by a classic paper [2], tries to make contact with a low-
energy phenomenology in our four-dimensional world. In
particular, a Calabi-Yau (CY) manifold is a (compact) Kähler
manifold with vanishing Ricci curvature and so a vacuum
solution of the Einstein equations.Theyhave a prominent role
in superstring theory and have been a central focus in both
contemporarymathematics andmathematical physics. As the
holonomy group of CYmanifolds is 𝑆𝑈(3), the compactifica-
tion onto a CY manifold in heterotic superstring theory pre-
servesN = 1 supersymmetry in four dimensions. One of the
most interesting features in the CY compactification is that
type II superstring theories compactified on two distinct CY
manifolds lead to an identical effective field theory in four

dimensions [1, 3]. This suggests that CY manifolds exist with
a mirror pair (𝑀, 𝑀̃) where the number of vector multipletsℎ1,1(𝑀) on 𝑀 is the same as the number of hypermultipletsℎ2,1(𝑀̃) on 𝑀̃ and vice versa. Here ℎ�푝,�푞(𝑀) = dim𝐻�푝,�푞(𝑀) is
the Hodge number of a CYmanifold𝑀.This duality between
two CY manifolds is known as the mirror symmetry [3].
While many beautiful properties of the mirror symmetry
have been discovered and it has been even proven for some
cases, it is fair to say that we are still far away from a deep
understanding for the origin of mirror symmetry.

Mirror symmetry is a correspondence between two topo-
logically distinct CY manifolds that give rise to exactly the
same physical theory. To recapitulate the mirror symmetry,
let 𝑀 be a compact CY manifold. The only nontrivial
cohomology of the CY manifold is contained in 𝐻1,1(𝑀)
and 𝐻2,1(𝑀) besides the one-dimensional cohomologiesℎ0,0(𝑀) = ℎ3,3(𝑀) = ℎ3,0(𝑀) = ℎ0,3(𝑀) = 1. These coho-
mology classes parameterize CY moduli. It is known [3]
that every 𝐻1,1(𝑀), on one hand, is represented by a real
closed (1, 1)-form which forms a Kähler class represented by
the Kähler form of a CY manifold 𝑀. The elements in

Hindawi
Advances in High Energy Physics
Volume 2017, Article ID 7962426, 27 pages
https://doi.org/10.1155/2017/7962426

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194629968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/7962426


2 Advances in High Energy Physics𝐻1,1(𝑀) infinitesimally change the Kähler structure of the
CY manifold and are therefore called Kähler moduli. (In
string theory, these moduli are usually complexified by
including𝐵-field.)On the other hand,𝐻2,1(𝑀)parameterizes
the complex structure moduli of a CY manifold 𝑀. It is
thanks to the fact that the cohomology class of (2, 1)-forms is
isomorphic to the cohomology class 𝐻1

�휕
(𝑇𝑀), the first Dol-

beault cohomology group of𝑀with values in a holomorphic
tangent bundle 𝑇𝑀 that characterizes infinitesimal complex
structure deformations. Hence the mirror symmetry of CY
manifolds is the duality between two different CY 3-fold 𝑀
and 𝑀̃ such that the Hodge numbers of𝑀 and 𝑀̃ satisfy the
relations [3] ℎ1,1 (𝑀) = ℎ2,1 (𝑀̃) ,ℎ2,1 (𝑀) = ℎ1,1 (𝑀̃) , (1)

or in a more general formℎ�푝,�푞 (𝑀) = ℎ3−�푝,�푞 (𝑀̃) , (2)

where the Hodge number ℎ�푝,�푞 of a CY manifold satisfies
the relations ℎ�푝,�푞 = ℎ�푞,�푝 and ℎ�푝,�푞 = ℎ3−�푝,3−�푞. As we have
mentioned above, the only nontrivial deformations of a CY
manifold are generated by the cohomology classes in𝐻1,1(𝑀)
and 𝐻2,1(𝑀) where ℎ1,1(𝑀) is the number of possible (in
general, complexified) Kähler forms and ℎ2,1(𝑀) is the
dimension of the complex structure moduli space of 𝑀.
Mirror symmetry suggests that for each CY 3-fold 𝑀 there
exists another CY 3-fold 𝑀̃ whose Hodge numbers obey the
relation (1).

From a physical point of view, two CY manifolds are
related by mirror symmetry if the corresponding N = 2
superconformal field theories are mirror [4]. Two N = 2
superconformal field theories are said to be mirror if they are
equivalent as quantum field theories. The mirror symmetry
was interpreted mathematically by Kontsevich in his 1994
ICM talk as an equivalence of derived categories, dubbed the
homological mirror symmetry [5]. The homological mirror
symmetry states that the derived category of coherent sheaves
on a Kähler manifold should be isomorphic to the Fukaya
category of a mirror symplectic manifold [6]. The Fukaya
category is described by the Lagrangian submanifold of a
given symplectic manifold as its objects and the Floer homol-
ogy groups as their morphisms. Hence the homological
mirror symmetry formulates the mirror symmetry as an
equivalence between certain aspects of complex geometry of
a CY manifold and certain aspects of symplectic geometry
of a mirror CY manifold in all dimensions. The geometric
approach to mirror symmetry was also unveiled in [7]; that
mirror symmetry is a geometric version of the Fourier-Mukai
transformation along a dual special Lagrangian tori fibration
on a mirror CY manifold which interchanges the symplectic
geometry and the complex geometry of a mirror pair.

In this paperwewill explore the gauge theory formulation
of six-dimensional Riemannian manifolds to address the
issue why CY manifolds exist with a mirror pair. In order

to simplify an underlying argumentation, we will focus on
orientable six-dimensional manifolds with spin structure. In
general relativity, the Lorentz group appears as the structure
group acting on orthonormal frames of the tangent bundle of
a Riemannian manifold [8]. On the frame bundle, a Rieman-
nian metric on spacetime manifold 𝑀 is replaced by a local
orthonormal basis 𝐸�퐴 (𝐴 = 1, . . . , 𝑑) of the tangent bundle𝑇𝑀. Then Einstein gravity can be formulated as a gauge
theory of Lorentz group where spin connections play a role
of gauge fields and Riemann curvature tensors correspond
to their field strengths. On a six-dimensional Riemannian
manifold 𝑀, for example, local Lorentz transformations are
orthogonal rotations in Spin(6), and spin connections 𝜔�퐴�퐵 =𝜔�푀�퐴�퐵𝑑𝑥�푀 are the spin(6)-valued gauge fields from the gauge
theory point of view (we will use large letters to indicate a
Lie group 𝐺 and small letters for its Lie algebra g). Then
the Riemann curvature tensor 𝑅�퐴�퐵 = 𝑑𝜔�퐴�퐵 + 𝜔�퐴�퐶 ∧ 𝜔�퐶�퐵

precisely corresponds to the field strength of gauge fields𝜔�퐴�퐵 in Spin(6) gauge theory. Since the Lie group Spin(6) is
isomorphic to 𝑆𝑈(4), the six-dimensional Euclidean grav-
ity can be formulated as an 𝑆𝑈(4) Yang-Mills gauge the-
ory. Via the gauge theory formulation of six-dimensional
Riemannian manifolds, we want to identify gauge theory
objects corresponding to CY manifolds and address their
mirror symmetry from the perspective of Yang-Mills gauge
theory. To understand why there exists a mirror pair of
CY manifolds, in particular, we will employ the following
well-known propositions for a 𝑑-dimensional Riemannian
manifold𝑀:

(A) The Riemann curvature tensors 𝑅�퐴�퐵 are spin(𝑑)-
valued two forms inΩ2(𝑀) = Λ2𝑇∗𝑀.

(B) There exists a global isomorphism between 𝑑-
dimensional Lorentz groups and classical Lie groups:

Spin (3) ≅ 𝑆𝑈 (2) ,
Spin (4) ≅ 𝑆𝑈 (2)�퐿 × 𝑆𝑈 (2)�푅 ,
Spin (5) ≅ 𝑆𝑝 (4) ,
Spin (6) ≅ 𝑆𝑈 (4) .

(3)

(C) There is an isomorphism between the Clifford algebra
C𝑙(𝑑) in 𝑑-dimensions and the exterior algebra Λ∗𝑀
of cotangent bundle 𝑇∗𝑀 over 𝑀 [9, 10] (the space
of the Clifford algebra C𝑙(𝑑) is isomorphic, as a
vector space, to the vector space of the exterior
algebra Λ∗𝑀. This is not, however, an isomorphism
of associative algebras because the product inΛ∗𝑀 is
anticommutative while that in C𝑙(𝑑) is not due to the
central term in the Dirac algebra (5)):

C𝑙 (𝑑) ≅ Λ∗𝑀 = �푑⨁
�푘=0

Ω�푘 (𝑀) , (4)

whereΩ�푘(𝑀) = Λ�푘𝑇∗𝑀.
For the isomorphism (C) between the vector spaces, the

“volume operator” Γ�푑+1 ≡ ±𝑖�푑(�푑−1)/2Γ1 ⋅ ⋅ ⋅ Γ�푑 in the Clifford
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Figure 1: Mirror symmetry.

algebra C𝑙(𝑑) corresponds to the Hodge-dual operator ∗ :Ω�푘(𝑀) → Ω�푑−�푘(𝑀) in the exterior algebra Λ∗𝑀 whereΓ�퐴 (𝐴 = 1, . . . , 𝑑) are 𝑑-dimensional Dirac matrices obeying
the Dirac algebra {Γ�퐴, Γ�퐵} = 2𝛿�퐴�퐵I2[𝑑/2] . (5)

It is amusing to note that the Clifford algebra from a modern
viewpoint can be thought of as a quantization of the exterior
algebra [10], in the same way that the Weyl algebra is a
quantization of the symmetric algebra. In particular, the
Clifford map (4) implies that the Lorentz generators 𝐽�퐴�퐵 ≡(1/4)[Γ�퐴, Γ�퐵] inC𝑙(𝑑) are in one-to-one correspondence with
two forms in the spaceΩ2(𝑀). And the representation space
of the Clifford algebra is a spinor vector spacewhose elements
are called fermions and essential ingredients in Standard
Model. It may also be worthwhile to remark that any physical
force is represented by two forms in the exterior algebra
taking values in a classical Lie algebra. In addition recall that
the representation of Clifford algebra in even dimensions
is reducible and its irreducible representations are given
by chiral fermions. Then the isomorphism (C) implies that
there must be a corresponding irreducible decomposition of
two forms in Λ∗𝑀. This fact, in our case, has a nontrivial
consequence for the Riemann curvature tensors 𝑅�퐴�퐵 =(1/2)𝑅�퐴�퐵�퐶�퐷𝑒�퐶∧𝑒�퐷 since the spin(𝑑) Lie algebra indices (𝐴, 𝐵)
and the form indices (𝐶,𝐷) must have an identical structure
in a representation space of the Lorentz symmetry according
to the isomorphism (C). Our principal concern is then to
pin down a geometrical consequence of the rudimentary fact
(A) after implementing the isomorphisms (B) and (C) to six-
dimensional CY manifolds.

Let us briefly state the result summarized in the Figure 1
in advance. Compared to the four-dimensional case [11–14],
some acute changes arise. First of all, there are two sources of
two forms on an orientable six-dimensionalmanifold𝑀. One
is of course usual two forms in Ω2(𝑀) and the other is the
Hodge duality of four forms in Ω4(𝑀). Therefore, the vector
space of two forms is doubled in six dimensions:Λ2 (𝑀) ≡ Ω2 (𝑀) ⊕ ∗Ω4 (𝑀) . (6)

The doubling of two forms is resonant with the fact that
the irreducible representation of Lorentz symmetry is given
by the chiral Lorentz generators 𝐽�퐴�퐵± ≡ (1/2)(I8 ± Γ7)𝐽�퐴�퐵.
Definitely it corresponds to themixture of two forms and four
forms in Λ2(𝑀) according to the correspondence (Γ7 ↔ ∗).
Since we need to take an irreducible representation of Lorentz
symmetry, this demands us to think of the irreducible com-
ponents of Riemann curvature tensors as a sum of the usual
curvature tensors 𝑅�퐴�퐵 and dual curvature tensors defined by

𝑅̃�퐴�퐵 ≡ (∗𝐺)�퐴�퐵 = 𝑑𝜔̃�퐴�퐵 + 𝜔̃�퐴�퐶 ∧ 𝜔̃�퐶�퐵, where 𝐺�퐴�퐵 is a 4-form
tensor taking values in spin(6) ≅ 𝑠𝑢(4) Lie algebra [14].
Moreover, it is necessary to impose the torsion-free condition
for both spin connections, 𝜔�퐴�퐵 and 𝜔̃�퐴�퐵, which leads to the
symmetry property of the curvature tensors: 𝑅�퐶�퐷�퐴�퐵 = 𝑅�퐴�퐵�퐶�퐷

and 𝑅̃�퐶�퐷�퐴�퐵 = 𝑅̃�퐴�퐵�퐶�퐷. This is another reason why two kinds of
indices ([𝐴𝐵], [𝐶𝐷])must be treated symmetrically although
they belong to different vector spaces. To summarize, the
Hodge duality admits two independent types of curvature
tensors (𝑅�퐴�퐵�퐶�퐷 ⊕ 𝑅̃�퐴�퐵�퐶�퐷) and they have to be decomposed
according to the irreducible representation of spin(6) ≅ 𝑠𝑢(4)
Lie algebra. In the end, the duplication of curvature tensors
leads to the doubling for the variety of six-dimensional spin
manifolds.

It might be stressed that the doubling of six-dimensional
spinmanifolds is an inevitable consequence of the elementary
facts (A, B, C). It should be instructive to apply the foregoing
propositions (A, B, C) to four manifolds to grasp their
significance [12–14] although the four-dimensional situation
is in stark contrast to the six-dimensional case. In four dimen-
sions, the Lorentz group Spin(4) is isomorphic to 𝑆𝑈(2)�퐿 ×𝑆𝑈(2)�푅 whose Lie algebras 𝑠𝑢(2)�퐿,�푅 consist of chiral Lorentz
generators 𝐽�퐴�퐵± ≡ Γ±𝐽�퐴�퐵 with Γ± = (1/2)(I4 ± Γ5) for chiral
and antichiral representations.The splitting of the Lie algebra,
spin(4) ≅ 𝑠𝑢(2)�퐿 ⊕ 𝑠𝑢(2)�푅, is precisely isomorphic to the
canonical decomposition of the vector space Ω2(𝑀) of two
forms: Ω2 (𝑀) = Ω2

+ (𝑀) ⊕ Ω2
− (𝑀) , (7)

whereΩ2
±(𝑀) ≡ 𝑃±Ω2(𝑀) and 𝑃± = (1/2)(1 ± ∗). That is, the

six-dimensional vector space Ω2(𝑀) of two forms splits
canonically into the sum of three-dimensional vector spaces
of self-dual and anti-self-dual two forms. One can apply the
canonical splitting of the two vector spaces to Riemann cur-
vature tensors simultaneously according to (4). It results in
the well-known decomposition of the curvature tensor𝑅 into
irreducible components [15, 16], schematically given by

𝑅 = (𝑊+ + 112𝑠 𝐵𝐵�푇 𝑊− + 112𝑠) , (8)

where 𝑠 is the scalar curvature, 𝐵 is the traceless Ricci tensor,
and 𝑊± are the (anti-)self-dual Weyl tensors. An impor-
tant lesson from the four-dimensional example is that the
irreducible (chiral) representation of Lorentz symmetry cor-
responds to the canonical split (7) of two forms with the
projection operator 𝑃± = (1/2)(1 ± ∗). We observe that the
same analysis in six dimensions brings about amore dramatic
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result due to the fact that 6 = 2 + 4. The doubling of six-
dimensional spin manifolds will be important to understand
why CY manifolds arise with a mirror pair.

The gauge theory formulation of six-dimensional spin
manifolds also leads to a valuable perspective for the dou-
bling. The first useful access is to identify a gauge theory
object corresponding to a CY 3-fold in the same sense that
a gravitational instanton (or a hyper-Kähler manifold) can
be identified with an 𝑆𝑈(2) Yang-Mills instanton in four
dimensions [11–13]. An obvious guess goes toward a six-
dimensional generalization of the four-dimensional Yang-
Mills instantons known as Hermitian Yang-Mills (HYM)
instantons. Indeed this relationship has been well-known
to string theorists and mathematicians under the name of
the Donaldson-Uhlenbeck-Yau (DUY) theorem [17, 18]. We
quote a paragraph in [19] (Page 221) to clearly summarize this
picture.

The point of intersection between the Calabi
conjecture and the DUY theorem is the tangent
bundle. And here’s why: once you have proved
the existence of CYmanifolds, you have not only
those manifolds but also their tangent bundles,
because every manifold has one. Since the tan-
gent bundle is defined by the CY manifold, it
inherits its metric from the parent manifold (in
this case, the CY). The metric for the tangent
bundle, in other words, must satisfy the CY
equations. It turns out, however, that, for the
tangent bundle, the Hermitian Yang-Mills equa-
tions are the same as the CY equations, provided
the background metric you have selected is the
CY. Consequently, the tangent bundle, by virtue
of satisfying the CY equations, automatically
satisfies the Hermitian Yang-Mills equations,
too.

If a CY manifold𝑀 can be related to a HYM instanton, a
natural question immediately arises. Since a CY manifold𝑀
has a mirror manifold, there will be a mirror CYmanifold 𝑀̃
obeying themirror relation (1).This in turn implies that there
must be amirror HYM instanton which can be derived from
the mirror CY manifold 𝑀̃. Thus we want to understand the
relation between the HYM instanton and its mirror instanton
from the gauge theory perspective. Since the Lorentz group
Spin(6) is isomorphic to 𝑆𝑈(4), the chiral and antichiral
representations 4 and 4�耠 of Spin(6) are equivalent to the
fundamental and antifundamental representations 4 and 4 of𝑆𝑈(4). Recall that the fundamental representation 4 of 𝑆𝑈(4)
is a complex representation and so its complex conjugate 4
is an inequivalent representation different from 4. Therefore,
given a CY manifold 𝑀, one can embed the HYM instanton
inherited from𝑀 into two different representations. But this
situation is equally true for the mirror CY manifold 𝑀̃. Thus
there is a similar doubling for the variety of HYM instantons
as occurred to CY manifolds, as summarized in Figure 1.

It may be interesting to compare this situation with
the four-dimensional case [13, 14]. In four dimensions, the
positive and negative chirality spinors of Spin(4) are given
by 𝑆𝑈(2)�퐿 and 𝑆𝑈(2)�푅 spinors, 2�퐿 and 2�푅, respectively. In

this case, it is necessary to have two independent 𝑆𝑈(2)
factors to be compatible with the splitting (7) because the
irreducible representation of 𝑆𝑈(2) is real. It is interesting
to see how (A, B, C) take part in the conspiracy. First, a
CY 2-fold can be mapped to a self-dual or 𝑆𝑈(2)�퐿 instanton
which lives in the chiral representation 2�퐿, while a mirror
CY 2-fold is isomorphically related to an anti-self-dual or𝑆𝑈(2)�푅 instanton in the antichiral representation 2�푅. For
this correspondence, the 𝑆𝑈(2) gauge group of Yang-Mills
instantons is identified with the holonomy group of CY 2-
fold. This picture is generalized to six dimensions in an
interesting way. In six dimensions, the canonical splitting (7)
is applied to the enlarged vector space (6) asΛ2 (𝑀) = Ω2

+ (𝑀) ⊕ Ω2
− (𝑀) , (9)

where the decomposition Ω2
±(𝑀) is dictated by the chiral

splitting 𝐽�퐴�퐵 = 𝐽�퐴�퐵+ ⊕ 𝐽�퐴�퐵− according to the isomorphism
(C). From the gauge theory perspective, the splitting (9) is
also compatible with the fundamental and antifundamental
representations of the gauge group 𝑆𝑈(4) ≅ Spin(6) because
the chiral representation of Spin(6) is identified with the
fundamental representation of 𝑆𝑈(4). After all, we will get
the picture that the HYM instanton on 𝑇𝑀 embedded in
the fundamental representation 4 is mirror to the HYM
instanton on 𝑇𝑀̃ in the antifundamental representation 4.
This structure is summed up in Figure 1, where CY3 refers
to a CY 3-fold 𝑀 and C̃Y3 its mirror 𝑀̃. And HYM denotes
a HYM instanton on𝑀 in the complex representation either
3 or 3 of 𝑆𝑈(3) ⊂ 𝑆𝑈(4) and H̃YM its mirror on 𝑀̃ in the
opposite complex representation.

The purpose of this paper is to understand the structure
in Figure 1. To the best of our knowledge, there is no
concrete work to address the mirror symmetry based on the
picture in Figure 1 although the mirror symmetry has been
extensively studied so far. We will show that CY manifolds
andHYM instantons exist withmirror pairs as a consequence
of the doubling (6) of two forms in six dimensions. It
is arguably a remarkable consequence of the mysterious
Clifford isomorphism (C).

This paper is organized as follows. In Section 2, we formu-
late 𝑑-dimensional Euclidean gravity as a Spin(𝑑) Yang-Mills
gauge theory.The explicit relations between gravity and gauge
theory variables are established. In particular, we construct
the dual curvature tensors 𝑅̃�퐴�퐵 ≡ (∗𝐺)�퐴�퐵 = 𝑑𝜔̃�퐴�퐵+𝜔̃�퐴�퐶∧𝜔̃�퐶�퐵

that are necessary for an irreducible representation of Lorentz
symmetry.We observe that the geometric structure described
by dual spin connections 𝜔̃�퐴�퐵 and curvature tensors 𝑅̃�퐴�퐵

is exactly parallel to the usual one described by (𝜔�퐴�퐵, 𝑅�퐴�퐵)
and so clarify why the variety of orientable spin manifolds is
doubled.

We apply in Section 3 the gauge theory formulation to
six-dimensional Riemannian manifolds. For that purpose we
devise a six-dimensional version of the ’t Hooft symbols
which realizes the isomorphism between spin(6) Lorentz
algebra and 𝑠𝑢(4) Lie algebra. As the spin(6) Lorentz alge-
bra has two irreducible spinor representations, there are
accordingly two kinds of the ’t Hooft symbols depending
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on the chirality of irreducible spin(6) representations. Our
construction of six-dimensional ’t Hooft symbols is new
to the best of our knowledge. Using this construction, we
impose the Kähler condition on the ’t Hooft symbols. This
is done by projecting the ’t Hooft symbols to 𝑈(3)-valued
ones and so results in the reduction of the gauge group from𝑆𝑈(4) to 𝑈(3). After imposing the Ricci-flat condition, the
gauge group in Yang-Mills gauge theory is further reduced to𝑆𝑈(3). This result is utilized to show that six-dimensional CY
manifolds can be recast as HYM instantons in 𝑆𝑈(3) Yang-
Mills gauge theory. We elucidate why the canonical splitting
(9) of six-dimensional spin manifolds corresponds to the
chiral representation of Spin(6). It turns out that this splitting
is equally applied to CYmanifolds as well asHYM instantons.

In Section 4, we apply the results in Section 3 to CY
manifolds to see how the mirror symmetry between them
can be explained by the doubling of six-dimensional spin
manifolds. We observe that it is always possible to find a
pair of CY manifolds such that their Euler characteristics in
different chiral representations obey the mirror relation (1).
This implies that a pair of CYmanifolds in the opposite chiral
representation are mirror to each other as indicated by the
arrow (⇔) in Figure 1.

In Section 5, we revisit the relation betweenCYmanifolds
and HYM instantons to discuss the mirror symmetry from
a completely gauge theory perspective. We show that a
pair of HYM instantons embedded in different complex
representations 4 and 4 correspond to a mirror pair of CY
manifolds as summarized in Figure 1.This result is consistent
with the mirror symmetry because the integral of the third
Chern class 𝑐3(𝐸) for a vector bundle 𝐸 is equal to the Euler
characteristic of tangent bundle 𝑇𝑀 when 𝐸 = 𝑇𝑀 and the
third Chern class has a desired sign flip between a complex
vector bundle 𝐸 in the fundamental representation and its
conjugate bundle 𝐸 in the antifundamental representation.
Therefore, we confirm the picture in Figure 1 that the mirror
symmetry between CY manifolds can be understood as
a mirror pair of HYM instantons in holomorphic vector
bundles.

Finally we recapitulate in Section 6 the results obtained
in this paper and conclude the paper with a few speculative
remarks.

In Appendix A, we fix the basis for the chiral repre-
sentation of Spin(6) and the fundamental representation of𝑆𝑈(4) and list their structure constants. In Appendix B, we
present an explicit construction of the six-dimensional ’t
Hooft symbols and their algebraic properties in each chiral
basis.

2. Gravity as a Gauge Theory

In this section we consider the gauge theory formulation of
Riemannian manifolds taking values in an irreducible spinor
representation of the Lorentz group [13, 14]. This section is to
establish the notation for the doubled variety of Riemannian
manifolds, but more detailed exposition will be deferred to
the next section. On a Riemannianmanifold𝑀 of dimension𝑑, the spin connection is a spin(𝑑)-valued one form and can
be identified, in general, with a Spin(𝑑) gauge field. In order to

make an explicit identification between the spin connections
and the corresponding gauge fields, let us first consider the𝑑-dimensional Dirac algebra (5) where Γ�퐴 (𝐴 = 1, . . . , 𝑑) are
Diracmatrices.Then the spin(𝑑) Lorentz generators are given
by 𝐽�퐴�퐵 = 14 [Γ�퐴, Γ�퐵] (10)

which satisfy the following Lorentz algebra:[𝐽�퐴�퐵, 𝐽�퐶�퐷]= − (𝛿�퐴�퐶𝐽�퐵�퐷 − 𝛿�퐴�퐷𝐽�퐵�퐶 − 𝛿�퐵�퐶𝐽�퐴�퐷 + 𝛿�퐵�퐷𝐽�퐴�퐶) . (11)

The spin connection is defined by 𝜛 = (1/2)𝜛�퐴�퐵𝐽�퐴�퐵, which
transforms in the standard way as a Spin(𝑑) gauge field under
local Lorentz transformations𝜛 󳨀→ 𝜛�耠 = Λ𝜛Λ−1 + Λ𝑑Λ−1, (12)

where Λ = 𝑒(1/2)�휆𝐴𝐵(�푥)�퐽𝐴𝐵 ∈ Spin(𝑑).
In even dimensions, the spinor representation is reducible

and its irreducible representations are given by positive and
negative chiral representations. In next section we will pro-
vide an explicit chiral representation for the six-dimensional
case. The Lorentz generators for the chiral representation are
given by 𝐽�퐴�퐵 = (𝐽�퐴�퐵+ 00 𝐽�퐴�퐵−

) , (13)

where 𝐽�퐴�퐵± = Γ±𝐽�퐴�퐵 and Γ± = (1/2)(I2[𝑑/2] ± Γ�푑+1). Therefore,
the spin connection in the chiral representation takes the
form 𝜛 = 12𝜛�퐴�퐵𝐽�퐴�퐵 = (𝜔(+) 00 𝜔(−)

)
= 12 (𝜔(+)

�퐴�퐵𝐽�퐴�퐵+ 00 𝜔(−)
�퐴�퐵𝐽�퐴�퐵−

) . (14)

Here we used a sloppy notation for 𝜛 which must be
understood as 𝜛 = (1/2)𝜛AB𝐽AB, where A = (𝐴, 𝐴�耠), B =(𝐵, 𝐵�耠) and 𝜛�퐴�퐵󸀠 = 𝜛�퐴󸀠�퐵 = 0. For a notational simplicity we
will use this notation since it will not introduce too much
confusion. Note that the spin connections 𝜔(+) and 𝜔(−) are
considered as independent since they resulted from the dou-
bling of one form due to the Hodge duality, as will be shown
later.

Now we introduce a Spin(𝑑) gauge field defined by

A = 𝐴�푎
T
�푎 = (𝐴(+)�푎𝑇�푎 00 𝐴(−)�푎 (𝑇�푎)∗) ,

T
�푎 = (𝑇�푎 00 (𝑇�푎)∗) ∈ spin (𝑑) , (15)
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where𝐴(±)�푎 = 𝐴(±)�푎
�푀 𝑑𝑥�푀 (𝑎 = 1, . . . , 𝑑(𝑑−1)/2) are one-form

connections on 𝑀. We will take definition (15) by adopting
the group isomorphism (3). The Lie algebra generators are
matrices obeying the commutation relation[T�푎, T�푏] = −𝑓�푎�푏�푐

T
�푐, (16)

where 𝑇�푎 and (𝑇�푎)∗ are generators in a representation 𝑅 and
its conjugate representation𝑅, respectively.The identification
we want to make is then given by𝜛 = 12𝜛�퐴�퐵𝐽�퐴�퐵 ≅ A = 𝐴�푎

T
�푎. (17)

Then the Lorentz transformation (12) can be interpreted as a
usual gauge transformation

A 󳨀→ A
�耠 = ΛAΛ−1 + Λ𝑑Λ−1, (18)

where Λ = 𝑒�휆𝑎(�푥)T𝑎 ∈ Spin(𝑑). The Riemann curvature tensor
is defined by [8]

R = 12R�퐴�퐵𝐽�퐴�퐵 = 𝑑𝜛 + 𝜛 ∧ 𝜛= 12 (𝑑𝜛�퐴�퐵 + 𝜛�퐴�퐶 ∧ 𝜛�퐶�퐵) 𝐽�퐴�퐵
= 12 (𝑅(+)

�퐴�퐵𝐽�퐴�퐵+ 00 𝑅(−)
�퐴�퐵𝐽�퐴�퐵−

) , (19)

where 𝑅(±)
�퐴�퐵 = (1/2)(𝜕�푀𝜔(±)

�푁�퐴�퐵 − 𝜕�푁𝜔(±)
�푀�퐴�퐵 + 𝜔(±)

�푀�퐴�퐶𝜔(±)
�푁�퐶�퐵 −𝜔(±)

�푁�퐴�퐶𝜔(±)
�푀�퐶�퐵)𝑑𝑥�푀∧𝑑𝑥�푁. Or, in terms of gauge theory variables,

it is given by

F = 𝐹�푎
T
�푎 = 𝑑A +A ∧A= (𝑑𝐴�푎 − 12𝑓�푏�푐�푎𝐴�푏 ∧ 𝐴�푐) T�푎

= 12 (𝐹(+)�푎𝑇�푎 00 𝐹(−)�푎 (𝑇�푎)∗) , (20)

where𝐹(±)�푎 = (1/2)(𝜕�푀𝐴(±)�푎
�푁 −𝜕�푁𝐴(±)�푎

�푀 −𝑓�푎�푏�푐𝐴(±)�푏
�푀 𝐴(±)�푐

�푁 )𝑑𝑥�푀∧𝑑𝑥�푁.
As we outlined in Section 1, in addition to the usual

curvature tensor 𝑅�퐴�퐵 = 𝑑𝜔�퐴�퐵 + 𝜔�퐴�퐶 ∧ 𝜔�퐶�퐵, we need to
introduce the dual curvature tensor defined by𝑅̃�퐴�퐵 ≡ (∗𝐺)�퐴�퐵 = 𝑑𝜔̃�퐴�퐵 + 𝜔̃�퐴�퐶 ∧ 𝜔̃�퐶�퐵, (21)

where 𝐺�퐴�퐵 is a (𝑑 − 2)-form tensor taking values in spin(𝑑)
Lie algebra. One may consider the dual spin connection𝜔̃�퐴�퐵 ≡ (∗𝜃)�퐴�퐵 as the Hodge dual of a (𝑑 − 1)-form 𝜃�퐴�퐵
in spin(𝑑) Lie algebra. It is useful to introduce the adjoint
exterior differential operator 𝛿 : Ω�푘(𝑀) → Ω�푘−1(𝑀) defined
by 𝛿 = (−1)�푑�푘+�푑+1 ∗ 𝑑∗, (22)

where the Hodge-dual operator ∗ : Ω�푘(𝑀) → Ω�푑−�푘(𝑀)
obeys the well-known relation∗2𝛼 = (−1)�푘(�푑−�푘) 𝛼 (23)

for 𝛼 ∈ Ω�푘(𝑀). Using the adjoint differential operator 𝛿, the
spin(𝑑)-valued (𝑑 − 2)-form 𝐺�퐴�퐵 in (21) can be written as𝐺�퐴�퐵 = (−)�푑−1 𝛿𝜃�퐴�퐵 + 𝜃�퐴�퐶 ∧ 𝜃�퐶�퐵, (24)

where we devised a simplifying notation𝛼∧𝛽 ≡ ∗ ((∗𝛼) ∧ (∗𝛽)) ∈ Ω�푝+�푞−�푑 (𝑀) (25)

for 𝛼 ∈ Ω�푝(𝑀) and 𝛽 ∈ Ω�푞(𝑀). Using the nilpotency of the
adjoint differential operator 𝛿, that is 𝛿2 = 0, one can derive
the (second) Bianchi identity:𝛿𝐺�퐴�퐵 + (−)�푑−1 (𝜃�퐴�퐶 ∧𝐺�퐶�퐵 − 𝐺�퐴�퐶 ∧ 𝜃�퐶�퐵) = 0. (26)

It may be compared with the ordinary Bianchi identity in
general relativity written as𝑑𝑅�퐴�퐵 + 𝜔�퐴�퐶 ∧ 𝑅�퐶�퐵 − 𝑅�퐴�퐶 ∧ 𝜔�퐶�퐵 = 0. (27)

Let us also introduce dual vielbeins 𝑒�퐴 ≡ (∗ℎ)�퐴, whereℎ�퐴 ∈ Ω�푑−1(𝑀), in addition to the usual vielbeins 𝑒�퐴 (𝐴 =1, . . . , 𝑑) which independently form a local orthonormal
coframe at each spacetime point in 𝑀. We combine the dual
one-form 𝑒�퐴 with the usual coframe 𝑒�퐴 to define a matrix of
vielbeins:

E = E�퐴Γ�퐴 = ( 0 𝑒(+)�퐴𝛾�퐴𝑒(−)�퐴𝛾�퐴 0 ) , (28)

where 𝑒(±)�퐴 ≡ 12 (𝑒�퐴 ± 𝑒�퐴) . (29)

The coframe basis {𝑒(±)�퐴 ∈ Γ(𝑇∗𝑀)} defines dual vectors𝐸(±)
�퐴 = 𝐸(±)�푀

�퐴 𝜕�푀 ∈ Γ(𝑇𝑀) by a natural pairing:⟨𝑒(±)�퐴, 𝐸(±)
�퐵 ⟩ = 𝛿�퐴�퐵 . (30)

The above pairing leads to the relation 𝑒(±)�퐴�푀 𝐸(±)�푀
�퐵 = 𝛿�퐴�퐵 . Since

we regard the spin connections 𝜔(+) and 𝜔(−) as independent,
let us consider two kinds of geometrical data on a spin
manifold𝑀, dubbed A and B classes:

A : (𝑒(+)�퐴, 𝜔(+)
�퐴�퐵) ,

B : (𝑒(−)�퐴, 𝜔(−)
�퐴�퐵) . (31)

We emphasize that the geometric structure of a 𝑑-
dimensional spin manifold can be described by either typeA
or type B but they should be regarded as independent even
topologically. In other words, we can separately consider a
Riemannian metric for each class given by𝑑𝑠2± = 𝛿�퐴�퐵𝑒(±)�퐴 ⊗ 𝑒(±)�퐵 = 𝛿�퐴�퐵𝑒(±)�퐴�푀 𝑒(±)�퐵�푁 𝑑𝑥�푀 ⊗ 𝑑𝑥�푁≡ 𝑔(±)

�푀�푁 (𝑥) 𝑑𝑥�푀 ⊗ 𝑑𝑥�푁
(32)
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or ( 𝜕𝜕𝑠)2

±

= 𝛿�퐴�퐵𝐸(±)
�퐴 ⊗ 𝐸(±)

�퐵 = 𝛿�퐴�퐵𝐸(±)�푀
�퐴 𝐸(±)�푁

�퐵 𝜕�푀 ⊗ 𝜕�푁≡ 𝑔�푀�푁
(±) (𝑥) 𝜕�푀 ⊗ 𝜕�푁. (33)

In order to recover general relativity from the gauge
theory formulation of gravity, it is necessary to impose the
torsion-free condition; that is,𝑇(±)�퐴 = 𝑑𝑒(±)�퐴 + 𝜔(±)�퐴

�퐵 ∧ 𝑒(±)�퐵 = 0. (34)

As a result, the spin connections are determined by vielbeins,
that is, 𝜔(±) = 𝜔(±)(𝑒(±)), from which one can deduce the first
Bianchi identity 𝑅(±)

�퐴�퐵 ∧ 𝑒(±)�퐵 = 0, (35)

where the curvature tensors 𝑅(±)
�퐴�퐵 are defined by (19). It is not

difficult to see that (35) leads to the symmetry property for the
Riemann curvature tensors 𝑅(±)

�퐴�퐵 ≡ (1/2)𝑅(±)
�퐴�퐵�퐶�퐷𝑒(±)�퐶 ∧ 𝑒(±)�퐷;𝑅(±)

�퐴�퐵�퐶�퐷 = 𝑅(±)
�퐶�퐷�퐴�퐵. It may be convenient to introduce the

torsion matrix T defined by

T = 𝑑E + 𝜛 ∧ E + E ∧ 𝜛 = ( 0 𝑇(+)�퐴𝛾�퐴𝑇(−)�퐴𝛾�퐴 0 ) , (36)

where we have defined the inverted spin connection 𝜛 ≡(1/2)𝜛�퐴�퐵𝐽�퐴�퐵 = (1/2) ( �휔(−)𝐴𝐵�퐽
𝐴𝐵
− 0

0 �휔(+)𝐴𝐵�퐽
𝐴𝐵
+

). It is straightforward to
show that𝑑T = 12 ( 0 𝑅(+)

�퐴�퐵 ∧ 𝑒(+)�퐵𝛾�퐴𝑅(−)
�퐴�퐵 ∧ 𝑒(−)�퐵𝛾�퐴 0 ) (37)

and so the first Bianchi identity (35) is automatic because of
the torsion-free condition, T = 0. Similarly, using definition
(19), it is easy to derive the second Bianchi identity, DR ≡𝑑R + 𝜛 ∧R −R ∧ 𝜛 = 0, whose matrix form reads as

DR = (𝐷(+)𝑅(+) 00 𝐷(−)𝑅(−)
) = 0, (38)

where𝐷(±)𝑅(±) ≡ 𝑑𝑅(±) + 𝜔(±) ∧ 𝑅(±) − 𝑅(±) ∧ 𝜔(±). (39)

In terms of gauge theory variables, it can be stated as DF ≡𝑑F + A ∧ F − F ∧ A = 0 or 𝐷(±)𝐹(±) ≡ 𝑑𝐹(±) + 𝐴(±) ∧ 𝐹(±) −𝐹(±) ∧ 𝐴(±) = 0.
To sum up, a 𝑑-dimensional orientable Riemannian

manifold admits a globally defined volume form which
leads to the isomorphism between Ω�푘(𝑀) and Ω�푑−�푘(𝑀). In
particular, it doubles the two-form vector space which leads
to the enlargement for the geometric structure of Riemannian
manifolds.The Hodge duality ∗ : Ω�푘(𝑀) → Ω�푑−�푘(𝑀) is thus
the origin of the doubling for the variety of Riemannian

manifolds. One is described by (𝑒�퐴, 𝜔�퐴�퐵, 𝑅�퐴�퐵) and the other
independent construction is given by (𝑒�퐴, 𝜔̃�퐴�퐵, 𝑅̃�퐴�퐵) ≅∗(ℎ�퐴, 𝜃�퐴�퐵, 𝐺�퐴�퐵). According to the isomorphism (C), they are
decomposed into two irreducible representations of Lorentz
symmetry. In the next section we will apply the irreducible
decomposition to six-dimensional spin manifolds to see why
the variety of Riemannian manifolds is doubled.

3. Spinor Representation of Six-Dimensional
Riemannian Manifolds

We will apply the gauge theory formulation in the previous
section to six-dimensional Riemannian manifolds. For this
purpose, the Spin(6) Lorentz group for Euclidean gravity will
be identified with the 𝑆𝑈(4) gauge group in Yang-Mills gauge
theory. A motivation for the gauge theory formulation of six-
dimensional Euclidean gravity is to identify a gauge theory
object corresponding to a CY manifold and to understand
the mirror symmetry of CYmanifolds in terms of Yang-Mills
gauge theory. Because our gauge theory formulation is based
on identification (17), we will restrict ourselves to orientable
six-dimensional manifolds with spin structure and consider
a spinor representation of Spin(6) in order to scrutinize the
relationship.

Let us start with the Clifford algebraC𝑙(6) whose genera-
tors are given by

C𝑙 (6) = {I8, Γ�퐴, Γ�퐴�퐵, Γ�퐴�퐵�퐶, Γ7Γ�퐴�퐵, Γ7Γ�퐴, Γ7} , (40)

where Γ�퐴 (𝐴 = 1, . . . , 6) are six-dimensional Dirac matrices
satisfying the algebra (5) and Γ�퐴1�퐴2⋅⋅⋅�퐴𝑘 ≡ (1/𝑘!)Γ[�퐴1Γ�퐴2 ⋅ ⋅ ⋅ Γ�퐴𝑘]
assumes the complete antisymmetrization of indices. Γ7 ≡𝑖Γ1 ⋅ ⋅ ⋅ Γ6 is the chiral matrix given by (A.6). According
to the isomorphism (4), the Clifford algebra (40) can be
isomorphically mapped to the exterior algebra of a cotangent
bundle 𝑇∗𝑀

C𝑙 (6) ≅ Λ∗𝑀 = 6⨁
�푘=0

Ω�푘 (𝑀) , (41)

where the chirality operator Γ7 corresponds to the Hodge-
dual operator ∗ : Ω�푘(𝑀) → Ω6−�푘(𝑀).

The spinor representation of Spin(6) can be constructed
by 3 fermion creation operators 𝑎∗�푖 (𝑖 = 1, 2, 3) and the
corresponding annihilation operators 𝑎�푗 (𝑗 = 1, 2, 3) (see
Appendix 5.A in [1]). This fermionic system can be repre-
sented in a Hilbert space 𝑉 of dimension 8 with a Fock vac-
uum |Ω⟩, annihilated by all the annihilation operators. The
states in 𝑉 are obtained by acting the product of 𝑘 creation
operators 𝑎∗�푖1 ⋅ ⋅ ⋅ 𝑎∗�푖𝑘 on the vacuum |Ω⟩; that is,

𝑉 = 3⨁
�푘=0

󵄨󵄨󵄨󵄨󵄨Ω�푖1 ⋅⋅⋅�푖𝑘
⟩ = 3⨁

�푘=0

𝑎∗�푖1 ⋅ ⋅ ⋅ 𝑎∗�푖𝑘 |Ω⟩ . (42)

The spinor representation of the algebra (40) is reducible and
has two irreducible spinor representations. Indeed theHilbert
space 𝑉 splits into the spinors 𝑆± of positive and negative
chirality; that is, 𝑉 = 𝑆+ ⊕ 𝑆−, each of dimension 4. If the
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Fock vacuum |Ω⟩ has positive chirality, the positive chirality
spinors of Spin(6) are states given by𝑆+ = ⨁

�푘 even

󵄨󵄨󵄨󵄨󵄨Ω�푖1 ⋅⋅⋅�푖𝑘
⟩ = |Ω⟩ + 󵄨󵄨󵄨󵄨󵄨Ω�푖�푗⟩ ≡ 4 (43)

while the negative chirality spinors are those obtained by𝑆− = ⨁
�푘 odd

󵄨󵄨󵄨󵄨󵄨Ω�푖1 ⋅⋅⋅�푖𝑘
⟩ = 󵄨󵄨󵄨󵄨Ω�푖⟩ + 󵄨󵄨󵄨󵄨󵄨Ω�푖�푗�푘⟩ ≡ 4. (44)

As spin(6) Lorentz algebra is isomorphic to 𝑠𝑢(4) Lie algebra,
the positive and negative chirality spinors of spin(6) can be
identified with the fundamental representation 4 and the
antifundamental representation 4of 𝑠𝑢(4), respectively [1]. As
a result, the chiral spinor representations 𝑆+ and 𝑆− of Spin(6)
are identifiedwith the fundamental representations 4 and 4 of𝑆𝑈(4).

One can form a direct product of the fundamental
representations 4 and 4 in order to classify the Clifford
generators in (40):

4 ⊗ 4 = 1 ⊕ 15 = {Γ+, Γ�퐴�퐵+ } , (45)

4 ⊗ 4 = 1 ⊕ 15 = {Γ−, Γ�퐴�퐵− } , (46)

4 ⊗ 4 = 6 ⊕ 10 = {Γ�퐴+ , Γ�퐴�퐵�퐶+ } , (47)

4 ⊗ 4 = 6 ⊕ 10 = {Γ�퐴− , Γ�퐴�퐵�퐶− } , (48)

where Γ± ≡ (1/2)(I8 ± Γ7) are the projection operators onto
the space of definite chirality and Γ�퐴1�퐴2⋅⋅⋅�퐴𝑘± ≡ Γ±Γ�퐴1�퐴2 ⋅⋅⋅�퐴𝑘 .
Note that 15 in (45) and (46) is the adjoint representation of𝑆𝑈(4) and 6 and 10 in (47) and (48) are the antisymmetric
and symmetric representations of 𝑆𝑈(4), respectively. See
Appendix A for the Lie algebra generators in the chiral
representation of Spin(6) and the fundamental representation
of 𝑆𝑈(4). It is important to notice that Γ�퐴�퐵+ ∈ 15 and Γ�퐴�퐵− ∈ 15
are independent of each other; that is, [Γ�퐴�퐵+ , Γ�퐶�퐷− ] = 0, and
this doubling of the Clifford basis is parallel to the doubling
of two forms according to the Clifford isomorphism (41) as
will be clarified below.

We want to find the irreducible decomposition of Rie-
mann curvature tensors under the Lorentz symmetry as the
six-dimensional version of (8). As we noticed before, there
are two kinds of Lorentz generators given by the irreducible
components Γ�퐴�퐵± = Γ±Γ�퐴�퐵 which correspond to the chiral and
antichiral representations of Lorentz algebra spin(6) ≅ 𝑠𝑢(4).
Recall that (19) takes the following split of curvature tensors
R = (1/2)R�퐴�퐵𝑒�퐴 ∧ 𝑒�퐵:

R�퐴�퐵 = 𝑅(+)
�퐴�퐵 ⊕ 𝑅(−)

�퐴�퐵 = (𝐹(+)�푎
�퐴�퐵 𝑇�푎

1 ⊕ 𝐹(−)�푎
�퐴�퐵 𝑇�푎

2 ) = F�퐴�퐵, (49)

where 𝑅(±)
�퐴�퐵 = Γ±R�퐴�퐵 and both 𝑇�푎

1 and 𝑇�푎
2 obey the𝑠𝑢(4) Lie algebra defined by (16). The doubling of 𝑠𝑢(4)

Lie algebra in four-dimensional representations 𝑅1 and 𝑅2

on the right-hand side was considered in parallel to the
spinor representation on the left-hand side. Since the Lorentz
generators 𝐽�퐴�퐵± = Γ±𝐽�퐴�퐵 are in one-to-one correspondence

with two forms in the vector space (9), we identify the
following map: 𝐽�퐴�퐵+ ←→ 𝐹(+)

�퐴�퐵 ,𝐽�퐴�퐵− ←→ 𝐹(−)
�퐴�퐵 . (50)

Since the role of the chiral operator Γ7 is parallel with the
Hodge-dual operator ∗ : Ω�푘(𝑀) → Ω6−�푘(𝑀), the chiral
Lorentz generators 𝐽�퐴�퐵± = (1/4)(I8 ± Γ7)Γ�퐴�퐵 = (1/4)(Γ�퐴�퐵 ∓(𝑖/4!)𝜀�퐴�퐵�퐶�퐷�퐸�퐹Γ�퐶�퐷�퐸�퐹) correspond to the canonical split of the
enlarged vector space (6). Therefore, the two forms 𝐹(±) =(1/2)𝐹(±)

�퐴�퐵 𝑒(±)�퐴 ∧ 𝑒(±)�퐵 in (49) must be understood as the
element of the irreducible vector space in (9); that is,𝐹(±) ∈ Ω2

± (𝑀) . (51)

As a result, R�퐴�퐵 on the left-hand side of (49) has twice as
many components as the usual Riemann curvature tensor.

Let us summarize the gauge theory formulation in Sec-
tion 2. Suppose that 𝐽�퐴�퐵∗ and 𝑇�푎

∗ are Lie algebra generators
in an irreducible representation 𝑅∗ of Spin(6) and 𝑆𝑈(4),
respectively. First consider an 𝑆𝑈(4) gauge field 𝐵 = 𝐵�푎𝑇�푎

∗ =∗𝐶 in the representation 𝑅∗ obtained by taking the Hodge
duality of a four-form 𝐶 = 𝐶�푎𝑇�푎

∗ and make the following
identification: 𝜔̃ = 12 𝜔̃�퐴�퐵𝐽�퐴�퐵∗ ≅ 𝐵 = 𝐵�푎𝑇�푎

∗,𝜃 = 12𝜃�퐴�퐵𝐽�퐴�퐵∗ ≅ 𝐶 = 𝐶�푎𝑇�푎
∗, (52)

where 𝜔̃ = (1/2)𝜔̃�퐴�퐵𝐽�퐴�퐵∗ is the dual spin connection and𝜔̃ = ∗𝜃. Then the dual curvature tensors (21) and (24) are,
respectively, written as𝐹 = 𝑑𝐵 + 𝐵 ∧ 𝐵 = ∗𝐻,𝐻 = (−)�푑−1 𝛿𝐶 + 𝐶∧𝐶, (53)

where𝐻 is a four-form field strength whose Hodge duality is
the field strength 𝐹 in 𝑆𝑈(4) gauge theory. The nilpotency of
exterior differentials, 𝑑2 = 𝛿2 = 0, immediately leads to the
Bianchi identity 𝑑𝐹 + 𝐵 ∧ 𝐹 − 𝐹 ∧ 𝐵 = 0 ⇐⇒𝛿𝐻 + (−)�푑−1 (𝐶 ∧𝐻 − 𝐻∧𝐶) = 0. (54)

Hence the geometric structure described by the dual variables(𝜔̃�퐴�퐵, 𝑅̃�퐴�퐵) will be exactly parallel to the usual one described
by (𝜔�퐴�퐵, 𝑅�퐴�퐵).

Thus it is natural to put the two geometric structures on
an equal footing. Moreover, the irreducible representation of
the Clifford algebra C𝑙(6) suggests that the curvature tensors
in (51) are given by the combination𝐹(±) = 12 (𝐹 ± 𝐹) = 12 (𝐹 ± ∗𝐻) . (55)
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One may note that, on an orientable (spin) manifold, the
duplication of curvature tensors always happens by the
Hodge duality. The combination (55) can be understood
as follows. One may regard the Riemann tensor R�퐴�퐵 =(1/2)R�퐴�퐵�퐶�퐷𝐽�퐶�퐷 as a linear operator acting on the Hilbert
space 𝑉 in (42). As R�퐴�퐵 contains two gamma matrices, it
does not change the chirality of the vector space𝑉.Therefore,
we can represent it in a subspace of definite chirality as either𝑅(+)
�퐴�퐵 : 𝑆+ → 𝑆+ or𝑅(−)

�퐴�퐵 : 𝑆− → 𝑆−.The former case𝑅(+)
�퐴�퐵 : 𝑆+ →𝑆+ takes values in 4 ⊗ 4 in (45) with a singlet being removed

while the latter case𝑅(−)
�퐴�퐵 : 𝑆− → 𝑆− takes values in 4⊗4 in (46)

with no singlet. This implies two independent identifications
defined by

A : 12𝑅(+)
�퐴�퐵�퐶�퐷𝐽�퐶�퐷+ ≡ 𝐹(+)�푎

�퐴�퐵 (𝑇�푎 ⊕ 0) ,
B : 12𝑅(−)

�퐴B�퐶�퐷𝐽�퐶�퐷− ≡ 𝐹(−)�푎
�퐴�퐵 (0 ⊕ (𝑇�푎)∗) , (56)

where class A(B) acts on the subspace 𝑆+ (𝑆−) of positive
(negative) chirality. See Appendix A for the irreducible
representation of Spin(6) and 𝑆𝑈(4). Because classes A and
B in (56) are now represented by 4×4matrices on both sides,
we can take a trace operation for the matrices which leads to
the following relations:

A : 𝑅(+)
�퐴�퐵�퐶�퐷 = −𝐹(+)�푎

�퐴�퐵 Tr (𝑇�푎𝐽�퐶�퐷+ ) ≡ 𝐹(+)�푎
�퐴�퐵 𝜂�푎�퐶�퐷, (57)

B : 𝑅(−)
�퐴�퐵�퐶�퐷 = −𝐹(−)�푎

�퐴�퐵 Tr ((𝑇�푎)∗ 𝐽�퐶�퐷− ) ≡ 𝐹(−)�푎
�퐴�퐵 𝜂�푎�퐶�퐷. (58)

Here we have introduced a six-dimensional analogue of the ’t
Hooft symbols defined by𝜂(±)�푎�퐴�퐵 = −Tr (𝑇�푎

±𝐽�퐴�퐵± ) , (59)

where we used a bookkeeping notation, 𝜂(+)�푎�퐴�퐵 ≡ 𝜂�퐴�퐵, 𝜂(−)�푎�퐴�퐵 ≡𝜂�퐴�퐵, and 𝑇�푎
+ ≡ 𝑇�푎, 𝑇�푎

− ≡ (𝑇�푎)∗. They serve as a complete basis
of the vector space 15 in (45) and (46). An explicit expression
of the six-dimensional ’t Hooft symbols and their algebra are
presented in Appendix B.

Note that 𝐹(±)�푎 = (1/2)𝐹(±)�푎
�퐴�퐵 𝑒(±)�퐴 ∧ 𝑒(±)�퐵 in (56) are the

field strengths of 𝑆𝑈(4) gauge fields.Thus we introduce a pair
of 𝑆𝑈(4) gauge fields (𝐴(+), 𝐴(−)) whose field strengths are
given by 𝐹(±) = 𝑑𝐴(±) + 𝐴(±) ∧ 𝐴(±). (60)

The 𝑆𝑈(4) gauge field 𝐴(+) (𝐴(−)) is nothing but the spin
connection resident in the vector space 𝑆+ (𝑆−) of positive
(negative) chirality; that is,𝜔(±) = 12𝜔(±)

�퐴�퐵𝐽�퐴�퐵± ≅ 𝐴(±) = 𝐴(±)�푎𝑇�푎
±. (61)

Using (B.7), the field strengths can be written as 𝐹(±)�푎
�퐴�퐵 =𝑅(±)

�퐴�퐵�퐶�퐷𝜂(±)�푎�퐶�퐷 = 𝜂(±)�푎�퐶�퐷 𝑅(±)
�퐶�퐷�퐴�퐵. One can apply again the same

expansion to the index pair [𝐴𝐵] of the Riemann tensor

𝑅(±)
�퐶�퐷�퐴�퐵. That is, one can expand the 𝑆𝑈(4) field strengths in

terms of the chiral bases in (59):

A : 𝐹(+)�푎
�퐴�퐵 = 𝑓�푎�푏

(++)𝜂�푏A�퐵, (62)

B : 𝐹(−)�푎
�퐴�퐵 = 𝑓�푎�푏

(−−)𝜂�푏�퐴�퐵. (63)

As was pointed out in (41), the Clifford algebra (40) is
isomorphic to the exterior algebra Λ∗𝑀 as vector spaces, so
the ’t Hooft symbol in (59) has a one-to-one correspondence
with the basis of two forms in Ω2

±(𝑀) = Ω2(𝑀) ⊕ ∗Ω4(𝑀)
depending on the chirality for a given orientation. Conse-
quently, the six-dimensional Riemann curvature tensors can
be expanded as follows:

A : 𝑅(+)
�퐴�퐵�퐶�퐷 = 𝑓�푎�푏

(++)𝜂�푎�퐴�퐵𝜂�푏�퐶�퐷, (64)

B : 𝑅(−)
�퐴�퐵�퐶�퐷 = 𝑓�푎�푏

(−−)𝜂�푎�퐴�퐵𝜂�푏�퐶�퐷. (65)

Note that the index pairs [𝐴𝐵] and [𝐶𝐷] in the curvature
tensor 𝑅(±)

�퐴�퐵�퐶�퐷 have the same chirality structure because of the
symmetry property 𝑅(±)

�퐴�퐵�퐶�퐷 = 𝑅(±)
�퐶�퐷�퐴�퐵.

The Riemann curvature tensor in six dimensions has225 = 15×15 components in total which is the number of the
expansion coefficients𝑓�푎�푏

(±±) in each class. Because the torsion-
free condition has been assumed for the curvature tensors,
the first Bianchi identity 𝑅(±)

�퐴[�퐵�퐶�퐷]
= 0 should be imposed

which leads to 120 constraints for each class. After all, the cur-
vature tensor has 105 = 225 − 120 independent components
which must be equal to the number of remaining expansion
coefficients in class A or B after solving the 120 constraints:𝜀�퐴�퐵�퐶�퐸�퐹�퐺𝑅(±)

�퐷�퐸�퐹�퐺 = 0. (66)

It is worthwhile to notice that the curvature tensor automat-
ically satisfies the symmetry property 𝑅(±)

�퐴�퐵�퐶�퐷 = 𝑅(±)
�퐶�퐷�퐴�퐵 after

dictating the first Bianchi identity (66). Therefore, one can
split the 120 constraints in (66) into the 105 = (15 × 14)/2
conditions imposing the symmetry 𝑅(±)

�퐴�퐵�퐶�퐷 = 𝑅(±)
�퐶�퐷�퐴�퐵 and the

extra 15 conditions.These extra conditions can bemanifest by
considering the tensor product of 𝑆𝑈(4) [20]:

15 ⊗ 15 = (1 + 15 + 20 + 84)�푆 ⊕ (15 + 45 + 45)
�퐴�푆

, (67)

where the first part with 120 components is symmetric and
the second part with 105 components is antisymmetric. It is
obvious from our construction that 𝑓�푎�푏

(±±) ∈ 15 ⊗ 15. The 84
components in the symmetric part is the number ofWeyl ten-
sors in six dimensions and the 21 = 20+1 components refer to
Ricci tensors.The remaining 15 components in the symmetric
part are removed by the first Bianchi identity (66) after
expelling the antisymmetric components in (67).

One can easily solve the symmetry property 𝑅(±)
�퐴�퐵�퐶�퐷 =𝑅(±)

�퐶�퐷�퐴�퐵 with the coefficients satisfying𝑓�푎�푏
(++) = 𝑓�푏�푎

(++),𝑓�푎�푏
(−−) = 𝑓�푏�푎

(−−), (68)
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which results in 120 components for each chirality belonging
to the symmetric part in (67). Now the remaining 15 condi-
tions can be reduced to the equations𝜀�퐴�퐵�퐶�퐷�퐸�퐹𝑅(±)

�퐶�퐷�퐸�퐹 = 0. (69)

It is obvious that (69) gives rise to a nontrivial relation only for
the coefficients satisfying (68). Finally, using (B.9) and (B.10),
(69) can be reduced to the 15 constraints𝑑�푎�푏�푐𝑓�푏�푐

(++) = 𝑑�푎�푏�푐𝑓�푏�푐
(−−) = 0 (70)

for each sector. In the end, 𝑓�푎�푏
(±±) have 105 independent

components for each chirality which precisely match with
the independent components of Riemann curvature tensors
in class A or B .(It may be worthwhile to recall the four-
dimensional situation [12, 13]. In four dimensions, the first
Bianchi identity gives rise to 16 constraints. Thus Riemann
curvature tensors have 20 = 36 − 16 independent compo-
nents. And the 16 constraints split into 15 ones for 𝑅�퐴�퐵�퐶�퐷 =𝑅�퐶�퐷�퐴�퐵 and one more constraint which reads as 𝛿�푎�푏𝑓�푎�푏

(++) =𝛿 ̇�푎�̇푏𝑓 ̇�푎�̇푏
(−−). The last constraint is responsible for the equality of

the Ricci scalar 𝑠 in the chiral and antichiral sectors in (8).
The constraints in (70) correspond to the six-dimensional
analogue of the last one.)

Let us introduce the following (projection) operator
acting on 6 × 6 antisymmetric matrices defined by𝑃�퐴�퐵�퐶�퐷

± ≡ 14 (𝛿�퐴�퐶𝛿�퐵�퐷 − 𝛿�퐴�퐷𝛿�퐵�퐶) ± 18𝜀�퐴�퐵�퐶�퐷�퐸�퐹𝐼�퐸�퐹= 𝑃�퐶�퐷�퐴�퐵
± , (71)

where 𝐼 ≡ I3 ⊗ 𝑖𝜎2. Because any 6 × 6 antisymmetric matrix
of rank 4 spans a four-dimensional subspace R4 ⊂ R6, the
operator (71) in this case can be written in the four-
dimensional subspace as𝑃�퐴�퐵�퐶�퐷

± ≡ 14 (𝛿�퐴�퐶𝛿�퐵�퐷 − 𝛿�퐴�퐷𝛿�퐵�퐶) ± 14𝜀�퐴B�퐶�퐷,(𝐴, 𝐵, 𝐶,𝐷) ∈ R
4, (72)

so it reduces to the projection operator for such rank 4
matrices; that is, 𝑃�퐴�퐵�퐸�퐹

± 𝑃�퐸�퐹�퐶�퐷
± = 𝑃�퐴�퐵�퐶�퐷

± ,𝑃�퐴�퐵�퐸�퐹
± 𝑃�퐸�퐹�퐶�퐷

∓ = 0. (73)

Note that 𝐼�퐴�퐵 is a 6×6 antisymmetric matrix of rank 6. In this
case, the operator (71) does not act as a projection operator
but acts as 𝑃�퐴�퐵�퐶�퐷

± 𝐼�퐶�퐷 = (12 ± 1) 𝐼�퐴�퐵. (74)

In general, one can deduce by a straightforward calculation
the following properties:𝑃�퐴�퐵�퐸�퐹

± 𝑃�퐸�퐹�퐶�퐷
± = 𝑃�퐴�퐵�퐶�퐷

± + 18𝐼�퐴�퐵𝐼�퐶�퐷,𝑃�퐴�퐵�퐸�퐹
± 𝑃�퐸�퐹�퐶�퐷

∓ = −18𝐼�퐴�퐵𝐼�퐶�퐷. (75)

After a little algebra, one can classify the ’t Hooft symbols
in (59) into the eigenspaces of the operator (71):𝑙(+)�푎�퐴�퐵 ≡ {𝜂13�퐴�퐵 = 𝑖2𝜆1 ⊗ 𝜎2, 𝜂14�퐴�퐵 = 𝑖2𝜆2⊗ I2, 1√3 (𝜂8�퐴�퐵 − √2𝜂15�퐴�퐵) = − 𝑖2𝜆3 ⊗ 𝜎2, 𝜂6�퐴�퐵= 𝑖2𝜆4 ⊗ 𝜎2, 𝜂7�퐴�퐵 = − 𝑖2𝜆5 ⊗ I2, 𝜂11�퐴�퐵 = 𝑖2𝜆6⊗ 𝜎2, 𝜂12�퐴�퐵 = − 𝑖2𝜆7⊗ I2, 2√3 (−12𝜂3�퐴�퐵 + 1√3𝜂8�퐴�퐵 + 1√6𝜂15�퐴�퐵) = − 𝑖2𝜆8⊗ 𝜎2} ,

(76)

𝑚(+) ̇�푎
�퐴�퐵 ≡ {𝜂1�퐴�퐵 = 𝑖2𝜆2 ⊗ 𝜎1, 𝜂2�퐴�퐵 = − 𝑖2𝜆2 ⊗ 𝜎3, 𝜂9�퐴�퐵= − 𝑖2𝜆5 ⊗ 𝜎1, 𝜂10�퐴�퐵 = 𝑖2𝜆5 ⊗ 𝜎3, 𝜂4�퐴�퐵 = 𝑖2𝜆7⊗ 𝜎1, 𝜂5�퐴�퐵 = − 𝑖2𝜆7 ⊗ 𝜎3} , (77)

𝑛(+)0�퐴�퐵 ≡ {𝜂3�퐴�퐵 + 1√3𝜂8�퐴�퐵 + 1√6𝜂15�퐴�퐵 = 12𝐼�퐴�퐵 = 12 I3⊗ 𝑖𝜎2} , (78)

where 𝑎, 𝑏̂ = 1, . . . , 8 and ̇𝑎, 𝑏̇ = 1, . . . , 6 are 𝑠𝑢(4) indices
in the entries of 𝑙(+)�푎�퐴�퐵 and 𝑚(+) ̇�푎

�퐴�퐵 , respectively. They obey the
following relations: 𝑃�퐴�퐵�퐶�퐷

− 𝑙(+)�푎�퐶�퐷 = 𝑙(+)�푎�퐴�퐵 ,𝑃�퐴�퐵�퐶�퐷
+ 𝑙(+)�푎�퐶�퐷 = 0,𝑃�퐴�퐵�퐶�퐷

− 𝑚(+) ̇�푎
�퐶�퐷 = 0,𝑃�퐴�퐵�퐶�퐷

+ 𝑚(+) ̇�푎
�퐶�퐷 = 𝑚(+) ̇�푎

�퐴�퐵 ,𝑃�퐴�퐵�퐶�퐷
− 𝑛(+)0�퐶�퐷 = −12𝑛(+)0�퐴�퐵 ,𝑃�퐴�퐵�퐶�퐷
+ 𝑛(+)0�퐶�퐷 = 32𝑛(+)0�퐴�퐵 .

(79)

Thus the (projection) operators (71) decompose the vector
space 15 into their eigenspaces as 15 = 8 ⊕ 6 ⊕ 1.

Similarly, one can also classify the ’t Hooft symbols in
(B.2) into the eigenspaces of the operator (71):

l(−)�푎�퐴�퐵 ≡ {−𝜂13�퐴�퐵 = 𝑖2𝜆1 ⊗ 𝜎2, 𝜂14�퐴�퐵 = 𝑖2𝜆2⊗ I2, 1√3 (−𝜂8�퐴�퐵 + √2𝜂15�퐴�퐵) = − 𝑖2𝜆3 ⊗ 𝜎2, − 𝜂9�퐴�퐵
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= 𝑖2𝜆4 ⊗ 𝜎2, − 𝜂10�퐴�퐵 = − 𝑖2𝜆5 ⊗ I2, 𝜂4�퐴�퐵 = 𝑖2𝜆6⊗ 𝜎2, 𝜂5�퐴�퐵 = − 𝑖2𝜆7⊗ I2, 2√3 (12𝜂3�퐴�퐵 + 1√3𝜂8�퐴�퐵 + 1√6𝜂15�퐴�퐵) = − 𝑖2𝜆8⊗ 𝜎2} ,
𝑚(−) ̇�푎

�퐴�퐵 ≡ {−𝜂1�퐴�퐵 = 𝑖2𝜆2 ⊗ 𝜎1, 𝜂2�퐴�퐵 = − 𝑖2𝜆2 ⊗ 𝜎3,− 𝜂6�퐴�퐵 = − 𝑖2𝜆5 ⊗ 𝜎1, − 𝜂7�퐴�퐵 = 𝑖2𝜆5 ⊗ 𝜎3, 𝜂11�퐴�퐵= 𝑖2𝜆7 ⊗ 𝜎1, 𝜂12�퐴�퐵 = − 𝑖2𝜆7 ⊗ 𝜎3} ,𝑛(−)0�퐴�퐵 ≡ {−𝜂3�퐴�퐵 + 1√3𝜂8�퐴�퐵 + 1√6𝜂15�퐴�퐵 = 12𝐼�퐴�퐵 = 12 I3⊗ 𝑖𝜎2} .
(80)

The same properties such as (79) also hold for the above ’t
Hooft symbols.

The geometrical meaning of the (projection) operators
in (71) can be understood as follows. Consider an arbitrary
two-form vector space (we will indicate the superscript (+) or(−) only when we refer to a quantity belonging to a definite
chirality class; we will often omit the superscript whenever it
is not necessary to specify the chirality class)𝐹 = 12𝐹�푀�푁𝑑𝑥�푀 ∧ 𝑑𝑥�푁 = 12𝐹�퐴�퐵𝑒�퐴 ∧ 𝑒�퐵 ∈ Ω2 (𝑀) (81)

and introduce the 15-dimensional complete basis of two
forms inΩ2

±(𝑀) for each chirality of spin(6) Lorentz algebra𝐽�푎+ ≡ 12𝜂�푎�퐴�퐵𝑒(+)�퐴 ∧ 𝑒(+)�퐵 ∈ Ω2
+ (𝑀) ,𝐽�푎− ≡ 12𝜂�푎�퐴�퐵𝑒(−)�퐴 ∧ 𝑒(−)�퐴 ∈ Ω2
− (𝑀) . (82)

It is easy to derive the following identity using (B.9) and
(B.10): 𝐽�푎± ∧ 𝐽�푏± ∧ 𝐽�푐± = 12𝑑�푎�푏�푐vol (𝑔(±)) , (83)

where vol(𝑔(±)) = √𝑔(±)𝑑6𝑥. The Hodge-dual operator ∗ :Ω�푘(𝑀) → Ω6−�푘(𝑀) is an isomorphism of vector spaces
which depends upon a metric 𝑔(±) and the orientation of 𝑀.
The nowhere vanishing volume form in (83) guarantees that
there exists a set of nondegenerate 2-form vector spaces on𝑀Ω± = 12𝐼�퐴�퐵𝑒(±)�퐴 ∧ 𝑒(±)�퐵= 𝑒(±)1 ∧ 𝑒(±)2 + 𝑒(±)3 ∧ 𝑒(±)4 + 𝑒(±)5 ∧ 𝑒(±)6. (84)

This two-form vector space can be wedged with the Hodge
star to construct a diagonalizable operator on Λ2(𝑀) =Ω2(𝑀) ⊕ ∗Ω4(𝑀) as follows:∗Ω±

≡ ∗ (∙ ∧ Ω±) : Ω2 (𝑀) ∙∧Ω±󳨀󳨀󳨀󳨀→ Ω4 (𝑀) ∗󳨀→ Ω2 (𝑀) (85)

by ∗Ω±
(𝛼) = ∗(𝛼 ∧ Ω±) for 𝛼 ∈ Ω2(𝑀). After a little

inspection, the 15 × 15 matrix representing ∗Ω±
is found

to have the eigenvalues 2, 1 and −1 with the eigenspaces of
dimensions 1, 6, and 8, respectively. On any six-dimensional
orientable spin manifold 𝑀, the space of 2-form Ω2

+(𝑀) in
the positive chirality space can thus be decomposed into three
subspaces: Ω2

+ (𝑀) = Λ2
1 ⊕ Λ2

6 ⊕ Λ2
8, (86)

which coincides with the decomposition in (79). The spacesΛ2
1 and Λ2

6 are locally spanned byΛ2
1 = Ω+,Λ2
6 = {𝐽1+, 𝐽2+, 𝐽4+, 𝐽5+, 𝐽9+, 𝐽10+ } (87)

and Λ2
8 by Λ2

8 = {𝐽6+, 𝐽7+, 𝐽11+ , 𝐽12+ , 𝐽13+ , 𝐽14+ , 𝐾+, 𝐿+} (88)

with 𝐾+ ≡ (1/√3)(𝐽8+ − √2𝐽15+ ) and 𝐿+ ≡ (2/√3)(−(1/2)𝐽3+ +(1/√3)𝐽8+ +(1/√6)𝐽15+ ). A similar decomposition can be done
with the negative chirality basis 𝐽�푎−.

Note that the entries of Λ2
1, Λ2

6, and Λ2
8 coincide with

those of 𝑛(±)0�퐴�퐵 , 𝑚(±) ̇�푎
�퐴�퐵 , and 𝑙(±)�푎�퐴�퐵 , respectively. One can quickly

see that this coincidence is not an accident. Consider the
action of the projection operator (71) on the two-form (81),
which is given by𝑃�퐴�퐵�퐶�퐷

± 𝐹�퐶�퐷 = 12 (𝐹�퐴�퐵 ± 14𝜀�퐴�퐵�퐶�퐷�퐸�퐹𝐹�퐶�퐷𝐼�퐸�퐹) (89)

or in terms of form notation2𝑃±𝐹 = 𝐹 ± ∗ (𝐹 ∧ Ω±) = 𝐹 ± ∗Ω±
𝐹. (90)

It is easy to see that 𝐹 ∈ Λ2
8 if 𝑃+𝐹 = 0, so it satisfies theΩ-anti-self-duality equation∗ (𝐹 ∧ Ω±) = −𝐹, (91)

whereas𝐹 ∈ Λ2
6 satisfies theΩ-self-duality equation𝑃−𝐹 = 0;

that is, ∗ (𝐹 ∧ Ω±) = 𝐹. (92)

It is not difficult to show [1] that the set {𝑙(±)�푎�퐴�퐵 , 𝑛(±)0�퐴�퐵 } can be
identified with 𝑢(3) generators which are embedded in𝑠𝑜(6) ≅ 𝑠𝑢(4). In general, an element of 𝑈(3) group can be
represented as 𝑈 = exp(𝑖 8∑

�푎=0

𝜃�푎𝜆�푎) ≡ 𝑒Θ, (93)
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where 𝜆0 = I3 is a 3 × 3 unit matrix, 𝜆�푎 (𝑎 = 1, . . . , 8) are
the 𝑠𝑢(3) Gell-Mann matrices, and 𝜃�푎’s are real parameters
for 𝑈 to be unitary. The 3 × 3 anti-Hermitian matrix Θ
consists ofmatrix elementswhich are complex numbersΘ�푖�푗 =−(Θ�푗�푖)∗ (𝑖, 𝑗 = 1, 2, 3) and it can easily be embedded into
a 6 × 6 real matrix in 𝑠𝑜(6) Lie algebra by replacing Θ�푖�푗 =
ReΘ�푖�푗+𝑖 ImΘ�푖�푗 by the 2×2 realmatrix Θ̃�퐴�퐵 = I2 ⋅ReΘ�푖�푗+𝑖𝜎2 ⋅
ImΘ�푖�푗. A straightforward calculation (see (B.17)) shows that
the resulting 6 × 6 antisymmetric real matrix Θ̃�퐴�퐵 can be
written asΘ̃�퐴�퐵 = 2 (𝜃0𝑛(±)0�퐴�퐵 + 𝜃�푎𝑙(±)�푎�퐴�퐵 ) = 𝑃�퐴�퐵�퐶�퐷

− Θ̃�퐶�퐷 + 3𝜃0𝑛(±)0�퐴�퐵 . (94)

Note that 𝑈(3) is the holonomy group of Kähler mani-
folds. That is, the projection operators in (71) can serve to
project a Riemannian manifold whose holonomy group is𝑆𝑂(6) into a Kähler manifold with 𝑈(3) holonomy. Let us
show that it is indeed the case. Suppose that 𝑀 is a complex
manifold. Let us introduce local complex coordinates 𝑧�훼 ={𝑥1+𝑖𝑥2, 𝑥3+𝑖𝑥4, 𝑥5+𝑖𝑥6}, 𝛼 = 1, 2, 3 and their complex con-
jugates 𝑧�훼, 𝛼 = 1, 2, 3, in which a complex structure 𝐽 takes
the form 𝐽�훼�훽 = 𝑖𝛿�훼�훽, 𝐽�훼�훽 = −𝑖𝛿�훼�훽 [1]. Note that, relative to
the real basis 𝑥�푀, 𝑀 = 1, . . . , 6, the complex structure is
given by 𝐽 = 𝐼 = I3 ⊗ 𝑖𝜎2 which was already introduced
in (71). We further impose the Hermitian condition on the
complex manifold𝑀 defined by 𝑔(𝑋, 𝑌) = 𝑔(𝐽𝑋, 𝐽𝑌) for any𝑋,𝑌 ∈ Γ(𝑇𝑀). This means that the Riemannian metric 𝑔 on
the complex manifold𝑀 is a Hermitian metric; that is, 𝑔�훼�훽 =𝑔�훼�훽 = 0, 𝑔�훼�훽 = 𝑔�훽�훼. The Hermitian condition can be solved
by taking the vielbeins as𝑒�푖�훼 = 𝑒�푖�훼 = 0,𝐸�훼

�푖 = 𝐸�훼

�푖
= 0, (95)

where a tangent space index𝐴 = 1, . . . , 6 has been split into a
holomorphic index 𝑖 = 1, 2, 3 and an antiholomorphic index𝑖 = 1, 2, 3. This in turnmeans that 𝐽�푖�푗 = 𝑖𝛿�푖�푗, 𝐽�푖�푗 = −𝑖𝛿�푖�푗. Then
one can see that the two-formΩ± in (84) is aKähler form; that
is,Ω±(𝑋, 𝑌) = 𝑔(±)(𝐽𝑋, 𝑌), and it is given byΩ± = 𝑖𝑒(±)�푖 ∧ 𝑒(±)�푖 = 𝑖𝑒(±)�푖�훼 𝑒(±)�푖

�훽
𝑑𝑧�훼 ∧ 𝑑𝑧�훽= 𝑖𝑔(±)

�훼�훽
𝑑𝑧�훼 ∧ 𝑑𝑧�훽, (96)

where 𝑒(±)�푖 = 𝑒(±)�푖�훼 𝑑𝑧�훼 is holomorphic one form and 𝑒(±)�푖 =𝑒(±)�푖
�훼

𝑑𝑧�훼 is antiholomorphic one form. It is also easy to see
that the condition for a Hermitian manifold (𝑀, 𝑔(±)) to be
Kähler, that is, 𝑑Ω± = 0, is equivalent to the one where the
spin connection 𝜔(±)

�퐴�퐵 is 𝑈(3)-valued; that is,𝜔(±)
�푖�푗 = 𝜔(±)

�푖�푗
= 0. (97)

Therefore, the spin connection after theKähler condition (97)
can be written as the form (94).

All the above results can be clearly understood by the
properties of Spin(6) and 𝑆𝑈(4) groups. Introducing complex
coordinates onR6 means that one has to consider the Lorentz
subgroup 𝑈(3) ⊂ 𝑆𝑈(4) acting on C3 ⊂ C4 and so one
decomposes the 4 and 4 of 𝑆𝑈(4) as 4 = 11 ⊕ 3−1/3 and
4 = 1−1⊕31/3 under𝑈(3) = 𝑈(1)×𝑆𝑈(3)where the subscripts
denote 𝑈(1) charges. Using the branching rule of 𝑆𝑈(4) ⊃𝑈(1) × 𝑆𝑈(3) [20], one can get the following decompositions
after removing 𝑆𝑈(4) singlets:

4 ⊗ 4 − 1 = (3 ⊗ 3)
0
⊕ (3−4/3 ⊕ 34/3)= (8 ⊕ 1)0 ⊕ (3−4/3 ⊕ 34/3) ,

4 ⊗ 4 − 1 = (3 ⊗ 3)
0
⊕ (3−4/3 ⊕ 34/3)= (8 ⊕ 1)0 ⊕ (3−4/3 ⊕ 34/3) .

(98)

The spin connection 𝜔�퐴�퐵 ∈ 15 can be decomposed according
to the above branching rule as𝜔�푖�푗 ∈ 3−4/3,𝜔�푖�푗 ∈ 34/3,𝜔�푖�푗 − 13𝛿�푖j𝜔�푘�푘 ∈ 80,𝜔�푖�푖 ∈ 10.

(99)

Hence the Kähler condition (97)means that spin connections
in 3−4/3 and 34/3 decouple from the theory and only the
components in 80 and 10 survive. It is now obvious why we
could have such decompositions in (76)–(80) in which 𝑙(±)�푎�퐴�퐵 ∈
80,𝑚(±) ̇�푎

�퐴�퐵 ∈ (3−4/3 ⊕ 34/3), and 𝑛(±)0�퐴�퐵 ∈ 10.
One can rephrase the Kähler condition (97) using the

gauge theory formalism. From the identification 𝜔(±) ≡Γ±𝜛 = 𝐴(±)�푎𝑇�푎
± in (61), we get the relation𝜔(±)

�퐴�퐵 = 𝐴(±)�푎𝜂(±)�푎�퐴�퐵 , 𝐴(±)�푎 = −2Tr (𝜔(±)𝑇�푎
±) . (100)

We will focus on type A case as the same analysis can be
applied to type B case. If (𝑀, 𝑔(+)) is a Kähler manifold, (97)
means that𝐴(+)1 = 𝐴(+)2 = 𝐴(+)4 = 𝐴(+)5 = 𝐴(+)9 = 𝐴(+)10 = 0 (101)

because 𝜂�푎�푖�푗 ̸= 0 only for 𝑎 = 1, 2, 4, 5, 9, 10; otherwise, 𝜂�푎�푖�푗 = 0.
See (B.17). This result is consistent with the branching rule
(99); that is, 𝑚(+) ̇�푎

�퐴�퐵 ∈ (3−4/3 ⊕ 34/3). In other words, 𝐴(+) ̇�푎 =0 and so the gauge fields take values in 𝑢(3) Lie algebra
according to the result (94). Then the 𝑆𝑈(4) structure con-
stants 𝑓�푎�푏�푐 in Table 1 guarantee that the corresponding field
strengths also vanish; that is,𝐹(+)�푎 = 12𝑓�푎�푏

(++)𝜂�푏�퐴�퐵𝑒(+)�퐴 ∧ 𝑒(+)�퐵 = 0 (102)
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Table 1: The nonvanishing structure constants 𝑓�푎�푏�푐.𝑎 𝑏 𝑐 𝑓�푎�푏�푐

1 2 3 1
1 4 7 1/2
1 5 6 −1/2
1 9 12 1/2
1 10 11 −1/2
2 4 6 1/2
2 5 7 1/2
2 9 11 1/2
2 10 12 1/2
3 4 5 1/2
3 6 7 −1/2
3 9 10 1/2
3 11 12 −1/2
4 5 8 √3/2
4 9 14 1/2
4 10 13 −1/2
5 9 13 1/2
5 10 14 1/2
6 7 8 √3/2
6 11 14 1/2
6 12 13 −1/2
7 11 13 1/2
7 12 14 1/2
8 9 10 1/2√3
8 11 12 1/2√3
8 13 14 −1/√3
9 10 15 √2/3
11 12 15 √2/3
13 14 15 √2/3
for 𝑎 = 1, 2, 4, 5, 9, 10. Thus we get 𝑓 ̇�푎�푏

(++) = 0 for ∀𝑏 =1, . . . , 15. This immediately leads to the conclusion that𝐹(+)�푎 = 𝑑𝐴(+)�푎 − 12𝑓�푎�푏�푐𝐴(+)�푏 ∧ 𝐴(+)�푐 = 𝑓�푎�푏
(++)𝐽�푏+∈ Λ2

8 ⊕ Λ2
1, (103)

where 𝐹(+)�푎, 𝑎 = 0, 1, . . . , 8, are the field strengths of 𝑈(3)
gauge fields. As will be shown below, 𝐹(+)0 ∈ Λ2

1 is the field
strength of the𝑈(1) part of𝑈(3) spin connections and𝐹(+)�푎 ∈Λ2

8, 𝑎 = 1, . . . , 8, belong to the 𝑆𝑈(3) part. In particular, as𝐹(+)�푎 ∈ Λ2
8, they satisfy the Ω-anti-self-duality equation (91)

known as the HYM equation [17, 18]𝐹(+)�푎 = − ∗ (𝐹(+)�푎 ∧ Ω+) , 𝑎 = 1, . . . , 8. (104)

It is well-known [1] that the Ricci-tensor of a Kähler
manifold is the field strength of the 𝑈(1) part of the 𝑈(3)
spin connection. Therefore, the Ricci-flat condition can be
stated as 𝐹(+)0 = 0. One can explicitly check it as follows.
Recall that 𝐹(+)�푎

�퐴�퐵 = 𝑓�푎�푏
(++)𝜂�푏�퐴�퐵. Using the result (102), one

can see that the nonzero components of 𝑓�푎�푏
(++) run only over

(𝑎, 𝑏) ∈ {3, 6, 7, 8, 11, 12, 13, 14, 15}. Thereby the constraint
(70) becomes nontrivial only for those values. As a result,
the number of independent components of 𝑓�푎�푏

(++) is given by(9 × 10)/2 − 9 = 36. The Ricci-flat condition 𝑅(+)
�퐴�퐵 ≡ 𝑅(+)

�퐴�퐶�퐵�퐶 =𝑓�푎�푏
(++)𝜂�푎�퐴�퐶𝜂�푏�퐵�퐶 = 0 further constrains the coefficients. A close

inspection shows that out of 21 equations, 𝑅(+)
�퐴�퐵 = 0, only 9

equations are independent and, after utilizing the constraint
(70), the equations for the Ricci-flatness can be succinctly
arranged as 𝑓3�푎

(++) + 1√3𝑓8�푎
(++) + 1√6𝑓15�푎

(++) = 0. (105)

The above condition means that𝐹(+)0
�퐴�퐵 = (𝑓3�푎

(++) + 1√3𝑓8�푎
(++) + 1√6𝑓15�푎

(++)) 𝜂�푎�퐴�퐵= 𝐹(+)3
�퐴�퐵 + 1√3𝐹(+)8

�퐴�퐵 + 1√6𝐹(+)15
�퐴�퐵 = 0. (106)

If one introduces a gauge field defined by𝐴(+)0 ≡ 𝜔(+)
�퐴�퐵𝑛(+)0�퐴�퐵 = 𝐴(+)3 + 1√3𝐴(+)8 + 1√6𝐴(+)15, (107)

one can show that the field strength in (106) is given by𝐹(+)0 = 𝑑𝐴(+)0 (108)

after using the fact that the 𝑈(3) structure constants 𝑓�푎�푏�푐

satisfy the following relation:𝑓3�푎�푏 + 1√3𝑓8�푎�푏 + 1√6𝑓15�푎�푏 = 0. (109)

The relation (109) is easy to understand because the 𝑈(1)
part among the 𝑈(3) structure constants has to vanish. This
establishes the result that the Ricci-flatness is equal to the
vanishing of the 𝑈(1) field strength. That is, 𝐹(+)0 = 𝑑𝐴(+)0 ∈Λ2

1 has a trivial first Chern class.
The same result can be obtained for type B case. The

Kähler condition (97) can similarly be solved by𝐴(−)1 = 𝐴(−)2 = 𝐴(−)6 = 𝐴(−)7 = 𝐴(−)11 = 𝐴(−)12 = 0. (110)

Note that the entries of 𝑈(3) generators for type B case are
different from those for type A case. The Ricci-flat condition𝑅(−)
�퐴�퐵 ≡ 𝑅(−)

�퐴�퐶�퐵�퐶 = 𝑓�푎�푏
(−−)𝜂�푎�퐴�퐶𝜂�푏�퐵�퐶 = 0 leads to the equation−𝑓3�푎
(−−) + 1√3𝑓8�푎

(−−) + 1√6𝑓15�푎
(−−) = 0. (111)

It is equivalent to the vanishing of𝑈(1) field strength; that is,𝐹(−)0 = 𝑑𝐴(−)0 = 0, where the 𝑈(1) gauge field is defined by𝐴(−)0 ≡ 𝜔(−)
�퐴�퐵𝑛(−)0�퐴�퐵 = −𝐴(−)3 + 1√3𝐴(−)8 + 1√6𝐴(−)15. (112)

This fact can be derived by using the fact that the 𝑈(3)
structure constants 𝑓�푎�푏�푐 for type B case satisfy the following
relation: −𝑓3�푎�푏 + 1√3𝑓8�푎�푏 + 1√6𝑓15�푎�푏 = 0, (113)
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where 𝑎, 𝑏 now run over 3, 4, 5, 8, 9, 10, 13, 14, 15. Hence one
can see that CYmanifolds for typeB case also obey the HYM
equations 𝐹(−)�푎 = − ∗ (𝐹(−)�푎 ∧ Ω−) , 𝑎 = 1, . . . , 8. (114)

Note that the HYM equations for a vector bundle 𝐸
over a CY manifold 𝑀 define a set of differential equations
satisfied by the gauge fields of the vector bundle 𝐸 → 𝑀.
In general, the connection of a vector bundle 𝐸 → 𝑀 over
a CY manifold 𝑀 is not related to the spin connection of
the CY manifold 𝑀 unless 𝐸 = 𝑇𝑀. For example, the 𝐺-
bundle over a CY manifold 𝑀 is such a case. However, in
our case, we have adopted the so-called standard embedding𝐸 = 𝑇𝑀, where 𝑇𝑀 is the tangent bundle of a CY manifold𝑀. Then the gauge fields of 𝐸 = 𝑇𝑀 are the spin connections
on the tangent bundle 𝑇𝑀 of the CY manifold 𝑀. Since
the tangent bundle 𝑇𝑀 is defined by the CY manifold 𝑀
itself, the HYM instanton in this case is inherited from the
CY manifold. Therefore, the HYM instanton for the tangent
bundle 𝑇𝑀 cannot be identified with an ordinary Yang-Mills
instanton on a fixed background manifold since the Yang-
Mills connection of 𝑇𝑀 is directly determined by the CY
manifold𝑀.

In summary, the Kähler condition (97) projects the ’t
Hooft symbols to𝑈(3)-valued ones in 10⊕80 and results in the
reduction of the gauge group from 𝑆𝑈(4) to 𝑈(3). The Ricci-
flatness is equivalent to the condition𝐹(±)0 = 𝑑𝐴(±)0 = 0 ∈ 10,
so the gauge group is further reduced to 𝑆𝑈(3). Remaining
spin connections are 𝑆𝑈(3) gauge fields that belong to 80 and
satisfy the HYM (104) or (114). As a Kähler manifold with the
trivial first Chern class is a CY manifold, we see that the CY
condition is equivalent to theHYM equations whose solution
is known as HYM instantons [1]. Consequently, we find that
a six-dimensional CY manifold automatically satisfies the
HYM equations in 𝑆𝑈(3) Yang-Mills gauge theory, but the
converse is not generally true.

4. Mirror Symmetry of Calabi-Yau Manifolds

In this section we want to explore the geometrical properties
of six-dimensional Riemannian manifolds in the irreducible
representations A and B. In Section 2, we have introduced
dual vielbeins 𝑒�퐴 = (∗ℎ)�퐴 and dual spin connections𝜔̃�퐴�퐵 = (∗𝜃)�퐴�퐵 in addition to usual ones (𝑒�퐴, 𝜔�퐴�퐵). The dual
geometric structure described by (𝑒�퐴, 𝜔̃�퐴�퐵) ≅ (ℎ�퐴, 𝜃�퐴�퐵) is
basically originated from the Hodge duality of the exterior

algebra Λ∗𝑀 on an orientable manifold𝑀. According to the
chiral structure of irreducible representations in (45)–(48),
we have associated two geometric structures (𝑒(+)�퐴, 𝜔(+)

�퐴�퐵) and(𝑒(−)�퐴, 𝜔(−)
�퐴�퐵) on a spin manifold𝑀 where𝑒(±)�퐴 = 12 (𝑒 ± 𝑒)�퐴 = 12 (𝑒 ± ∗ℎ)�퐴 ,𝜔(±)

�퐴�퐵 = 12 (𝜔 ± 𝜔̃)�퐴�퐵 = 12 (𝜔 ± ∗𝜃)�퐴�퐵 . (115)

This means that there are two independent ways to charac-
terize a six-dimensional spin manifold. Accordingly we can
consider two kinds of Riemannian manifolds depicted by the
metrics 𝑑𝑠2A = 𝑒(+)�퐴 ⊗ 𝑒(+)�퐴,𝑑𝑠2B = 𝑒(−)�퐴⊗(−)�퐴, (116)

where A and B refer to their chirality class. Each of the
metrics defines their own spin connections 𝜔(±)

�퐴�퐵 = 𝜔(±)
�퐴�퐵(𝑒(±))

through the torsion-free condition (34). Generally speaking,
the six-dimensional spin manifolds described by A and B

metrics (116) are independent of each other, so the variety is
simply doubled due to the Hodge duality on Λ∗𝑀.

The spin connections can take arbitrary values as far as
they satisfy the integrability condition (35). Their symmetry
properties can be characterized by decomposing them into
the irreducible subspaces under 𝑆𝑂(6) group:

=⊗ ⊕ABC ∈  ⊗  = =  ⊕  (117)

where = 20 is a completely antisymmetric part of spin
connections defined by 𝜔[�퐴�퐵�퐶] = (1/3)(𝜔�퐴�퐵�퐶 +𝜔�퐵�퐶�퐴 +𝜔�퐶�퐴�퐵).
In six dimensions, the spin connections𝜔[�퐴�퐵�퐶]maybe further
decomposed into (imaginary) self-dual (sd) and anti-self-
dual (asd) parts; that is,𝜔[�퐴�퐵�퐶] = (𝜔�푠�푑

[�퐴�퐵�퐶] ∈ 10) ⊕ (𝜔�푎�푠�푑
[�퐴�퐵�퐶] ∈ 10) . (118)

The above decomposition may be shaky because = 20 is
already an irreducible representation of 𝑆𝑂(6). It is just for
a heuristic comparison with the irreducible 𝑆𝑈(4) represen-
tation. Note that 6 is coming from the antisymmetric tensor
in 4 × 4 in (47) or 4 × 4 in (48). Thus, under 𝑆𝑈(4) group,
one can instead get the following decomposition of the spin
connections [20]:

=  = ⊕  = ⊕ ⊕  = .⊗ABC ∈  ⊗  = = (119)

Hence notice that the irreducible representation of 𝑆𝑈(4) for
spin connections is more refined than the irreducible spinor
representation of 𝑆𝑂(6). Given a metric 𝑑𝑠2 = 𝑒�퐴 ⊗ 𝑒�퐴, one can determine the

spin connection 𝜔�퐴�퐵 using the torsion free condition, 𝑇�퐴 =𝑑𝑒�퐴 + 𝜔�퐴
�퐵 ∧ 𝑒�퐵 = 0. Because we are dictating an irreducible
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spinor representation of local Lorentz symmetry for the iden-
tification (17), it is necessary to specify which representation
is chosen to embed the spin connection𝜔�퐴�퐵. One can equally
choose either the positive or negative chiral representation.
This situation may be familiar with a supersymmetric solu-
tion in supergravity. To be specific, consider the supersymme-
try transformation of six-dimensional gravitino Ψ�푀 given by𝛿Ψ�푀 = 𝐷�푀𝜂, where aDirac operator𝐷�푀 = 𝜕�푀+𝜔�푀 acts on a
chiral spinor 𝜂.Then a background geometry obeying 𝛿Ψ�푀 =𝐷�푀𝜂 = 0 must satisfy a well-known condition [𝐷�푀, 𝐷�푁]𝜂 =(1/2)𝑅�푀�푁�푃�푄𝐽�푃�푄𝜂 = 0. In this case the representation is
determined by an unbroken supersymmetry generated by
the chiral spinor 𝜂. Hence the corresponding 𝑆𝑈(4) gauge
fields are also identified according to themap (61), depending
on the chiral representation chosen by the supersymmetric
background geometry. Whenever a metric is known in a
specific chiral representation, one can determine the coeffi-
cients 𝑓�푎�푏

(++) in (64) or 𝑓�푎�푏
(−−) in (65) through the explicit cal-

culation of Riemann curvature tensors. Since the geometric
structures described by the data (𝑒(+)�퐴, 𝜔(+)

�퐴�퐵) and (𝑒(−)�퐴, 𝜔(−)
�퐴�퐵)

are completely independent of each other, one can attribute
them to two different Riemannian manifolds.

So let us denote the geometric structures (𝑒(+)�퐴, 𝜔(+)
�퐴�퐵)

and (𝑒(−)�퐴, 𝜔(−)
�퐴�퐵) by A and B, respectively, according to

(31). Suppose that the geometric structures (A,B) describe
a pair of six-dimensional spin manifolds (𝑀+,𝑀−). Since
each manifold can be described by either A-type or B-
type, the geometric data for the pair are given by either(𝑀+(A),𝑀−(B)) or (𝑀+(B),𝑀−(A)).This pairing has shown
up in Figure 1. In general, the manifolds (𝑀+,𝑀−) in the
pair are assumed to be different even topologically. Given
their metrics for the pair, one can determine the coefficients(𝑓�푎�푏

(++), 𝑓�푎�푏
(−−)) in (64) and (65). Since the pair consist of

independent manifolds, it is possible to arrange the pair
such that the coefficients (𝑓�푎�푏

(++), 𝑓�푎�푏
(−−)) obey some relation,

for example, (1). To be specific, let us choose the embedding(𝑀+(A),𝑀−(B)). Thus one CY manifold 𝑀+ = 𝑀 is
described by themetric 𝑑𝑠2A = 𝑒(+)�퐴⊗𝑒(+)�퐴 of typeAwhile the
other CYmanifold𝑀− = 𝑀̃ is described by the metric 𝑑𝑠2B =𝑒(−)�퐴 ⊗ 𝑒(−)�퐴 of type B. The Euler characteristic 𝜒(𝑀) of a
six-dimensional Riemannian manifold𝑀 is defined by𝜒 (𝑀) = 6∑

�푟=0

(−)�푟 𝑏�푟, (120)

where 𝑏�푟 = ∑�푝+�푞=�푟 ℎ�푝,�푞(𝑀) is the 𝑟th Betti number. A mirror
pair of CY manifolds (𝑀, 𝑀̃) obeys the property ℎ�푝,�푞(𝑀) =ℎ3−�푝,�푞(𝑀̃). This property leads to an important result that the
Euler characteristic of themirrormanifold 𝑀̃ has an opposite
sign; that is, 𝜒(𝑀̃) = −𝜒(𝑀). Thus the mirror symmetry
implies that everyCYmanifold has a partnerwith an opposite
Euler characteristic. We will use this fact to identify a mirror
CY manifold.

Recall that the CY manifold 𝑀 is of type A while the
other CY manifold 𝑀̃ is of type B. Thus the spin connection
of 𝑀 (𝑀̃) acts on the spinor vector space 𝑆+ = 4 (𝑆− =
4) of positive (negative) chirality. Since classes A and B are

completely independent and defined in the different vector
spaces, one can choose the pair (𝑀, 𝑀̃) such that their Euler
characteristics satisfy the relation 𝜒(𝑀) = −𝜒(𝑀̃) and so the
mirror relation (1). Let us explain why this is possible.

Every complex vector bundle 𝐸 of rank 𝑛 has an underly-
ing real vector bundle 𝐸R of rank 2𝑛, obtained by discarding
the complex structure on each fiber. Then the top Chern
class of a complex vector bundle 𝐸 is the Euler class of its
realization [21]: 𝑐�푛 (𝐸) = 𝑒 (𝐸R) , (121)

where 𝑛 = rank𝐸.Therefore, the Euler characteristic 𝜒(𝑀) of𝑀 for a tangent bundle 𝐸R = 𝑇𝑀 is given by the integral of
the top Chern class: 𝜒 (𝑀) = ∫

�푀
𝑐�푛 (𝐸) . (122)

Recall that if 𝐸 is a complex vector bundle, then there exists
a dual or conjugate bundle 𝐸 with an opposite complex
structure whose 𝑗th Chern class is given by [9, 21]𝑐�푗 (𝐸) = (−1)�푗 𝑐�푗 (𝐸) . (123)

The Euler characteristic 𝜒(𝑀) for a six-dimensional
Riemannian manifold𝑀 is given by𝜒 (𝑀) ≡ − 127 ⋅ 3𝜋3

∫
�푀

𝜀�퐴1�퐴2 ⋅⋅⋅�퐴6𝑅�퐴1�퐴2
∧ 𝑅�퐴3�퐴4

∧ 𝑅�퐴5�퐴6= − 1210 ⋅ 3𝜋3⋅ ∫
�푀

𝑑6𝑥𝜀�푀1�푀2 ⋅⋅⋅�푀6𝜀�퐴1�퐴2⋅⋅⋅�퐴6𝑅�푀1�푀2�퐴1�퐴2
𝑅�푀3�푀4�퐴3�퐴4

𝑅�푀5�푀6�퐴5�퐴6
. (124)

On one hand, for type A in (57) where 𝑅(+)
�퐴�퐵 = 𝐹(+)�푎𝜂�푎�퐴�퐵, it is

given by𝜒+ (𝑀)= − 127 ⋅ 3𝜋3
∫
�푀

𝜀�퐴1�퐴2⋅⋅⋅�퐴6𝑅(+)
�퐴1�퐴2

∧ 𝑅(+)
�퐴3�퐴4

∧ 𝑅(+)
�퐴5�퐴6= − 1210 ⋅ 3𝜋3

∫
�푀

(𝜀�퐴1�퐴2⋅⋅⋅�퐴6𝜂�푎�퐴1�퐴2𝜂�푏�퐴3�퐴4𝜂�푐�퐴5�퐴6) 𝐹(+)�푎

∧ 𝐹(+)�푏 ∧ 𝐹(+)�푐= − 196𝜋3
∫
�푀

𝑑�푎�푏�푐𝐹(+)�푎 ∧ 𝐹(+)�푏 ∧ 𝐹(+)�푐,
(125)

where (B.9) was used. On the other hand, for type B in (58)
where 𝑅(−)

�퐴�퐵 = 𝐹(−)�푎𝜂�푎�퐴�퐵, the Euler characteristic (124) can be
written as𝜒− (𝑀̃)= 127 ⋅ 3𝜋3

∫̃
�푀

𝜀�퐴1�퐴2 ⋅⋅⋅�퐴6𝑅(−)
�퐴1�퐴2

∧ 𝑅(−)
�퐴3�퐴4

∧ 𝑅(−)
�퐴5�퐴6= 196𝜋3

∫̃
�푀

𝑑�푎�푏�푐𝐹(−)�푎 ∧ 𝐹(−)�푏 ∧ 𝐹(−)�푐, (126)
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where (B.10) was used (in order to define the Euler charac-
teristic for type B, it is considered that the flip of chirality
corresponds to the parity transformation (see Appendix A)
and so the orientation reversal. That is the reason for the sign
flip of 𝜒−(𝑀̃). But there is some ambiguity for the choice of
sign because the six-dimensional Euler characteristic needs
not be positive unlike the four-dimensional case. This sign
ambiguity is insignificant since it can be compensated with
the redefinition 𝑅(−)

�퐴�퐵 → −𝑅(−)
�퐴�퐵. Hence one may keep the

same sign convention for 𝜒+(𝑀) and 𝜒−(𝑀̃). In any case the
mirror pair (𝑀, 𝑀̃)will be defined by the condition 𝜒+(𝑀) =−𝜒−(𝑀̃). The doubling of geometric variety guarantees the
freedom to arrange a mirror pair (𝑀, 𝑀̃) to satisfy the rela-
tion 𝜒+(𝑀) = −𝜒−(𝑀̃)). It is straightforward to represent the
above Euler characteristics in terms of the chiral bases (62)
and (63). For type A where 𝐹(+)�푎 = 𝑓�푎�푏

(++)𝐽�푏+, 𝜒+(𝑀) using the
identity (83) reads as𝜒+ (𝑀)= − 1192𝜋3

∫
�푀

𝑑6𝑥√𝑔(+)𝑑�푎�푏�푐𝑑�푑�푒�푓𝑓�푎�푑
(++)𝑓�푏�푒

(++)𝑓�푐�푓

(++)
. (127)

Similarly, 𝜒−(𝑀̃) for type B where 𝐹(−)�푎 = 𝑓�푎�푏
(−−)𝐽�푏− can be

written as𝜒− (𝑀̃)= 1192𝜋3
∫̃
�푀

𝑑6𝑥√𝑔(−)𝑑�푎�푏�푐𝑑�푑�푒�푓𝑓�푎�푑
(−−)𝑓�푏�푒

(−−)𝑓�푐�푓

(−−)
. (128)

Recall that two irreducible spinor representations of
Spin(6) can be identified with the fundamental and antifun-
damental representations of 𝑆𝑈(4). By choosing a complex
structure, the Spin(6) tangent bundle 𝑇𝑀 reduces to a 𝑈(3)
vector bundle 𝐸. In order to utilize the relation (122), let us
consider the 𝑈(3) ⊂ 𝑆𝑈(4) subbundle 𝐸 such that 𝑇𝑀 ⊗ C =𝐸 ⊕ 𝐸. Note that 𝑈(3) does not mix an underlying complex
structure.Thus we embed classA into the𝑈(3) vector bundle𝐸 over 𝑀. Similarly, by considering the complexification𝑇𝑀̃ ⊗ C = 𝐹 ⊕ 𝐹, class B is embedded into the 𝑈(3) vector
bundle 𝐹 over 𝑀̃. It is important to recall that the curvature
coefficients 𝑓�푎�푏

(++) and 𝑓�푎�푏
(−−) are determined by completely

independent metrics 𝑔(+) on 𝑀 and 𝑔(−) on 𝑀̃, respectively.
Therefore, it is always possible to find a pair (𝑀, 𝑀̃) such that
the Euler characteristics (127) for typeA and (128) for type B
have a precisely opposite sign; that is,𝜒+(𝑀) = −𝜒−(𝑀̃). For a
CYmanifold𝑀whose holonomy is 𝑆𝑈(3), the structure con-
stants 𝑑�푎�푏�푐 take values only in the 𝑠𝑢(3) ⊂ 𝑢(3) Lie algebra. In
this case, the Euler characteristic 𝜒(𝑀) is given by [1]𝜒 (𝑀) = 2 (ℎ1,1 (𝑀) − ℎ2,1 (𝑀)) . (129)

Considering the definition of the Hodge number ℎ�푝,�푞(𝑀) =
dim𝐻�푝,�푞(𝑀) ≥ 0, the sign flip of the Euler characteristics,𝜒+(𝑀) = −𝜒−(𝑀̃), can be explained if the pair (𝑀, 𝑀̃) satisfy
the mirror relation ℎ1,1 (A) = ℎ2,1 (B) ,ℎ1,1 (B) = ℎ2,1 (A) . (130)

Indeed themirror relation (130) is the only way to explain the
sign flip of the Euler characteristic.

The mirror symmetry (130) can be further clarified by
using the fact that the Euler characteristic 𝜒(𝑀) of a spin
manifold 𝑀 is related to the index of the Dirac operator on𝑀 [2]. Denote the Dirac index for fermion fields in a rep-
resentation 𝑅 by index(𝑅). The Euler characteristic 𝜒(𝑀) is
then given by 𝜒 (𝑀) = index (𝑅) − index (𝑅) , (131)

where 𝑅 is the complex conjugate representation of 𝑅. Let 4
be the fundamental representation of 𝑆𝑈(4) and 4 its complex
conjugate, that is, the antifundamental representation. Then
index(4) = −index(4) since in six dimensions the complex
conjugation exchanges positive and negative chirality zero
modes while also exchanging 4 and 4. Under the 𝑆𝑈(3)
representation, 4 = 1 ⊕ 3 and 4 = 1 ⊕ 3, where index(1) =
index(1) = 0, so the Euler characteristic (131) is given by [2]𝜒 (𝑀) = index (4) − index (4) = 2 index (4)= index (3) − index (3) = 2 index (3) . (132)

Then the identity (132) immediately implies the relation𝜒+(𝑀) = −𝜒−(𝑀̃) for a pair of spin manifolds embedded in
the opposite chirality representations 4 and 4 (or 3 and 3 for
CY manifolds). This result is consistent with the mirror
symmetry (130) since A ≅ 3 and B ≅ 3.

5. Mirror Symmetry from Gauge Theory

In Section 3, the six-dimensional Euclidean gravity has been
formulated as 𝑆𝑈(4) ≅ Spin(6) Yang-Mills gauge theory. It
was shown that a Kählermanifold is described by the reduced𝑈(3) ⊂ 𝑆𝑈(4) gauge symmetry. After imposing the Ricci-
flat condition on the Kähler manifold, the gauge group in
the Yang-Mills theory is further reduced to 𝑆𝑈(3). After all, a
CY manifold 𝑀 from the gauge theory point of view can be
described by 𝑆𝑈(3) connections supported on 𝑀 satisfying
the HYM equations. And the mirror symmetry says that a
CY manifold has a mirror pair satisfying the relation (1).
Therefore, there must be a corresponding HYM instanton
which can be derived from amirror CYmanifold obeying the
mirror relation (130). In this section we will identify the mir-
ror HYM instanton from the gauge theory approach and then
clarify the mirror symmetry between CY manifolds from
the gauge theory formulation.

Suppose that themetric of a six-dimensional Riemannian
manifold𝑀 is given by𝑑𝑠2 = 𝑔�푀�푁 (𝑥) 𝑑𝑥�푀𝑑𝑥�푁. (133)

Let 𝜋 : 𝐸 → 𝑀 be an 𝑆𝑈(4) bundle over𝑀 whose curvature
is defined by𝐹 = 𝑑𝐴 + 𝐴 ∧ 𝐴= 12 (𝜕�푀𝐴�푁 − 𝜕�푁𝐴�푀 + [𝐴�푀, 𝐴�푁]) 𝑑𝑥�푀 ∧ 𝑑𝑥�푁, (134)
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where 𝐴 = 𝐴�푎
�푀(𝑥)𝑇�푎𝑑𝑥�푀 is a connection one-form vector

space on the vector bundle 𝐸. The generators 𝑇�푎 of 𝑠𝑢(4) Lie
algebra satisfy the commutation relation (16) with normal-
ization Tr𝑇�푎𝑇�푏 = −(1/2)𝛿�푎�푏. Consider the 𝑆𝑈(4) Yang-Mills
gauge theory defined on the Riemannian manifold 𝑀 with
the metric (133) whose action is given by𝑆�푌�푀 = − 12𝑔2

�푌�푀

∫
�푀

𝑑6𝑥√𝑔𝑔�푀�푃𝑔�푁�푄Tr𝐹�푀�푁𝐹�푃�푄. (135)

Using the projection operator (71) and the identity (75), it is
easy to derive the following formula:(𝑃±𝐹)2 = (𝑃�퐴1�퐵1�퐴2�퐵2

± 𝐹�퐴2�퐵2) (𝑃�퐴1�퐵1�퐴3�퐵3
± 𝐹�퐴3�퐵3)= 14 (𝐹�퐴1�퐵1 ± 14𝜀�퐴1�퐵1�퐴2�퐵2�퐴3�퐵3𝐹�퐴2�퐵2𝐼�퐴3�퐵3)2

= 12𝐹�퐴�퐵𝐹�퐴�퐵 ± 18𝜀�퐴�퐵�퐶�퐷�퐸�퐹𝐹�퐴�퐵𝐹�퐶�퐷𝐼�퐸�퐹+ 18 (𝐼�퐴�퐵𝐹�퐴�퐵)2= 𝑃�퐴�퐵�퐶�퐷
± 𝐹�퐴�퐵𝐹�퐶�퐷 + 18 (𝐼�퐴�퐵𝐹�퐴�퐵)2 .

(136)

One can rewrite the action (135) using the above identity as𝑆�푌�푀 = − 14𝑔2
�푌�푀⋅ ∫

�푀
𝑑6𝑥√𝑔Tr [(𝐹�퐴�퐵 ± 14𝜀�퐴�퐵�퐶�퐷�퐸�퐹𝐹�퐶�퐷𝐼�퐸�퐹)2

− 12 (𝐼�퐴�퐵𝐹�퐴�퐵)2 ∓ 12𝜀�퐴�퐵�퐶�퐷E�퐹𝐹�퐴�퐵𝐹�퐶�퐷𝐼�퐸�퐹] .
(137)

The above action can be written in a more compact form as𝑆�푌�푀 = − 14𝑔2
�푌�푀

∫
�푀

𝑑6𝑥√𝑔
⋅ Tr [(𝐹�퐴�퐵 ± ∗ (𝐹 ∧ Ω)�퐴�퐵)2 − 12 (𝐼�퐴�퐵𝐹�퐴�퐵)2]± 1𝑔2

�푌�푀

∫
�푀

𝑑6𝑥Tr𝐹 ∧ 𝐹 ∧ Ω, (138)

where Ω is the two-form vector space of rank 6 defined by
(84).

Using the fact

Tr𝐹 ∧ 𝐹 = 𝑑Tr(𝐴 ∧ 𝐹 − 13𝐴 ∧ 𝐴 ∧ 𝐴) ≡ 𝑑𝐾, (139)

one can see that the last term in (138) is a topological term;
that is,

Tr𝐹 ∧ 𝐹 ∧ Ω = 𝑑 (𝐾 ∧ Ω) (140)

if and only if the two-form Ω is closed; that is, 𝑑Ω =0. In other words, when 𝑀 is a Kähler manifold, the

last term in (138) depends only on the topological class
of the Kähler-form Ω and the vector bundle 𝐸 over 𝑀.
Note that (138), except the second term, is very similar to
the Bogomol’nyi equation for Yang-Mills instantons whose
action is bounded by a topological term. Indeed we can apply
the Bogomol’nyi argument to (138) thanks to the identity(1/8)𝜀�퐴�퐵�퐶�퐷�퐸�퐹𝐼�퐶�퐷𝐼�퐸�퐹 = 𝐼�퐴�퐵. More precisely, it is easy to see
that a solution obeying the Ω-self-duality equations𝐹�퐴�퐵 ± ∗ (𝐹 ∧ Ω)�퐴�퐵 = 0 (141)

automatically satisfies the condition𝐼�퐴�퐵𝐹�퐴�퐵 = 0. (142)

Therefore, the minimum action can be achieved by the
configuration satisfying (141) and is given by the last
term—the topological term—in (138). Note that we have
already encountered the above self-duality equations in (91)
and (92). They can be summarized as the so-called DUY
equations [17, 18] 𝐹(2,0) = 𝐹(0,2) = 0, (143)𝐹 ∧ Ω2 = 0. (144)

The first equation states that the 𝑆𝑈(4) gauge field is a
connection on a holomorphic vector bundle and the last
condition corresponds to the stability of the holomorphic
vector bundle in algebraic geometry. It is straightforward to
show [1, 22] that a solution of the self-duality equations (141)
automatically satisfies the Yang-Mills equations of motion𝑔�푀�푁𝐷�푀𝐹�푁�푃 = 0 (145)

on a Kähler manifold.
Let us analyze the HYM equations (141). We observed

in Section 3 that the ’t Hooft symbols in (59) realizes the
isomorphism between irreducible spin(6) Lorentz algebra
and 𝑠𝑢(4) Lie algebra and provides a complete basis of two
forms in Ω2

±(𝑀). For instance, one may expand the 𝑆𝑈(4)
field strengths 𝐹�푎

�퐴�퐵 (𝑎 = 1, . . . , 15) using the basis (59) like
either (62) or (63). A question is how to realize the doubling
of CY manifolds from the 𝑆𝑈(4) gauge theory approach.
The crux for this question is that the 𝑁-dimensional fun-
damental representation of 𝑆𝑈(𝑁) for 𝑁 greater than two is
a complex representation, whose complex conjugate is often
called the antifundamental representation. And the complex
conjugate representation N is an inequivalent representation
different from the original one N. In particular, the positive
and negative chirality representations of Spin(6) ≅ 𝑆𝑈(4)
coincide with the fundamental (4) and the antifundamental(4) representations of 𝑆𝑈(4). Therefore, we have a freedom to
embed the solutions of Yang-Mills gauge theory in a specific
representation. This freedom is basically related to the exis-
tence of two independent bases of two forms, 𝜂�푎�퐴�퐵 and 𝜂�푎�퐴�퐵,
according to the isomorphism (B) and (C).

Thereby we will identify the 𝑆𝑈(4) field strength 𝐹�푎
�퐴�퐵 in

the fundamental representation 4 with type A in (62) and
in the antifundamental representation 4 with type B in (63).
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For the antifundamental representation 4, the Lie algebra
generators are given by (𝑇�푎)∗ = −(𝑖/2)𝜆∗

�푎 and they obey the
same Lie algebra as 𝑇�푎:[(𝑇�푎)∗ , (𝑇�푏)∗] = −𝑓�푎�푏�푐 (𝑇�푐)∗ . (146)

But one can see from (A.9) that the symmetric structure
constants have an opposite sign; that is,

Tr {𝑇�푎, 𝑇�푏} 𝑇�푐 = − 𝑖2𝑑�푎�푏�푐,
Tr {(𝑇�푎)∗ , (𝑇�푏)∗} (𝑇�푐)∗ = 𝑖2𝑑�푎�푏�푐. (147)

It turns out that this sign flip is correlated with the opposite
sign in (A.5). According to the tensor product (67), one can
decompose the coefficients 𝑓�푎�푏

(±±) into a symmetric part and
an antisymmetric part𝑓�푎�푏

(±±) = 𝑓(�푎�푏)
(±±) + 𝑓[�푎�푏]

(±±). (148)

Although it is not necessary to impose the symmetry property
(68) for a general vector bundle 𝜋 : 𝐸 → 𝑀, we will impose
the symmetric prescription, that is, 𝑓[�푎�푏]

(±±)
= 0, because we are

interested in the gauge theory formulation of six-dimensional
Riemannian manifolds where 𝐸 = 𝑇𝑀 and the bundle
connections are identified with spin connections (of course,
the symmetric condition (149) greatly reduces the number
of field strengths (225 → 120). According to the relation
(B.5) for the tangent bundle 𝐸 = 𝑇𝑀, it is easy to derive
the identities [𝐹(±)

�퐴�퐵 , 𝐽�퐴�퐵± ] = 0 and (1/4){𝐹(±)
�퐴�퐵 , 𝐽�퐴�퐵± } =−(1/8)𝑓�푎�푏

(±±)𝛿�푎�푏 + (𝑖/2)𝑑�푎�푏�푐𝑓�푎�푏
(±±)𝑇�푐

±). Then,𝐹(±)�푎
�퐴�퐵 = 𝑓�푎�푏

(±±)𝜂(±)�푏�퐴�퐵 , (149)

where we have omitted the symmetrization symbol with
respect to 𝑎 ↔ 𝑏 for brevity.

Now let us consider the HYM equations on a Kähler
manifold 𝑀. Recall that the HYM equation (141) can be
resolved by decomposing the Yang-Mills field strengths (149)
into the eigenspaces of the Hodge operator (85). And we
showed that the decomposition (86) is equivalent to the
branching (98) of 𝑆𝑈(4) under the 𝑈(3) subgroup since the𝑆𝑈(4) gauge group is reduced to 𝑈(3) by the background
Kähler class Ω .(It might be obvious from the expansion
(149) which intertwines the 𝑆𝑈(4) index 𝑎 and 𝑆𝑂(6) indices𝐴, 𝐵. Note that the different choice of background Kähler
classes can be parameterized by the homogeneous space𝑆𝑈(4)/𝑈(3) = C𝑃3. Also (B.17) implies that the space
C𝑃3 = 𝑆𝑈(4)/𝑈(3) can be identified with the space of
complex structure deformations [9]. This coincidence might
presage themirror symmetry.)Therefore, the Yang-Mills field
strengths obeying (141) take values in 𝑢(3) Lie algebra; that
is, 𝑎, 𝑏 run over 3, 6, 7, 8, 11, 12, 13, 14, 15 for the fundamental
representation 4 and 3, 4, 5, 8, 9, 10, 13, 14, 15 for the antifun-
damental representation 4. To be specific, 𝜂�푎�퐴�퐵 ∈ {𝑙(+)�푎�퐴�퐵 , 𝑛(+)0�퐴�퐵 }
for 4 and 𝜂�푎�퐴�퐵 ∈ {𝑙(−)�푎�퐴�퐵 , 𝑛(−)0�퐴�퐵 } for 4 with the ’t Hooft symbols𝑙(±)�푎�퐴�퐵 and 𝑛(±)0�퐴�퐵 defined in Section 3. As the background Kähler

class Ω determines a particular 𝑈(3) ⊂ 𝑆𝑈(4) subgroup and
4 and 4 belong to two different representations, the Kähler
classes in the representations 4 and 4 should be attributed to
different Kähler manifolds.

Hence let us consider the 𝑆𝑈(4) gauge theory defined on
two different Kähler manifolds𝑀 and 𝑀̃ whose background
Kähler classes are, respectively, given byΩ+ = 𝑛(+)0�퐴�퐵 𝑒(+)�퐴 ∧ 𝑒(+)�퐵,Ω− = 𝑛(−)0�퐴�퐵 𝑒(−)�퐴 ∧ 𝑒(−)�퐵. (150)

Given a fixed Kähler class, the HYM equations will be solved
by𝑈(3) connections.The stability equation (142) for each case
is then reduced to the following equations:𝐼�퐴�퐵𝐹(+)�푎

�퐴�퐵 = 𝑓�푎�푏
(++)𝜂�푏�퐴�퐵𝐼�퐴�퐵 = 0 ⇐⇒𝑓3�푎

(++) + 1√3𝑓8�푎
(++) + 1√6𝑓15�푎

(++) = 0,𝐼�퐴�퐵𝐹(−)�푎
�퐴�퐵 = 𝑓�푎�푏

(−−)𝜂�푏�퐴�퐵𝐼�퐴�퐵 = 0 ⇐⇒𝑓3�푎
(−−) − 1√3𝑓8�푎

(−−) − 1√6𝑓15�푎
(−−) = 0.

(151)

By applying the exactly same argument as Section 3, one
can conclude that the above equations are equivalent to the
vanishing of the first Chern-class; that is,𝐹(+)0 = 𝑑𝐴(+)0 = 0,𝐹(−)0 = 𝑑𝐴(−)0 = 0, (152)

where the 𝑈(1) gauge fields 𝐴(±)0 are defined by (107) and
(112). One can also see from (91) that the 𝑆𝑈(3) basis {𝑙(±)�푎�퐴�퐵 }
definitely picks up the +-sign in (141) and its solution is given
by 𝐹(±)�푎

�퐴�퐵 = 𝑓�푎�̂푏
(±±)𝑙(±)�̂푏�퐴�퐵 , 𝑎, 𝑏̂ = 1, . . . , 8. (153)

Consequently we found that the HYM instanton inher-
ited from a CY manifold is described by the 𝑆𝑈(3) con-
nections with the trivial first Chern class. This means that
the tangent bundle 𝑇𝑀 of a CY manifold 𝑀 gives rise to𝑆𝑈(3) connections in a stable holomorphic vector bundle [1].
This is exactly the statement of the DUY theorem [17, 18]
for a particular case of the vector bundle 𝐸 = 𝑇𝑀 over a
CY manifold 𝑀. Now it becomes clear what is the mirror
relation for theHYM instantons.Themirror symmetry of CY
manifolds can be understood as the relationship between two
kinds ofHYM instantons in 𝑆𝑈(4) gauge theory embedded in
the fundamental representation 4 and the antifundamental
representation 4. Each representation has its own cohomol-
ogy classes, taking values in the holomorphic vector bundles𝐸 over𝑀 and𝐹 over 𝑀̃. It should be remarked that we intend
to construct the complex vector bundles 𝐸 and 𝐹 via the
tangent bundles 𝑇𝑀⊗C = 𝐸⊕𝐸 and 𝑇𝑀̃⊗C = 𝐹⊕𝐹, so the
vector bundles 𝐸 and 𝐹 are independent of each other. Since
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the Kähler class Ω± reduces the gauge group to 𝑈(3), the
underlying complex structures are not mixed under gauge
transformations.

Since we want to understand the mirror symmetry
between CYmanifolds in terms of 𝑆𝑈(4) gauge theory, it will
be useful to calculate the Chern classes of the vector bundle
to elucidate the mirror symmetry between HYM instantons.
It was already shown that the first Chern class 𝑐1(𝐸) of the
holomorphic vector bundle satisfying (141) is trivial; that is,𝑐1(𝐸) = 0. Also we have shown that the last term in (138) is a
topological invariant which contains the second Chern class𝑐2(𝐸). After using (141), one can derive the inequality18𝜋2

∫
�푀±

Tr𝐹(±) ∧ 𝐹(±) ∧ Ω± ≥ 0, (154)

where 𝑐2 (𝑉±) = 18𝜋2
Tr𝐹(±) ∧ 𝐹(±) (155)

is the second Chern class of a complex vector bundle 𝑉+ = 𝐸
over 𝑀+ = 𝑀 or 𝑉− = 𝐹 over 𝑀− = 𝑀̃. This is known as
the Bogomolov inequality [22, 23], which is true for all stable
bundles with 𝑐1(𝑉±) = 0. Using the identification in (57) and
(58), one may translate the above inequality into the one in
gravity theory− 116𝜋2

∫
�푀±

𝑅(±)
�퐴�퐵 ∧ 𝑅(±)

�퐴�퐵 ∧ Ω± ≥ 0. (156)

Finally, according to formula (122), we calculate the
integral of the third Chern class 𝑐3(𝑉±) given by𝜒+ (𝐸) = − 𝑖24𝜋3

∫
�푀
Tr𝐹(+) ∧ 𝐹(+) ∧ 𝐹(+)

= − 196𝜋3
∫
�푀

𝑑�푎�푏�푐𝐹(+)�푎 ∧ 𝐹(+)�푏 ∧ 𝐹(+)�푐

= − 1192𝜋3
∫
�푀

𝑑6𝑥√𝑔(+)𝑑�푎�푏�푐𝑑�푑�푒�푓𝑓�푎�푑
(++)𝑓�푏�푒

(++)𝑓�푐�푓

(++)
,𝜒− (𝐹) = − 𝑖24𝜋3

∫̃
�푀
Tr𝐹(−) ∧ 𝐹(−) ∧ 𝐹(−)

= 196𝜋3
∫̃
�푀

𝑑�푎�푏�푐𝐹(−)�푎 ∧ 𝐹(−)�푏 ∧ 𝐹(−)�푐

= 1192𝜋3
∫̃
�푀

𝑑6𝑥√𝑔(−)𝑑�푎�푏�푐𝑑�푑�푒�푓𝑓�푎�푑
(−−)𝑓�푏�푒

(−−)𝑓�푐�푓

(−−)
.

(157)

It might be remarked that the relative sign 𝑐3(𝐹) = −𝑐3(𝐹) for
the third Chern classes of a complex vector bundle 𝐹 and its
conjugate bundle 𝐹 arises from the property (147). Since the
complex vector bundles 𝐸 and 𝐹 are independently defined
over two different Kähler manifolds 𝑀 and 𝑀̃, respectively,
the expansion coefficients𝑓�푎�푏

(±±) in (149) will also be separately
determined by them. Hence it should be possible to construct
a pair of complex vector bundles (𝐸 → 𝑀,𝐹 → 𝑀̃) such
that 𝜒+(𝐸) = −𝜒−(𝐹). One may notice that the sign flip in the
Euler characteristic is also consistent with the general result

(122). In consequence, the above Euler characteristics cor-
rectly reproduce (127) and (128) for the CY manifold 𝑀
and its mirror manifold 𝑀̃. This constitutes a gauge theory
formulation of mirror symmetry.

In conclusion we have confirmed the picture depicted in
Figure 1 that the mirror symmetry between CY manifolds
can be understood as the mirror pair of HYM instantons
in the fundamental representations 3 and 3 of 𝑆𝑈(3) gauge
connections. Since the existence of two different fundamental
representations of 𝑆𝑈(4) ≅ Spin(6) is related to the doubling
of the vector space in (6) according to the isomorphism (4),
we see that the mirror symmetry of CY manifolds and HYM
instantons originates from the Hodge duality in the vector
space Λ∗𝑀.

6. Discussion

Thephysics on a curved spacetime becomesmore transparent
when expressed in a locally inertial frame and it is even indis-
pensable when one wants to couple spinors to gravity since
spinors in 𝑑-dimensions form a representation of Spin(𝑑)
Lorentz group rather than𝐺𝐿(𝑑,R). It is also required to take
an irreducible spinor representation of the Lorentz symmetry.
Then one can apply the elementary propositions (A, B, C)
in Section 1 to 𝑑-dimensional Riemannian manifolds to see
their consequences. It is, especially, interesting to apply them
to six-dimensional CY manifolds. Proposition (A) first says
that Riemann curvature tensors 𝑅�퐴�퐵�퐶�퐷 carry two kinds of
indices; the first group, say [𝐴𝐵], belongs to Spin(6) indices
and the second group [𝐶𝐷] belongs to form indices inΩ2(𝑀).
But proposition (C) requires that two groups must have an
isomorphic structure as vector spaces. After imposing the
torsion free condition that leads to the symmetry property,𝑅�퐴�퐵�퐶�퐷 = 𝑅�퐶�퐷�퐴�퐵, the vector space structure for the two groups
should be even identified. For example, the irreducible spinor
representation of the Lorentz group Spin(6) requires us to
consider the vector spaces Ω2(𝑀) and Ω4(𝑀) on equal foot-
ing. The doubling of the vector space (6) is realized as either
two independent chiral representations of the Lorentz group
Spin(6) or two independent complex representations 4 and
4 of the gauge group 𝑆𝑈(4). We observed that the doubling
of the vector spaces essentially brings about the doubling
for the variety of six-dimensional spin manifolds which is
responsible for the existence of themirror symmetry between
CY manifolds.

It may be worthwhile to compare the four and six
dimensions in perspective. On a four-dimensional orientable
manifold, the vector space of two-formΩ2(𝑀) is not doubled
because theHodge duality of a two-form vector space is again
a two-form vector space. Instead the vector space Ω2(𝑀)
splits canonically into two vector spaces as (7). This split is
resonant with the self-duality of chiral Lorentz generators 𝐽�퐴�퐵±

because they obey the relation𝐽�퐴�퐵± = ±12𝜀�퐴�퐵�퐶�퐷𝐽�퐶�퐷± . (158)

Therefore, the chiral Lorentz generators 𝐽A�퐵± have three inde-
pendent components only. Combining them together, they
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consist of six generators which match with the dimension
of Ω2(𝑀). Applying this fact to (19), one can see that 𝑅(±)

�퐴�퐵
contains 18 = 6 × 3 components and so 36 = 18 + 18
components in total, which is the number of components
of Riemann curvature tensors 𝑅�퐴�퐵�퐶�퐷 before imposing the
first Bianchi identity. This situation is different from the six-
dimensional case as is evident from the comparison of (6)
and (7). This difference is originated from the fact that, in six
dimensions, there is another source of two-form vector space
coming from the Hodge duality of four-form vector space. As
a consequence, 𝑅(±)

�퐴�퐵 in (79) has 225 = 15 × 15 components in
six dimensions and so 450 = 225 + 225 components in total
before imposing the first Bianchi identity. After imposing
the first Bianchi identity in each class that totally comprises240 = 120 + 120 constraints, the physical curvature tensors(𝑅(+)

�퐴�퐵 ⊕ 𝑅(−)
�퐴�퐵) have 210 = 105 + 105 components in total. This

doubling for the variety of CYmanifolds is a core origin of the
mirror symmetry between CY manifolds.

Via the gauge theory formulation of six-dimensional
Euclidean gravity, we showed that HYM instantons can
be constructed in two different ways by embedding them
into the fundamental or antifundamental representation of𝑆𝑈(4) ≅ Spin(6) gauge group. Since a CY manifold can be
recast as a HYM instanton from the gauge theory point of
view (see the quotation in Section 1) and the chiral repre-
sentation of Spin(6) corresponds to the fundamental repre-
sentation of 𝑆𝑈(4), the structure in Figure 1 has been nicely
verified. After all, the mirror symmetry of CY manifolds can
be understood as the existence of the mirror pair of HYM
instantons by doubling the variety of six-dimensional spin
manifolds according to the Hodge duality (6).

Strominger et al. recently proposed [7] that the mirror
symmetry is a T-duality transformation along a dual special
Lagrangian tori fibration on a mirror CY manifold. The T-
duality transformation along the dual three-tori introduces
a sign flip in the Euler characteristic as even and odd
forms exchange their role. Note that the odd number of
T-duality operations transforms type IIB string theory to
type IIA string theory and vice versa. Hence types IIA and
IIB CY manifolds will be mirror to each other because the
six-dimensional chirality will be flipped after the T-duality
and the ten-dimensional chirality is correlated with the six-
dimensional one. This result implies that the mirror symme-
try in string theory originates from the two different chiral
representations of CY manifolds, which is consistent with
our picture.

Our gauge theory formulation may be generalized to
a general six-dimensional Riemannian manifold like the
four-dimensional case [12, 13] because it is simply based
on the general propositions (A, B, C) in Section 1. One
may consider, for example, the Strominger system [24, 25]
for non-Kähler complex manifolds. The Strominger system
admits a conformally balanced Hermitian form on a three-
dimensional compact complex manifold 𝑀, a nowhere van-
ishing holomorphic (3, 0)-form, and a HYM connection on
a vector bundle 𝐸 over this manifold. The consistency of
the underlying physical theory imposes a constraint that the
curvature forms have to satisfy the anomaly equation. As far

as the non-Kähler CY manifold admits a spin structure, the
gauge theory formulation for the Strominger system may be
straightforward as much as we have done in this paper. Thus
it may be interesting to formulate the mirror symmetry for
non-Kählermanifolds from the gauge theory perspective and
to generalize it to the casewithout spin structure, for instance,
a manifold with SpinC structure only. If there is a substantial
progress along this line, it will be reported elsewhere.

If we consider a CYmanifold𝑀 to be the HYM instanton
of the tangent bundle 𝑇𝑀, this instanton will have their own
moduli space given by their zero modes, with the nonzero
modes providing various “uplifting.”Then the following ques-
tions naturally arise. How is themoduli space ofHYM instan-
tons related to theCYmoduli space?Also howdo the nonzero
modes of the instanton solution correspond to the CY
deformations?

To discuss this issue, let us consider an infinitesimal
deformation of the gauge field𝐴�휇 + 𝛿𝐴�휇. (159)

If we demand (143) for both the original gauge field and
the deformation, then the deformation must satisfy 𝜕𝛿𝐴 =0. This means that 𝛿𝐴 ∈ 𝐻1(End𝐸). On a manifold of𝑆𝑈(3) holonomy and for the case 𝐸 = 𝑇𝑀, 𝐻1(End𝐸)
coincides with 𝐻2,1(𝑀). Therefore, the bundle moduli (159)
for the condition (143) of the holomorphic tangent bundle𝑇𝑀 correspond to the deformations of the complex structure,
counted by 𝐻1(𝑀, 𝑇𝑀) ≅ 𝐻2,1(𝑀) [2, 3]. However it is
known [26] that the HYM equations (143) and (144) do not
fix any of the Kähler moduli. Indeed the DUY theorem states
[17, 18] that, for a fixed choice of Kähler moduli, there exists
a solution of the HYM equations if the holomorphic vector
bundle is slope-stable, which is the case for the tangent bun-
dle. Therefore, it is not possible to extract the Kähler moduli
from the bundle moduli (159). This implies that the moduli
space of a CY manifold is not fully captured by the instanton
moduli space even for the tangent bundle since we fix the
Kähler moduli of a background CY manifold to define the
HYM equations.

It is well-known that the instanton moduli space has
singularities, the so-called “small instanton” singularities.
Also the CY moduli space has singularities: the conifold
points [3]. Thus it will be interesting to understand how
these two kinds of singularities are related to each other.
Our result implies that the singularities in the instanton
moduli space are related to the singularities (the conifold
points) of the CY moduli space because the tangent bundle𝑇𝑀 is defined by the CY manifold 𝑀. But the blown-up
conifold singularities may arise in different ways from the
instanton picture of the CY manifold since it is known [27]
that there is a natural complex structure on the resolution
but not a natural Kähler structure while the deformation is
symplectic in a natural way but not naturally complex. Since
only the complex structure deformations of the CY manifold
are encoded in the bundle moduli (159), we speculate that
the resolved conifold is realized from the instanton side
while the deformed conifold appears in the background CY
manifold. Note that the deformed conifold is mirror to the
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resolved conifold, which is related to the conifold transitions.
Thus the instanton picture of CY manifolds implies that the
HYM instanton for the tangent bundle 𝑇𝑀 over a deformed
conifold 𝑀 is mirror to the HYM instanton for the tangent
bundle𝑇𝑀̃over a resolved conifold 𝑀̃.We leave this problem
for the future work.

Mirror symmetry provides an isomorphism between
complex geometry and symplectic geometrywhich relates the
deformation of complex structure on the complex geometry
side to the counting of pseudo-holomorphic spheres on the
symplectic geometry side. A very similar picture arises in
emergent gravity that isomorphically relates the deformation
of symplectic structure described by a NC𝑈(1) gauge theory
to the deformation of complex structure in Einstein gravity.
The deformation of symplectic structure is represented by
F = 𝐵 + 𝐹 where 𝐵 is an underlying symplectic structure
on 𝑀 and 𝐹 = 𝑑𝐴 is identified with the curvature of line
bundle 𝐿 → 𝑀. In order to allow singular 𝑈(1) gauge fields
such as 𝑈(1) instantons, it is necessary to generalize the line
bundle to a torsion free sheaf or an ideal sheaf. NC𝑈(1) gauge
fields are introduced via a local coordinate transformation𝜙 ∈ Diff(𝑀) eliminating 𝑈(1) gauge fields; that is, 𝜙∗(F) =𝐵, known as the Darboux theorem in symplectic geometry. It
was claimed in [28, 29] and recently shown in [30, 31] that six-
dimensional CYmanifolds are emergent fromNCHermitian𝑈(1) instantons. Note that the NCHermitian𝑈(1) instantons
correspond to 𝑈(1) connections in a stable holomorphic line
bundle 𝐿 → 𝑀 or more generally a torsion free sheaf (an
ideal sheaf) from the commutative description [32]. When
we conceive the emergent CY manifolds from the mirror
symmetry perspective, an interesting question is how to real-
ize the mirror symmetry from the emergent gravity picture.
It turns out [33] that the emergent gravity picture provides
a very nice result for the mirror symmetry.

Appendix

A. Spin(6) and 𝑆𝑈(4)
We consider the six-dimensional Clifford algebra with the
Dirac matrices given by

Γ�퐴 = ( 0 𝛾�퐴𝛾�퐴 0 ) , 𝐴 = 1, . . . , 6, (A.1)

where 𝛾�퐴 = (𝛾�퐴)†. Thus the Dirac matrices we have taken
are Hermitian; that is, (Γ�퐴)† = Γ�퐴. We choose (𝛾�푖)† =𝛾�푖 (𝑖 = 1, . . . , 5) and (𝛾6)† = −𝛾6. We will use the following
representation of Dirac matrices [34]:

𝛾1 = ( 0 0 0 −10 0 1 00 1 0 0−1 0 0 0 ),

𝛾2 = (0 0 0 𝑖0 0 𝑖 00 −𝑖 0 0−𝑖 0 0 0),
𝛾3 = (0 0 1 00 0 0 11 0 0 00 1 0 0),
𝛾4 = (0 0 −𝑖 00 0 0 𝑖𝑖 0 0 00 −𝑖 0 0) ,
𝛾5 = (1 0 0 00 1 0 00 0 −1 00 0 0 −1) = −𝛾1𝛾2𝛾3𝛾4,

(A.2)

satisfying the Spin(5) Clifford algebra relation𝛾�푖𝛾�푗 + 𝛾�푗𝛾�푖 = 2𝛿�푖�푗, 𝑖, 𝑗 = 1, . . . , 5. (A.3)

The Lorentz generators for the irreducible (chiral) spinor
representation of Spin(6) are defined by𝐽�퐴�퐵± ≡ 12 (I8 ± Γ7) 𝐽�퐴�퐵, (A.4)

where Γ7 = 𝑖Γ1 ⋅ ⋅ ⋅ Γ6. Note that 𝐽�퐴�퐵+ and 𝐽�퐴�퐵− independently
satisfy the Lorentz algebra (11) and commute each other; that
is, [𝐽�퐴�퐵+ , 𝐽�퐶�퐷− ] = 0. They also satisfy the anticommutation
relation{𝐽�퐴�퐵± , 𝐽�퐶�퐷± } = −12 (𝛿�퐴�퐶𝛿�퐵�퐷 − 𝛿�퐴�퐷𝛿�퐵�퐶) Γ±± 𝑖2𝜀�퐴�퐵�퐶�퐷�퐸�퐹𝐽�퐸�퐹± . (A.5)

Because the chiral matrix Γ7 is given byΓ7 = (I4 00 −I4) , (A.6)

where I4 is the 4×4 identitymatrix, the generators of the chiral
spinor representation in (A.4) are given by 4 × 4 matrices.
Then the two independent chiral spinor representations of
Spin(6) are given by𝐽�퐴�퐵+ = {𝐽�푖�푗+ = 14 [𝛾�푖, 𝛾�푗] , 𝐽�푖6+ = 𝑖2𝛾�푖} ,𝐽�퐴�퐵− = {𝐽�푖�푗− = 14 [𝛾�푖, 𝛾j] , 𝐽�푖6− = − 𝑖2𝛾�푖} . (A.7)
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One can check that the generators 𝐽�퐴�퐵+ and 𝐽�퐴�퐵− separately
obey the Lorentz algebra (11).

One can exchange the positive chiral representation and
the negative chiral representation by a parity transformation,
which is a reflection 𝑥�푀 → −𝑥�푀 of any one element of the
fundamental six-dimensional representation of Spin(6) [1]; in
our case, 𝑥6 → −𝑥6. But they cannot be connected by any𝑆𝑂(6) rotations.

The anti-Hermitian 4 × 4 matrices 𝑇�푎 = (𝑖/2)𝜆�푎, 𝑎 =1, . . . , 15 with vanishing traces constitute the basis of 𝑆𝑈(4)
Lie algebra. The Hermitian 4 × 4 matrices 𝜆�푎 are given
by

𝜆1 = (0 1 0 01 0 0 00 0 0 00 0 0 0),

𝜆2 = ((
(

0 −𝑖 0 0𝑖 0 0 00 0 0 00 0 0 0)))
,

𝜆3 = (1 0 0 00 −1 0 00 0 0 00 0 0 0),
𝜆4 = (0 0 1 00 0 0 01 0 0 00 0 0 0),
𝜆5 = (0 0 −𝑖 00 0 0 0𝑖 0 0 00 0 0 0),
𝜆6 = (0 0 0 00 0 1 00 1 0 00 0 0 0),
𝜆7 = (0 0 0 00 0 −𝑖 00 𝑖 0 00 0 0 0),

𝜆8 = 1√3 (1 0 0 00 1 0 00 0 −2 00 0 0 0),
𝜆9 = (0 0 0 10 0 0 00 0 0 01 0 0 0),
𝜆10 = (0 0 0 −𝑖0 0 0 00 0 0 0𝑖 0 0 0) ,
𝜆11 = (0 0 0 00 0 0 10 0 0 00 1 0 0),
𝜆12 = (0 0 0 00 0 0 −𝑖0 0 0 00 𝑖 0 0) ,
𝜆13 = (0 0 0 00 0 0 00 0 0 10 0 1 0),
𝜆14 = (0 0 0 00 0 0 00 0 0 −𝑖0 0 𝑖 0) ,
𝜆15 = 1√6 (1 0 0 00 1 0 00 0 1 00 0 0 −3).

(A.8)

The generators satisfy the following relation:𝑇�푎𝑇�푏 = −18𝛿�푎�푏I4 − 12𝑓�푎�푏�푐𝑇�푐 + 𝑖2𝑑�푎�푏�푐𝑇�푐, (A.9)

where the structure constants 𝑓�푎�푏�푐 are completely antisym-
metric while 𝑑�푎�푏�푐 are symmetric with respect to all of their
indices. Their values are shown up in the Tables 1 and 2. We
have got these tables from [35].
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Table 2: The nonvanishing structure constants 𝑑�푎�푏�푐.𝑎 𝑏 𝑐 𝑑�푎�푏�푐

1 1 8 1/√3
1 1 15 1/√6
1 4 6 1/2
1 5 7 1/2
1 9 11 1/2
1 10 12 1/2
2 2 8 1/√3
2 2 15 1/√6
2 4 7 −1/2
2 5 6 1/2
2 9 12 −1/2
2 10 11 1/2
3 3 8 1/√3
3 3 15 1/√6
3 4 4 1/2
3 5 5 1/2
3 6 6 −1/2
3 7 7 −1/2
3 9 9 1/2
3 10 10 1/2
3 11 11 −1/2
3 12 12 −1/2
4 4 8 −1/2√3
4 4 15 1/√6
4 9 13 1/2
4 10 14 1/2
5 5 8 −1/2√3
5 5 15 1/√6
5 9 14 −1/2
5 10 13 1/2
6 6 8 −1/2√3
6 6 15 1/√6
6 11 13 1/2
6 12 14 1/2
7 7 8 −1/2√3
7 7 15 1/√6
7 11 14 −1/2
7 12 13 1/2
8 8 8 −1/√3
8 8 15 1/√6
8 9 9 1/2√3
8 10 10 1/2√3
8 11 11 1/2√3
8 12 12 1/2√3
8 13 13 −1/√3
8 14 14 −1/√3
9 9 15 −1/√6
10 10 15 −1/√6
11 11 15 −1/√6
12 12 15 −1/√6
13 13 15 −1/√6
14 14 15 −1/√6
15 15 15 −√2/3

B. Six-Dimensional ’t Hooft Symbols

The explicit representation of the six-dimensional ’t Hooft
symbol 𝜂�푎�퐴�퐵 = −Tr(𝑇�푎𝐽�퐴�퐵+ ) is given by

𝜂1�퐴�퐵 = 12 ((((
(

0 0 0 1 0 00 0 1 0 0 00 −1 0 0 0 0−1 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0
))))
)

= 𝑖2𝜆2 ⊗ 𝜎1,

𝜂2�퐴�퐵 = −12 ((((
(

0 0 1 0 0 00 0 0 −1 0 0−1 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 0
))))
)

= − 𝑖2𝜆2 ⊗ 𝜎3,

𝜂3�퐴�퐵 = 12 ((((
(

0 1 0 0 0 0−1 0 0 0 0 00 0 0 1 0 00 0 −1 0 0 00 0 0 0 0 00 0 0 0 0 0
))))
)= 𝑖2 (23 I3 + 1√3𝜆8) ⊗ 𝜎2,

𝜂4�퐴�퐵 = 12 ((((
(

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 −1 0 00 0 −1 0 0 0
))))
)

= 𝑖2𝜆7 ⊗ 𝜎1,

𝜂5�퐴�퐵 = −12 ((((
(

0 0 0 0 0 00 0 0 0 0 00 0 0 0 1 00 0 0 0 0 −10 0 −1 0 0 00 0 0 1 0 0
))))
)

= − 𝑖2𝜆7 ⊗ 𝜎3,

𝜂6�퐴�퐵 = 12 ((((
(

0 0 0 0 0 10 0 0 0 −1 00 0 0 0 0 00 0 0 0 0 00 1 0 0 0 0−1 0 0 0 0 0
))))
)

= 𝑖2𝜆4 ⊗ 𝜎2,
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𝜂7�퐴�퐵 = −12 (((((
(

0 0 0 0 1 00 0 0 0 0 10 0 0 0 0 00 0 0 0 0 0−1 0 0 0 0 00 −1 0 0 0 0
)))))
)

= − 𝑖2𝜆5 ⊗ I2,

𝜂8�퐴�퐵 = − 12√3 (((((
(

0 1 0 0 0 0−1 0 0 0 0 00 0 0 −1 0 00 0 1 0 0 00 0 0 0 0 −20 0 0 0 2 0
)))))
)= − 𝑖2√3 (−23 I3 + 𝜆3 + 2√3𝜆8) ⊗ 𝜎2,

𝜂9�퐴�퐵 = −12 (((((
(

0 0 0 0 0 10 0 0 0 1 00 0 0 0 0 00 0 0 0 0 00 −1 0 0 0 0−1 0 0 0 0 0
)))))
)

= − 𝑖2𝜆5 ⊗ 𝜎1,

𝜂10�퐴�퐵 = 12 (((((
(

0 0 0 0 1 00 0 0 0 0 −10 0 0 0 0 00 0 0 0 0 0−1 0 0 0 0 00 1 0 0 0 0
)))))
)

= 𝑖2𝜆5 ⊗ 𝜎3,

𝜂11�퐴�퐵 = 12 (((((
(

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 −1 00 0 0 1 0 00 0 −1 0 0 0
)))))
)

= 𝑖2𝜆6 ⊗ 𝜎2,

𝜂12�퐴�퐵 = −12 (((((
(

0 0 0 0 0 00 0 0 0 0 00 0 0 0 1 00 0 0 0 0 10 0 −1 0 0 00 0 0 −1 0 0
)))))
)

= − 𝑖2𝜆7 ⊗ I2,

𝜂13�퐴�퐵 = 12 (((((
(

0 0 0 1 0 00 0 −1 0 0 00 1 0 0 0 0−1 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0
)))))
)

= 𝑖2𝜆1 ⊗ 𝜎2,

𝜂14�퐴�퐵 = 12 (((((
(

0 0 1 0 0 00 0 0 1 0 0−1 0 0 0 0 00 −1 0 0 0 00 0 0 0 0 00 0 0 0 0 0
)))))
)

= 𝑖2𝜆2 ⊗ I2,

𝜂15�퐴�퐵 = 1√6 (((((
(

0 1 0 0 0 0−1 0 0 0 0 00 0 0 −1 0 00 0 1 0 0 00 0 0 0 0 10 0 0 0 −1 0
)))))
)= 𝑖√6 (13 I3 + 𝜆3 − 1√3𝜆8) ⊗ 𝜎2,

(B.1)

where I�푛 is the 𝑛-dimensional identity matrix and (𝜎1, 𝜎2, 𝜎3)
are the Pauli matrices and 𝜆�푎 (𝑎 = 1, . . . , 8) are the 𝑆𝑈(3)
Gell-Mann matrices.

Another six-dimensional ’t Hooft symbol 𝜂�푎�퐴�퐵 =−Tr((𝑇�푎)∗𝐽�퐴�퐵− ) can be obtained similarly:𝜂1�퐴�퐵 = − 𝑖2𝜆2 ⊗ 𝜎1,𝜂2�퐴�퐵 = − 𝑖2𝜆2 ⊗ 𝜎3,𝜂3�퐴�퐵 = − 𝑖2 (23 I3 + 1√3𝜆8) ⊗ 𝜎2,
𝜂4�퐴�퐵 = 𝑖2𝜆6 ⊗ 𝜎2,𝜂5�퐴�퐵 = − 𝑖2𝜆7 ⊗ I2,𝜂6�퐴�퐵 = 𝑖2𝜆5 ⊗ 𝜎1,𝜂7�퐴�퐵 = − 𝑖2𝜆5 ⊗ 𝜎3,𝜂8�퐴�퐵 = 𝑖2√3 (23 I3 + 𝜆3 − 2√3𝜆8) ⊗ 𝜎2,
𝜂9�퐴�퐵 = − 𝑖2𝜆4 ⊗ 𝜎2,
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𝜂10�퐴�퐵 = 𝑖2𝜆5 ⊗ I2,𝜂11�퐴�퐵 = 𝑖2𝜆7 ⊗ 𝜎1,𝜂12�퐴�퐵 = − 𝑖2𝜆7 ⊗ 𝜎3,𝜂13�퐴�퐵 = − 𝑖2𝜆1 ⊗ 𝜎2,𝜂14�퐴�퐵 = 𝑖2𝜆2 ⊗ I2,𝜂15�퐴�퐵 = 𝑖√6 (13 I3 − 𝜆3 − 1√3𝜆8) ⊗ 𝜎2.
(B.2)

In order to derive the algebras obeyed by the ’t Hooft
symbols, first note that either Spin(6) generators 𝐽�퐴�퐵± or 𝑆𝑈(4)
generators 𝑇�푎

+ ≡ 𝑇�푎 and 𝑇�푎
− ≡ (T�푎)∗ can serve as a complete

basis of any traceless, Hermitian 4 × 4matrix𝐾; that is,𝐾 = 15∑
�푎=1

𝑘±�푎𝑇�푎
± = 12 6∑

�퐴,�퐵=1

𝐾±
�퐴�퐵𝐽�퐴�퐵± . (B.3)

Using definition (59), one can easily deduce that𝑇�푎
± = 12𝜂(±)�푎�퐴�퐵 𝐽�퐴�퐵± , (B.4)𝐽�퐴�퐵± = 2𝜂(±)�푎�퐴�퐵 𝑇�푎

±, (B.5)

where 𝜂(+)�푎�퐴�퐵 ≡ 𝜂�푎�퐴�퐵 and 𝜂(−)�푎�퐴�퐵 ≡ 𝜂�푎�퐴�퐵.Then one can consider the
following matrix products:(I): 𝑇�푎

±𝑇�푏
± = 14𝜂(±)�푎�퐴�퐵 𝜂(±)�푏�퐶�퐷 𝐽�퐴�퐵± 𝐽�퐶�퐷± ,(II): 𝐽�퐴�퐵± 𝐽�퐶�퐷± = 4𝜂(±)�푎�퐴�퐵 𝜂(±)�푏�퐶�퐷 𝑇�푎

±𝑇�푏
±. (B.6)

By applying (11), (A.5), and (A.9) to the above matrix
products, one can easily get the algebras obeyed by the six-
dimensional ’t Hooft symbols:𝜂�푎�퐴�퐵𝜂�푏�퐴�퐵 = 𝛿�푎�푏 = 𝜂�푎�퐴�퐵𝜂�푏�퐴�퐵, (B.7)𝜂�푎�퐴�퐵𝜂�푎�퐶�퐷 = 12 (𝛿�퐴�퐶𝛿�퐵�퐷 − 𝛿�퐴�퐷𝛿�퐵�퐶) = 𝜂�푎�퐴�퐵𝜂�푎�퐶�퐷, (B.8)14𝜀�퐴�퐵�퐶�퐷�퐸�퐹𝜂�푎�퐶�퐷𝜂�푏�퐸�퐹 = 𝑑�푎�푏�푐𝜂�푐�퐴�퐵, (B.9)14𝜀�퐴�퐵�퐶�퐷�퐸�퐹𝜂�푎�퐶�퐷𝜂�푏�퐸�퐹 = 𝑑�푎�푏�푐𝜂�푐�퐴�퐵, (B.10)𝜂�푎�퐴�퐶𝜂�푏�퐵�퐶 − 𝜂�푎�퐵�퐶𝜂�푏�퐴�퐶 = 𝑓�푎�푏�푐𝜂�푐�퐴�퐵, (B.11)𝜂�푎�퐴�퐶𝜂�푏�퐵�퐶 − 𝜂�푎�퐵�퐶𝜂�푏�퐴�퐶 = 𝑓�푎�푏�푐𝜂�푐�퐴�퐵, (B.12)𝑓�푎�푏�푐𝜂�푎�퐴�퐵𝜂�푏�퐶�퐷= 12 (𝛿�퐴�퐶𝜂�푐�퐵�퐷 − 𝛿�퐴�퐷𝜂�푐�퐵�퐶 − 𝛿�퐵�퐶𝜂�푐�퐴�퐷 + 𝛿�퐵�퐷𝜂�푐�퐴�퐶) , (B.13)

𝑓�푎�푏�푐𝜂�푎�퐴�퐵𝜂�푏�퐶�퐷= 12 (𝛿�퐴�퐶𝜂�푐�퐵�퐷 − 𝛿�퐴�퐷𝜂�푐�퐵�퐶 − 𝛿�퐵�퐶𝜂�푐�퐴�퐷 + 𝛿�퐵�퐷𝜂�푐�퐴�퐶) , (B.14)

𝑑�푎�푏�푐𝜂�푎�퐴�퐵𝜂�푏�퐶�퐷 = 14𝜀�퐴�퐵�퐶�퐷�퐸�퐹𝜂�푐�퐸�퐹, (B.15)𝑑�푎�푏�푐𝜂�푎�퐴�퐵𝜂�푏�퐶�퐷 = 14𝜀�퐴�퐵�퐶�퐷�퐸�퐹𝜂�푐�퐸�퐹. (B.16)

Finally we list the nonzero components of the ’t Hooft
symbols in the basis of complex coordinates 𝑧�훼 = {𝑧1 =𝑥1 + 𝑖𝑥2, 𝑧2 = 𝑥3 + 𝑖𝑥4, 𝑧3 = 𝑥5 + 𝑖𝑥6} and their complex
conjugates 𝑧�훼 where 𝛼, 𝛼 = 1, 2, 3. We will denote 𝜂�푎�훼�훽 = 𝜂�푎

�푧𝛼�푧𝛽
,𝜂�푎

�훼�훽
= 𝜂�푎

�푧𝛼�푧
𝛽
, and so forth in the hope of no confusion with the

real basis: 𝜂112 = − 𝑖4 ,𝜂212 = −14 ,𝜂423 = − 𝑖4 ,𝜂523 = −14 ,𝜂913 = 𝑖4 ,𝜂1013 = 14 ,𝜂3
11

= 𝑖4 ,𝜂3
22

= 𝑖4 ,𝜂6
13

= 𝑖4 ,𝜂7
13

= −14 ,𝜂8
11

= − 𝑖4√3 ,𝜂8
22

= 𝑖4√3 ,𝜂8
33

= 𝑖2√3 ,𝜂11
23

= 𝑖4 ,𝜂12
23

= −14 ,𝜂13
12

= 𝑖4 ,𝜂14
12

= 14 ,
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𝜂15
11

= 𝑖2√6 ,𝜂15
22

= − 𝑖2√6 ,𝜂15
33

= 𝑖2√6 .
(B.17)

Here the complex conjugates are not shown up since they can
easily be implemented. The corresponding values of 𝜂�푎�퐴�퐵 can
be obtained from those of 𝜂�푎�퐴�퐵 by flipping the sign for the
entries 𝑎 = 1, 3, 4, 6, 8, 9, 11, 13, 15 as well as interchanging𝑧3 ↔ 𝑧3 for all entries. Note that the first line in (B.17) belongs
to 𝑚(+) ̇�푎

�퐴�퐵 in (77) with purely holomorphic or antiholomor-
phic indices. This result implies that the space of complex
structure deformations can be identified with the coset
space 𝑆𝑈(4)/𝑈(3) = C𝑃3 [9].
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