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A unified reproducing kernel method for solving linear differential equations with functional constraint is provided. We use a
specified inner product to obtain a class of piecewise polynomial reproducing kernels which have a simple unified description.
Arbitrary order linear differential operator is proved to be bounded about the special inner product. Based on space decomposition,
we present the expressions of exact solution and approximate solution of linear differential equation by the polynomial reproducing
kernel. Error estimation of approximate solution is investigated. Since the approximate solution can be described by polynomials,
it is very suitable for numerical calculation.

1. Introduction

The reproducing kernel method of solving differential equa-
tion is one of the important topics of reproducing kernel
numerical methods. In recent years, reproducing kernel
theories are widely applied to solve all kinds of the differ-
ential equations, which provide new description forms for
exact solutions and approximate solutions of many classical
equations. For example, Zhang andCui [1] andLi [2] obtained
the analytical solutions described as series for the steady
state convecting equations and boundary value problems,
separately. Wang et al. [3] not only got the exact solution
described as series for a class of boundary value problems
of ordinary differential equations, but also proposed iterative
method for the approximate solutions. Gao et al. [4] and Li
and Wu [5] investigated the reproducing kernel methods to
solve singular second-order initial/boundary value problems
and multipoint boundary value problems. Zhang [6] and
Wu and Lin [7] specially introduced the reproducing kernel
methods of solving linear differential equation based on
reproducing kernel theory. Shi et al. [8] and Du and Zhang
[9] obtained the analytical solutions and the corresponding
approximate solutions of initial value problems of linear

ordinary differential equations and error estimation was
considered. Li andWu [10] considered the error estimation of
solving boundary value problem of linear equations. Castro
et al. [11] introduced a new method to solve general initial
value problems by means of reproducing kernel theory.

However, these studies were generally concentrated on
constructing the corresponding reproducing kernels for solv-
ing specific equations. There was no unified description
for these methods. Therefore, how to construct a common
method of reproducing kernel for a class of differential
equations is worthy of further study about theories and
methods. In this paper, for a class of frequently used repro-
ducing kernel space𝑊𝑠

2
[0, 1], a class of piecewise polynomial

reproducing kernels is presented by a specific inner product.
These reproducing kernels have a simple unified expression
for all 𝑊𝑠

2
[0, 1]. They are suitable for numerical calculation

and independent of the concrete form of the operator 𝐿.
According to the given inner product, the arbitrary 𝑘th-order
linear differential operator is proved to be bounded operator
of 𝑊𝑛
2
[0, 1] → 𝑊

𝑚

2
[0, 1] (if only 𝑘 = 𝑛 − 𝑚). Based on

space decomposition, {𝜓
𝑖
} (defined as (1)) were proved to

always be complete in a subspace. Finally, we give the error
estimation of approximate solution. These results provide
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a unified reproducing kernel theory and method for solving
arbitrary linear differential equation with arbitrary linear
functional constraint.

2. Preliminary

For the convenience of description, we first give a brief
description of the problem concerned in this paper. Let
𝐻
1
, 𝐻
2
be reproducing kernel Hilbert spaces composed

of functions defined on a certain Ω. The inner products
are ⟨⋅, ⋅⟩

𝐻
1

, ⟨⋅, ⋅⟩
𝐻
2

and reproducing kernels are 𝐾
𝐻
1

(𝑡, 𝜏),
𝐾
𝐻
2

(𝑡, 𝜏), separately. 𝐿 denotes a linear differential operator
from 𝐻

1
to 𝐻
2
. For the given 𝑢 ∈ 𝐻

2
, under certain

conditions, we need to find 𝑓 ∈ 𝐻
1
such that 𝐿𝑓(𝑡) = 𝑢(𝑡).

Themain idea of solving this kind of equation by reproducing
kernel method is presented as follows:

(i) For supposing 𝐿∗ : 𝐻
2
→ 𝐻

1
to be conjugate oper-

ator of𝐿, prove𝐿 to be a linear bounded operator from
𝐻
1
to𝐻
2
.

(ii) For the specified dense sequence {𝑥
𝑖
} ⊂ Ω, which is

composed of distinct numbers, let

𝜎
𝑖
(𝑡) = 𝐾

𝐻
2

(𝑡, 𝑥
𝑖
) ,

𝜓
𝑖
(𝑡) = 𝐿

∗

𝜎
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . ,

(1)

and then prove {𝜓
𝑖
} to be complete about𝐻

1
.

(iii) Based on (ii), orthonormalize {𝜓
𝑖
} to obtain {�̃�

𝑖
} and

suppose �̃�
𝑖
= ∑
𝑖

𝑗=1
𝛽
𝑖𝑗
𝜓
𝑗
; then, from (1) and properties

of reproducing kernel and conjugate operator, we can
get the solution of 𝐿𝑓(𝑡) = 𝑢(𝑡) as

𝑓 (𝑡) =

∞

∑

𝑖=1

⟨𝑓, �̃�
𝑖
⟩
𝐻
1

�̃�
𝑖
(𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
⟨𝐿𝑓,𝐾

𝐻
2

(⋅, 𝑥
𝑖
)⟩
𝐻
2

�̃�
𝑖
(𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
[𝐿𝑓 (𝑥

𝑖
)] �̃�
𝑖
(𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
𝑢 (𝑥
𝑖
) �̃�
𝑖
(𝑡) .

(2)

From (2), we can obtain the exact expression of the
solution and can do numerical calculation by values of the
given 𝑢(𝑥

𝑖
).

According to the above process, we can see that if we
want to solve differential equation, (i) and (ii) must be true.
To verify these two conditions, the frequently used method
is to firstly design an inner product and corresponding
reproducing kernel according to the specified differential
operator 𝐿. Then, the boundedness of 𝐿 is considered and,
for ensuring {𝜓

𝑖
} to be complete, 𝐿 has to be invertible.

For each specific differential equation, we have the same
process. Moreover, operator 𝐿 usually is not invertible. The
forms of reproducing kernels obtained by solving high-order
differential equation are complicated and have no unified
structural properties.These also make it difficult to verify the
boundedness of operator 𝐿 and the completeness of {𝜓

𝑖
}.

3. Polynomial Reproducing Kernel in 𝑊
𝑠

2
[0, 1]

For any positive integer 𝑠, let

𝑊
𝑠

2
[0, 1] = {𝑓 (𝑡) , 𝑡 ∈ [0, 1] : 𝑓

(𝑠−1)

(𝑡)

is absolutely continuous on [0, 1] and 𝑓
(𝑠)

(𝑡)

∈ 𝐿
2

[0, 1]} ,

(3)

where 𝐿2[0, 1] is a square integrable function space. Accord-
ing to [6], every 𝑓(𝑡) ∈ 𝑊𝑠

2
[0, 1] can be written as

𝑓 (𝑡) =

𝑠

∑

𝑖=1

𝑓
(𝑖−1)

(0) 𝑒
𝑖
(𝑡) + ∫

1

0

𝑔
𝑠
(𝑡, 𝜏) 𝑓

(𝑠)

(𝜏) 𝑑𝜏, (4)

where

𝑒
𝑖
(𝑡) =

𝑡
𝑖−1

(𝑖 − 1)!
,

𝑔
𝑠
(𝑡, 𝜏) =

1

(𝑠 − 1)!
(𝑡 − 𝜏)

𝑠−1

+
.

(5)

For any 𝑢 ∈ 𝐿2[0, 1], we have

𝑑
𝑖

𝑑𝑡𝑖
∫

1

0

𝑔
𝑠
(𝑡, 𝜏) 𝑢 (𝜏) 𝑑𝜏 = ∫

1

0

[
𝜕
𝑖

𝜕𝑡𝑖
𝑔 (𝑡, 𝜏)] 𝑢 (𝜏) 𝑑𝜏,

0 ≤ 𝑖 ≤ 𝑠 − 1,

𝑑
𝑠

𝑑𝑡𝑠
∫

1

0

𝑔
𝑠
(𝑡, 𝜏) 𝑢 (𝜏) 𝑑𝜏 = 𝑢 (𝑡) .

(6)

𝑊
𝑠

2
[0, 1] is a reproducing kernel Hilbert space with respect to

inner product

⟨𝑓, ℎ⟩
𝑠
=

𝑠

∑

𝑖=1

𝑓
(𝑖−1)

(0) ⋅ ℎ
(𝑖−1)

(0)

+ ∫

1

0

𝑓
(𝑠)

(𝑡) ⋅ ℎ
(𝑠)

(𝑡) 𝑑𝑡

(7)

and has a reproducing kernel

𝐾
𝑠
(𝑡, 𝜏) =

𝑠

∑

𝑖=1

𝑒
𝑖
(𝑡) 𝑒
𝑖
(𝜏) + ∫

1

0

𝑔
𝑠
(𝑡, 𝑥) ⋅ 𝑔

𝑠
(𝜏, 𝑥) 𝑑𝑥. (8)

For the convenience of numerical calculation, we explore
more concrete form of reproducing kernel 𝐾

𝑠
(𝑡, 𝜏). Suppose

that

𝐸
𝑠
(𝑡, 𝜏) = ∫

1

0

𝑔
𝑠
(𝑡, 𝑥) ⋅ 𝑔

𝑠
(𝜏, 𝑥) 𝑑𝑥. (9)
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The key of calculating reproducing kernel 𝐾
𝑠
(𝑡, 𝜏) is to cal-

culate 𝐸
𝑠
(𝑡, 𝜏). Let

𝑒
𝑖
(𝑡) =

(−1)
𝑠−𝑖

𝑡
𝑠−𝑖

(𝑠 − 𝑖)!
, 𝑖 = 1, 2, . . . , 𝑠; (10)

then we can obtain

𝑔
𝑠
(𝑡, 𝑥) =

1

(𝑠 − 1)!
(𝑡 − 𝑥)

𝑠−1

+

=

𝑠

∑

𝑖=1

𝑒
𝑖
(𝑡) ⋅ 𝑒
𝑖
(𝑥) (𝑡 − 𝑥)

0

+
,

(11)

where 𝑒
𝑖
(𝑡) is as the definition in (5).

It follows that when 𝑡 ≥ 𝜏,

𝐸
𝑠
(𝑡, 𝜏) = ∫

𝜏

0

[

𝑠

∑

𝑖=1

𝑒
𝑖
(𝑡) 𝑒
𝑖
(𝑥)] ⋅ [

[

𝑠

∑

𝑗=1

𝑒
𝑗
(𝜏) 𝑒
𝑗
(𝑥)]

]

𝑑𝑥

=

𝑠

∑

𝑖=1

𝑒
𝑖
(𝑡) ∫

𝜏

0

[

[

𝑠

∑

𝑗=1

𝑒
𝑗
(𝜏) 𝑒
𝑗
(𝑥)]

]

⋅ 𝑒
𝑖
(𝑥) 𝑑𝑥

=
1

(𝑠 − 1)!

𝑠

∑

𝑖=1

𝑒
𝑖
(𝑡) ∫

𝜏

0

(𝜏 − 𝑥)
𝑠−1

⋅ 𝑒
𝑖
(𝑥) 𝑑𝑥,

∫

𝜏

0

(𝜏 − 𝑥)
𝑠−1

⋅ 𝑒
𝑖
(𝑥) 𝑑𝑥

=
(−1)
𝑠−𝑖

(𝑠 − 𝑖)!
∫

𝜏

0

(𝜏 − 𝑥)
𝑠−1

⋅ 𝑥
𝑠−𝑖

𝑑𝑥

=
(−1)
𝑠−𝑖

(𝑠 − 𝑖)!
𝜏
2𝑠−𝑖

⋅ 𝐵 (𝑠 + 1 − 𝑖, 𝑠) ,

(12)

where 𝐵(𝑎, 𝑏) = ∫
1

0

𝑥
𝑎−1

(1 − 𝑥)
𝑏−1

𝑑𝑥 is a Beta function. As a
consequence, we have

𝐸
𝑠
(𝑡, 𝜏) =

1

(𝑠 − 1)!

𝑠

∑

𝑖=1

(−1)
𝑠−𝑖

𝐵 (𝑠 + 1 − 𝑖, 𝑠)

(𝑠 − 𝑖)! (𝑖 − 1)!
𝑡
𝑖−1

𝜏
2𝑠−𝑖

,

𝑡 ≥ 𝜏.

(13)

When 𝑡 < 𝜏, we can get 𝐸
𝑠
(𝑡, 𝜏) = 𝐸

𝑠
(𝜏, 𝑡) by symmetry. By

Beta function, we have

𝐸
𝑠
(𝑡, 𝜏) =

{{{{

{{{{

{

𝑠

∑

𝑖=1

(−1)
𝑠−𝑖

(2𝑠 − 𝑖)! (𝑖 − 1)!
𝑡
𝑖−1

𝜏
2𝑠−𝑖

, 𝑡 ≥ 𝜏,

𝑠

∑

𝑖=1

(−1)
𝑠−𝑖

(2𝑠 − 𝑖)! (𝑖 − 1)!
𝑡
2𝑠−𝑖

𝜏
𝑖−1

, 𝑡 < 𝜏.

(14)

Then, from (8), we can get

𝐾
𝑠
(𝑡, 𝜏) =

𝑠

∑

𝑖=1

𝑡
𝑖−1

𝜏
𝑖−1

[(𝑖 − 1)!]
2
+ 𝐸
𝑠
(𝑡, 𝜏) . (15)

Obviously,𝐾
𝑠
(𝑡, 𝜏) is a piecewise polynomial of two variables.

Lemma 1. For any dense sequence {𝑥
𝑖
} composed of distinct

numbers in [0, 1], function sequence

𝜙
𝑖
(𝑡) = 𝐾

𝑠
(𝑡, 𝑥
𝑖
) , 𝑖 = 1, 2, . . . , (16)

is a linearly independent complete system in𝑊𝑠
2
[0, 1].

Proof. For any positive integer 𝑁, if there are constants
𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑁
such that

𝜙 = 𝑐
1
𝜙
1
+ 𝑐
2
𝜙
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑁
𝜙
𝑁
= 𝜃
𝑠

(𝜃
𝑠
represents the zero element of 𝑊𝑠

2
[0, 1]) ,

(17)

namely, ‖𝜙‖
𝑠
= 0, then, for any 𝑓 ∈ 𝑊

𝑠

2
[0, 1], it can follow

that

0 = ⟨𝑓, 𝜙⟩
𝑠
= 𝑐
1
𝑓 (𝑥
1
) + 𝑐
2
𝑓 (𝑥
2
) + ⋅ ⋅ ⋅ + 𝑐

𝑁
𝑓 (𝑥
𝑁
) . (18)

Take 𝑓 in the above equation as 1, 𝑥, . . . , 𝑥𝑁−1 in turn; we can
obtain 𝑐

1
= 𝑐
2
= ⋅ ⋅ ⋅ = 𝑐

𝑁
= 0. Therefore, 𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑁
are

linearly independent.
For any 𝑓 ∈ 𝑊

𝑠

2
[0, 1], if ⟨𝑓, 𝜙

𝑖
⟩
𝑠
= 0 (𝑖 = 1, 2, . . .),

that is, 𝑓(𝑥
𝑖
) = ⟨𝑓,𝐾

𝑠
(⋅, 𝑥
𝑖
)⟩
𝑠
= 0, since {𝑥

𝑖
} are dense and

𝑓 is continuous in [0, 1], then 𝑓(𝑡) = 0 and 𝜙
1
, 𝜙
2
, . . . are

complete.
This completes the proof of Lemma 1.

Remark 2. The above proof is independent of the inner
product of 𝑊𝑠

2
[0, 1] and the concrete form of reproducing

kernel. Therefore, Lemma 1 is always true for arbitrary inner
product of 𝑊

𝑠

2
[0, 1] and the corresponding reproducing

kernel.

4. Reproducing Kernel Method for Solution of
Linear Differential Equation

Suppose that 𝑘th-order linear differential operator is

𝐿 = 𝐷
𝑘

+ 𝑎
𝑘−1

(𝑡) 𝐷
𝑘−1

+ ⋅ ⋅ ⋅ + 𝑎
1
(𝑡) 𝐷 + 𝑎

0
(𝑡) ,

𝑡 ∈ [0, 1] ,

(19)

where 𝑎
𝑗
(𝑡) ∈ 𝐶

𝑗

[0, 1] and integers 𝑚 and 𝑛 satisfy 0 ≤ 𝑚 <

𝑛 and 𝑘 = 𝑛 − 𝑚. It is obvious that 𝐿 is a linear surjective
map from 𝑊

𝑛

2
[0, 1] to 𝑊𝑚

2
[0, 1]. The null space Ker 𝐿 is a 𝑘-

dimensional subspace of𝑊𝑛
2
[0, 1].

When 𝑚 = 0, then 𝑘 = 𝑛. Denote 𝑊0
2
[0, 1] by 𝐿2[0, 1];

that is,𝑊0
2
[0, 1] = 𝐿

2

[0, 1]. The corresponding inner product
is

⟨𝑓, ℎ⟩
0
= ∫

1

0

𝑓 (𝑡) ⋅ ℎ (𝑡) 𝑑𝑡 = ⟨𝑓, ℎ⟩
𝐿
2 . (20)

Theorem 3. Suppose that 𝑎(𝑚)
𝑖

(𝑡) (0 ≤ 𝑖 ≤ 𝑘 − 1) exist and are
bounded on [0, 1]; then the differential operator 𝐿 is a bounded
linear operator from𝑊

𝑛

2
[0, 1] to𝑊𝑚

2
[0, 1].
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Proof. We only need to prove that 𝐿 is bounded. For any 𝑓 ∈

𝑊
𝑛

2
[0, 1] and 0 ≤ 𝑖 ≤ 𝑛 − 1, there is

[𝑓
(𝑖)

(𝑡)]
2

≤ 2 [𝑓
(𝑖)

(0)]
2

+ 2 [∫

𝑡

0

𝑓
(𝑖+1)

(𝜏) 𝑑𝜏]

2

≤ 2 [𝑓
(𝑖)

(0)]
2

+ 2∫

1

0


𝑓
(𝑖+1)

(𝑡)


2

𝑑𝑡.

(21)

It follows that

∫

1

0


𝑓
(𝑖)

(𝑡)


2

𝑑𝑡 ≤ 2 [𝑓
(𝑖)

(0)]
2

+ 2∫

1

0


𝑓
(𝑖+1)

(𝑡)


2

𝑑𝑡. (22)

According to the above inequality, for 𝑖 ≤ 𝑛, we have

∫

1

0


𝑓
(𝑖)

(𝑡)


2

𝑑𝑡 ≤ 2 [𝑓
(𝑖)

(0)]
2

+ 2
2

[𝑓
(𝑖+1)

(0)]
2

+ ⋅ ⋅ ⋅

+ 2
𝑛−𝑖

[𝑓
(𝑛−1)

(0)]
2

+ 2
𝑛−𝑖

∫

1

0


𝑓
(𝑛)

(𝑡)


2

𝑑𝑡

≤ 2
𝑛−𝑖

[[𝑓
(𝑖)

(0)]
2

+ [𝑓
(𝑖+1)

(0)]
2

+ ⋅ ⋅ ⋅

+ [𝑓
(𝑛−1)

(0)]
2

+ ∫

1

0


𝑓
(𝑛)

(𝑡)


2

𝑑𝑡]

≤ 2
𝑛−𝑖

[

𝑛

∑

𝑖=1

[𝑓
(𝑖−1)

(0)]
2

+ ∫

1

0

[𝑓
(𝑛)

(𝑡)]
2

𝑑𝑡]

= 2
𝑛−𝑖 𝑓



2

𝑛
.

(23)

When𝑚 ≥ 1, the norm of 𝐿𝑓 in𝑊𝑚
2
[0, 1] is

𝐿𝑓


2

𝑚
=

𝑚

∑

𝑖=1

[(𝐿𝑓)
(𝑖−1)

(0)]

2

+ ∫

1

0

[(𝐿𝑓)
(𝑚)

(𝑡)]

2

𝑑𝑡. (24)

Since

[(𝐿𝑓)
(𝑖)

]

2

= [(𝑓
(𝑘)

+ 𝑎
𝑘−1

𝑓
(𝑘−1)

+ 𝑎
𝑘−2

𝑓
(𝑘−2)

+ ⋅ ⋅ ⋅

+ 𝑎
1
𝑓
(1)

+ 𝑎
0
𝑓)
(𝑖)

]

2

= [

[

𝑓
(𝑘+𝑖)

+

𝑖

∑

𝑗=0

𝐶
𝑗

𝑖
[𝑎
(𝑗)

𝑘−1
𝑓
(𝑘−1+𝑖−𝑗)

+ 𝑎
(𝑗)

𝑘−2
𝑓
(𝑘−2+𝑖−𝑗)

+ ⋅ ⋅ ⋅

+ 𝑎
(𝑗)

0
𝑓
(𝑖−𝑗)

]]

]

2

≤ 2 [𝑓
(𝑘+𝑖)

]
2

+ 2[

[

𝑖

∑

𝑗=0

𝐶
𝑗

𝑖
[𝑎
(𝑗)

𝑘−1
𝑓
(𝑘−1+𝑖−𝑗)

+ 𝑎
(𝑗)

𝑘−2
𝑓
(𝑘−2+𝑖−𝑗)

+ ⋅ ⋅ ⋅

+ 𝑎
(𝑗)

0
𝑓
(𝑖−𝑗)

]]

]

2

,

(25)

it is easily known that, for arbitrary 𝑛 numbers 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
,

we have

(𝑐
1
+ 𝑐
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑛
)
2

≤ 2
𝑛−1

(𝑐
2

1
+ 𝑐
2

2
+ ⋅ ⋅ ⋅ + 𝑐

2

𝑛
) (26)

and 𝐶𝑗
𝑖
≤ 𝑚! for 0 ≤ 𝑖 ≤ 𝑚. Because 𝑎(𝑚)

𝑖
(𝑡) (0 ≤ 𝑖 ≤ 𝑘 − 1)

are bounded, there exists a constant 𝐴 > 0 (we might as well
put 𝐴 > 1) such that


𝑎
(𝑗)

𝑖
(𝑡)

≤ 𝐴 (0 ≤ 𝑖 ≤ 𝑘 − 1, 0 ≤ 𝑗 ≤ 𝑚) . (27)

Then, we can get

[

[

𝑖

∑

𝑗=0

𝐶
𝑗

𝑖
[𝑎
(𝑗)

𝑘−1
𝑓
(𝑘−1+𝑖−𝑗)

+ 𝑎
(𝑗)

𝑘−2
𝑓
(𝑘−2+𝑖−𝑗)

+ ⋅ ⋅ ⋅

+ 𝑎
(𝑗)

0
𝑓
(𝑖−𝑗)

]]

]

2

≤ (𝑚!)
2

2
𝑖

𝑖

∑

𝑗=0

[

𝑘

∑

𝑙=1

𝑎
(𝑗)

𝑘−𝑙
𝑓
(𝑘−𝑙+𝑖−𝑗)

]

2

≤ (𝑚!)
2

2
𝑚

2
𝑘−1

𝑖

∑

𝑗=0

𝑘

∑

𝑙=1

[𝑎
(𝑗)

𝑘−𝑙
𝑓
(𝑘−𝑙+𝑖−𝑗)

]
2

≤ (𝑚!)
2

⋅ 2
𝑛−1

𝐴

𝑖

∑

𝑗=0

𝑘

∑

𝑙=1

[𝑓
(𝑘+𝑖−𝑙−𝑗)

]
2

≤ (𝑚!)
2

2
𝑛−1

𝐴 ⋅ (𝑖 + 1)

⋅ [[𝑓
(𝑘+𝑖−1)

]
2

+ [𝑓
(𝑘+𝑖−2)

]
2

+ ⋅ ⋅ ⋅ + [𝑓
(1)

]
2

+ 𝑓
2

] .

(28)

Let 𝐶
1
= (𝑚!)

2

2
𝑛

(𝑚 + 1)𝐴; we have

[(𝐿𝑓)
(𝑖)

]

2

≤ 𝐶
1
[[𝑓
(𝑘+𝑖)

]
2

+ [𝑓
(𝑘+𝑖−1)

]
2

+ ⋅ ⋅ ⋅ + [𝑓
(1)

]
2

+ 𝑓
2

]

≤ 𝐶
1
[[𝑓
(𝑛)

]
2

+ [𝑓
(𝑛−1)

]
2

+ ⋅ ⋅ ⋅ + [𝑓
(1)

]
2

+ 𝑓
2

] ,

0 ≤ 𝑖 ≤ 𝑚.

(29)

Note that 𝐶
1
is independent of 𝑖, so, from (29) and (23), we

can obtain
𝑚

∑

𝑖=1

[(𝐿𝑓)
(𝑖−1)

(0)]

2

≤ 𝑚𝐶
1
[[𝑓
(𝑛)

(0)]
2

+ [𝑓
(𝑛−1)

(0)]
2

+ ⋅ ⋅ ⋅ + 𝑓
2

(0)] ,

∫

1

0

[(𝐿𝑓)
(𝑚)

(𝑡)]

2

𝑑𝑡

≤ 𝐶
1
∫

1

0

[[𝑓
(𝑛)

(𝑡)]
2

+ [𝑓
(𝑛−1)

(𝑡)]
2

+ ⋅ ⋅ ⋅ + 𝑓
2

(𝑡)] 𝑑𝑡

≤ 𝐶
1
[1 + 2 + ⋅ ⋅ ⋅ + 2

𝑛

]
𝑓


2

𝑛
≤ 2
𝑛+1

𝐶
1

𝑓


2

𝑛
.

(30)

Substituting the above two formulas into (24) and letting𝐶 =

[2
𝑛+1

+ 𝑚]𝐶
1
, we can get

𝐿𝑓


2

𝑚
≤ 𝑚𝐶

1

𝑛−1

∑

𝑖=0

[𝑓
(𝑖)

(0)]
2

+ 2
𝑛+1

𝐶
1

𝑓


2

𝑛
≤ 𝐶

𝑓


2

𝑛
. (31)
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It shows that 𝐿 is a bounded operator from 𝑊
𝑛

2
[0, 1] to

𝑊
𝑚

2
[0, 1].
When𝑚 = 0, then 𝑘 = 𝑛, and the norm of 𝐿𝑓 in𝑊0

2
[0, 1]

is ‖𝐿𝑓‖2
0
= ∫
1

0

[𝐿𝑓(𝑡)]
2

𝑑𝑡. According to the conditions, we can
know that 𝑎

𝑖
(𝑡) is bounded on [0, 1]. Therefore, there exists

𝐴
0
> 0 (we might as well put 𝐴

0
> 1) such that |𝑎

𝑖
(𝑡)| ≤

𝐴
0
(0 ≤ 𝑖 ≤ 𝑛 − 1).
From (29) and (23), we can obtain

∫

1

0

[𝐿𝑓 (𝑡)]
2

𝑑𝑡 ≤ 2
𝑛

𝐴
0
∫

1

0

[[𝑓
(𝑛)

(𝑡)]
2

+ [𝑓
(𝑛−1)

(𝑡)]
2

+ ⋅ ⋅ ⋅ + [𝑓
(1)

(𝑡)]
2

+ [𝑓 (𝑡)]
2

] 𝑑𝑡 ≤ 2
𝑛

𝐴
0
[1 + 2

+ ⋅ ⋅ ⋅ + 2
𝑛

]
𝑓


2

𝑛
≤ 2
𝑛+𝑘+1

𝐴
0

𝑓


2

𝑛
.

(32)

This shows that 𝐿 is a bounded operator from 𝑊
𝑛

2
[0, 1] to

𝑊
0

2
[0, 1].
This completes the proof of Theorem 3.

The null space Ker 𝐿 of 𝐿 is 𝑘-dimensional subspace of
𝑊
𝑛

2
[0, 1]. Suppose that 𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑘
are continuous linear

functional and linearly independent on Ker 𝐿 and suppose
that the values of 𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑘
are given. Now we consider the

following definite solutions problem.
For a given 𝑢 ∈ 𝑊

𝑚

2
[0, 1], find 𝑓 ∈ 𝑊

𝑛

2
[0, 1] such that it

satisfies
𝐿𝑓 (𝑡) = 𝑢 (𝑡) ,

𝜆
𝑖
𝑓 = 𝑟
𝑖

(𝑖 = 1, 2, . . . , 𝑘) .

(33)

Denoted by Λ = (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑘
), Λ is a vector-valued linear

functional on𝑊𝑛
2
[0, 1]; namely, Λ𝑓 = (𝜆

1
𝑓, . . . , 𝜆

𝑘
𝑓).

Lemma 4. 𝑊𝑛
2
[0, 1] has direct sum decomposition:

𝑊
𝑛

2
[0, 1] = Ker 𝐿 + KerΛ,

Ker 𝐿 ∩ KerΛ = {0} .

(34)

Proof. Because 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑘
are linearly independent on

Ker 𝐿, there is a basis 𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑘
of Ker 𝐿 which is dual to

𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑘
; namely,

𝐿𝜑
𝑖
(𝑡) = 0,

𝜆
𝑖
𝜑
𝑗
= 𝛿
𝑖𝑗
,

1 ≤ 𝑖, 𝑗 ≤ 𝑘.

(35)

Since Ker 𝐿 is a closed subspace of 𝑊𝑛
2
[0, 1], every 𝑓 ∈

𝑊
𝑛

2
[0, 1] has a unique decomposition form:

𝑓 (𝑡) = 𝑓
1
(𝑡) + 𝑓

2
(𝑡) ,

𝑓
1
∈ Ker 𝐿,

𝑓
2
∈ (Ker 𝐿)⊥ .

(36)

From (35), we can obtain 𝑓
1
(𝑡) = ∑

𝑘

𝑖=1
(𝜆
𝑖
𝑓
1
)𝜑
𝑖
(𝑡); then

𝑓
2
(𝑡) = 𝑓 (𝑡) −

𝑘

∑

𝑖=1

(𝜆
𝑖
𝑓
1
) 𝜑
𝑖
(𝑡) . (37)

Let

𝑓
𝐿
(𝑡) =

𝑘

∑

𝑖=1

(𝜆
𝑖
𝑓) 𝜑
𝑖
(𝑡) ,

𝑓
Λ
(𝑡) = 𝑓

2
(𝑡) −

𝑘

∑

𝑖=1

(𝜆
𝑖
𝑓
2
) 𝜑
𝑖
(𝑡) ;

(38)

we have

𝑓 (𝑡) =

𝑘

∑

𝑖=1

(𝜆
𝑖
𝑓) 𝜑
𝑖
(𝑡) + 𝑓

Λ
(𝑡) = 𝑓

𝐿
(𝑡) + 𝑓

Λ
(𝑡) . (39)

From (35) again, we can get 𝑓
𝐿
∈ Ker 𝐿 and 𝑓

Λ
∈ KerΛ.

If 𝑓 ∈ Ker 𝐿 ∩ KerΛ, there is 𝑓(𝑡) = ∑
𝑘

𝑖=1
(𝜆
𝑖
𝑓)𝜑
𝑖
(𝑡) and

𝜆
𝑖
𝑓 = 0 (1 ≤ 𝑖 ≤ 𝑘). It follows that 𝑓(𝑡) = 0. Therefore,

Ker 𝐿 ∩ KerΛ = {0}.
This completes the proof of Lemma 4.

According to the proof of Lemma 4, we have

𝐿𝑓
Λ
(𝑡) = 𝐿𝑓 (𝑡) ,

𝜆
𝑖
𝑓
𝐿
= 𝜆
𝑖
𝑓,

𝑖 = 1, 2, . . . , 𝑘.

(40)

Since 𝐿 : KerΛ → 𝑊
𝑚

2
[0, 1] is a bounded linear operator,

there exists a conjugate operator 𝐿∗ : 𝑊𝑚
2
[0, 1] → KerΛ.

For any dense sequence {𝑥
𝑖
} composed of distinct numbers

in [0, 1], when𝑚 ≥ 1, suppose that

𝜎
𝑖
(𝑡) = 𝐾

𝑚
(𝑡, 𝑥
𝑖
) ,

𝜓
𝑖
(𝑡) = 𝐿

∗

𝜎
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . ;

(41)

then we have the following lemma.

Lemma 5. As in Lemma 4, suppose that 𝑓(𝑡) = 𝑓
𝐿
(𝑡) + 𝑓

Λ
(𝑡);

then

(i) for any 𝑓 ∈ 𝑊
𝑛

2
[0, 1], ⟨𝑓, 𝜓

𝑖
⟩
𝑛
= 0 (𝑖 = 1, 2, . . .) ⇔

𝑓 = 𝑓
𝐿
;

(ii) for any 𝑓
Λ
∈ KerΛ, ⟨𝑓

Λ
, 𝜓
𝑖
⟩
𝑛
= 0 (𝑖 = 1, 2, . . .) ⇔

𝑓
Λ
= 0.

Proof. Suppose that 𝑓 ∈ 𝑊
𝑛

2
[0, 1]. If ⟨𝑓, 𝜓

𝑖
⟩
𝑛

= 0 (𝑖 =

1, 2, . . .), then, from (41), we have

⟨𝐿𝑓
Λ
, 𝐾
𝑚
(⋅, 𝑥
𝑖
)⟩
𝑚
= ⟨𝐿𝑓,𝐾

𝑚
(⋅, 𝑥
𝑖
)⟩
𝑚
= ⟨𝑓, 𝜓

𝑖
⟩
𝑛

= 0 (𝑖 = 1, 2, . . .) .

(42)

Since 𝐿𝑓
Λ

∈ 𝑊
𝑚

2
[0, 1] and from Lemma 1, {𝐾

𝑚
(⋅, 𝑥
𝑖
)} are

complete in 𝑊
𝑚

2
[0, 1], so 𝐿𝑓

Λ
= 0. As 𝑓

Λ
satisfies 𝜆

𝑖
𝑓
Λ

=

0 (1 ≤ 𝑖 ≤ 𝑘), therefore, 𝑓
Λ
= 0; that is to say, 𝑓 = 𝑓

𝐿
.

By contrast, if 𝑓 = 𝑓
𝐿
, namely, 𝐿𝑓 = 0, then ⟨𝑓, 𝜓

𝑖
⟩
𝑛
=

⟨𝐿𝑓,𝐾
𝑚
(⋅, 𝑥
𝑖
)⟩
𝑚
= 0 (𝑖 = 1, 2, . . .). It follows that (i) is true.

Meanwhile, according to the proof, we can also know that (ii)
is true.

Thus, we finish the proof of Lemma 5.
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Theorem 6. Suppose that 𝐻
𝑛
= Span{𝜓

𝑖
} + KerΛ; then {𝜓

𝑖
}

are linearly independent and complete in𝐻
𝑛
.

Proof. Clearly, {𝜓
𝑖
} ⊂ 𝐻

𝑛
. We first prove that {𝜓

𝑖
} are linearly

independent. Suppose that there are a positive integer𝑁 and
constants 𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑁
such that𝜓 = 𝑐

1
𝜓
1
+𝑐
2
𝜓
2
+⋅ ⋅ ⋅+𝑐

𝑁
𝜓
𝑁
=

𝜃
𝑛
; namely,

𝐿
∗

(𝑐
1
𝜎
1
+ 𝑐
2
𝜎
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑁
𝜎
𝑁
) = 𝜃
𝑛
,

𝑐
1
𝜎
1
+ 𝑐
2
𝜎
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑁
𝜎
𝑁
∈ Ker 𝐿∗.

(43)

Since Ker 𝐿∗ = (Rang𝐿)⊥ and 𝐿 is surjective, (Rang𝐿)⊥ =

(𝑊
𝑚

2
[0, 1])

⊥

= 𝜃
𝑚
, we have

𝑐
1
𝜎
1
+ 𝑐
2
𝜎
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑁
𝜎
𝑁
= 𝜃
𝑚
. (44)

From Lemma 1, 𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑁
are linearly independent; then

𝑐
1

= 𝑐
2

= ⋅ ⋅ ⋅ = 𝑐
𝑁

= 0. Therefore, {𝜓
𝑖
} are linearly

independent.
Next, we prove that {𝜓

𝑖
} is a complete system of𝐻

𝑛
.

Suppose that 𝑓 ∈ 𝐻
𝑛
satisfies ⟨𝑓, 𝜓

𝑖
⟩
𝑛
= 0 (𝑖 = 1, 2, . . .).

When 𝑓 ∈ Span{𝜓
𝑖
}, it is obvious that 𝑓 = 0. From Lemma 5,

it is easily obtained that when 𝑓 = 𝑓
Λ
, 𝑓 = 0 and when 𝑓 =

ℎ + 𝑓
Λ
(ℎ ∈ Span{𝜓

𝑖
}), 𝑓 = 𝑓

𝐿
; namely, 𝑓 = ℎ = ℎ

𝐿
. Then,

𝑓 ∈ Span{𝜓i} and ⟨𝑓, 𝜓
𝑖
⟩
𝑛
= 0 (𝑖 = 1, 2, . . .). As a result,

𝑓 = 0. Therefore, {𝜓
𝑖
} is a complete system of𝐻

𝑛
.

This completes the proof of Theorem 6.

Theorem 7. Denote {𝜓
𝑖
} orthonormalized in𝑊𝑛

2
[0, 1] by {�̃�

𝑖
}

and suppose that

�̃�
𝑖
(𝑡) =

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
𝜓
𝑗
(𝑡) (𝑖 = 1, 2, . . .) ; (45)

then, the solution 𝑓(𝑡) of (33) can be expressed as

𝑓 (𝑡) =

𝑘

∑

𝑖=1

𝑟
𝑖
𝜑
𝑖
(𝑡) +

∞

∑

𝑖=1

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
𝑢 (𝑥
𝑗
) �̃�
𝑖
(𝑡) . (46)

Proof. From Lemma 4 and (39), 𝑓(𝑡) can be expressed as

𝑓 (𝑡) =

𝑘

∑

𝑖=1

𝑟
𝑖
𝜑
𝑖
(𝑡) + 𝑓

Λ
(𝑡) . (47)

Since 𝑓
Λ
∈ 𝐻
𝑛
, from Theorem 6, we suppose that 𝑓

Λ
(𝑡) =

∑
∞

𝑖=1
⟨𝑓
Λ
, �̃�
𝑖
⟩
𝑛
�̃�
𝑖
(𝑡); according to the properties of conjugate

operator and reproducing kernel, it follows that

𝑓
Λ
(𝑡) =

∞

∑

𝑖=1

⟨𝑓
Λ
, �̃�
𝑖
⟩
𝑛

�̃�
𝑖
(𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
⟨𝑓
Λ
, 𝜓
𝑗
⟩
𝑛

�̃�
𝑖
(𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
⟨𝑓
Λ
, 𝐿
∗

𝐾
𝑚
(⋅, 𝑥
𝑗
)⟩
𝑛

�̃�
𝑖
(𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
⟨𝐿𝑓,𝐾

𝑚
(⋅, 𝑥
𝑗
)⟩
𝑚

�̃�
𝑖
(𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
⟨𝑢,𝐾
𝑚
(⋅, 𝑥
𝑗
)⟩
𝑚

�̃�
𝑖
(𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
𝑢 (𝑥
𝑗
) �̃�
𝑖
(𝑡) .

(48)

So we obtain (46).
Thus, the proof of Theorem 7 is completed.

From (48), we can obtain the approximation of 𝑓
Λ
(𝑡) as

(𝑓
Λ
)
𝑁

(𝑡) =

𝑁

∑

𝑖=1

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
𝑢 (𝑥
𝑗
) �̃�
𝑖
(𝑡) . (49)

Remark 8. Solving (33) by using (48) and (49) depends
on the orthonormalization of {𝜓

𝑖
}. This can sometimes be

troublesome. Therefore, we hope that (𝑓
Λ
)
𝑁
(𝑡) can directly

be written as a linear combination of {𝜓
𝑖
}.

Note that when 𝑗 > 𝑁, ⟨�̃�
𝑗
, 𝜓
𝑖
⟩
𝑛
= 0 (1 ≤ 𝑖 ≤ 𝑁), so

when 𝑗 ≤ 𝑁, there is

⟨(𝑓
Λ
)
𝑁

, 𝜓
𝑗
⟩
𝑛

= ⟨𝑓
Λ
, 𝜓
𝑗
⟩
𝑛

= ⟨𝐿𝑓
Λ
, 𝐾
𝑚
(⋅, 𝑥
𝑗
)⟩
𝑚

= 𝑢 (𝑥
𝑗
) .

(50)

From (49) and Abel transformation of the partial sum of
series, we have

(𝑓
Λ
)
𝑁

(𝑡) =

𝑁

∑

𝑖=1

⟨𝑓
Λ
, �̃�
𝑖
⟩
𝑛

�̃�
𝑖
(𝑡)

=

𝑁

∑

𝑖=1

[

[

𝑁

∑

𝑗=𝑖

⟨𝑓
Λ
, �̃�
𝑗
⟩
𝑛

𝛽
𝑗𝑖

]

]

𝜓
𝑖
(𝑡)

≜

𝑁

∑

𝑖=1

𝑎
𝑖
𝜓
𝑖
(𝑡) .

(51)

Let two sides of the above equation do inner product
with 𝜓

𝑗
(1 ≤ 𝑗 ≤ 𝑁); by (49), we can obtain the system of

equations

𝑁

∑

𝑖=1

⟨𝜓
𝑖
, 𝜓
𝑗
⟩
𝑛

𝑎
𝑖
= 𝑢 (𝑥

𝑗
) , 𝑗 = 1, 2, . . . , 𝑁, (52)

where the coefficientmatrix𝐴 = (⟨𝜓
𝑖
, 𝜓
𝑗
⟩
𝑛
)
𝑁×𝑁

is symmetric
and positive definite.Then, there exists only a set of solutions
𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑁
. By this solution, we can obtain the approximate

solution (𝑓
Λ
)
𝑁
(𝑡).
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In order to obtain matrix 𝐴, we must calculate
⟨𝜓
𝑖
, 𝜓
𝑗
⟩
𝑛
(1 ≤ 𝑖, 𝑗 ≤ 𝑁). For this purpose, we first deduce the

concrete form of 𝜓
𝑖
. According to the properties of conjugate

operator and reproducing kernel, we have

𝜓
𝑖
(𝑡) = ⟨𝜓

𝑖
, 𝐾
𝑛
(⋅, 𝑡)⟩
𝑛
= ⟨𝐿
∗

𝐾
𝑚
(⋅, 𝑥
𝑖
) , 𝐾
𝑛
(⋅, 𝑡)⟩
𝑛

= ⟨𝐾
𝑚
(⋅, 𝑥
𝑖
) , 𝐿𝐾
𝑛
(⋅, 𝑡)⟩
𝑚
= 𝐿
(𝜏)
𝐾
𝑛
(𝜏, 𝑡)

𝜏=𝑥
𝑖

.

(53)

Using the reproducing kernel expression (14) and (15), we
obtain the concrete form of 𝜓

𝑖
as

𝜓
𝑖
(𝑡) =

𝑛

∑

𝑗=1

𝑞
𝑖,𝑗−1

𝑡
𝑗−1

[(𝑗 − 1)!]
2

+

{{{{{

{{{{{

{

𝑛

∑

𝑗=1

(−1)
𝑛−𝑗

𝑞
𝑖,𝑗−1

(2𝑛 − 𝑗)! (𝑗 − 1)!
𝑡
2𝑛−𝑗

, 𝑡 ≤ 𝑥
𝑖
,

𝑛

∑

𝑗=1

(−1)
𝑛−𝑗

𝑞
𝑖,2𝑛−𝑗

(2𝑛 − 𝑗)! (𝑗 − 1)!
𝑡
𝑗−1

, 𝑡 > 𝑥
𝑖
,

(54)

where

𝑞
𝑖𝑗
= (𝐿𝑡
𝑗

)
𝜏=𝑥
𝑖

, 𝑗 = 0, 1, . . . , 2𝑛 − 1. (55)

In order to calculate ⟨𝜓
𝑖
, 𝜓
𝑗
⟩
𝑛
(1 ≤ 𝑖, 𝑗 ≤ 𝑁), from (54),

we have

𝜓
(𝑙−1)

𝑖
(0) =

𝑞
𝑖,𝑙−1

(𝑙 − 1)!
, 𝑙 = 1, 2, . . . , 𝑛,

𝜓
(𝑛)

𝑖
(𝑡) =

{{{

{{{

{

𝑛

∑

𝑗=1

(−1)
𝑗−1

𝑞
𝑖,𝑛−𝑗

(𝑛 − 𝑗)! (𝑗 − 1)!
𝑡
𝑗−1

, 𝑡 ≤ 𝑥
𝑖
,

0, 𝑡 > 𝑥
𝑖
,

𝑛

∑

𝑙=1

𝜓
(𝑙−1)

𝑖
(0) ⋅ 𝜓

(𝑙−1)

𝑗
(0) =

𝑛

∑

𝑙=1

𝑞
𝑖,𝑙−1

(𝑙 − 1)!
⋅

𝑞
𝑗,𝑙−1

(𝑙 − 1)!
.

(56)

When 𝑥
𝑖
≤ 𝑥
𝑗
, it can be obtained that

∫

1

0

𝜓
(𝑛)

𝑖
(𝑡) ⋅ 𝜓

(𝑛)

𝑗
(𝑡) 𝑑𝑡

=

𝑛

∑

𝛼=1

𝑛

∑

𝛽=1

(−1)
𝛼+𝛽

𝑞
𝑖,𝑛−𝛼

𝑞
𝑗,𝑛−𝛽

(𝑛 − 𝛼)! (𝛼 − 1)! (𝑛 − 𝛽)! (𝛽 − 1)!

⋅ ∫

𝑥
𝑖

0

𝑡
𝛼+𝛽−2

𝑑𝑡

=

𝑛

∑

𝛼=1

𝑛

∑

𝛽=1

(−1)
𝛼+𝛽

𝑞
𝑖,𝑛−𝛼

𝑞
𝑗,𝑛−𝛽

(𝑛 − 𝛼)! (𝛼 − 1)! (𝑛 − 𝛽)! (𝛽 − 1)!

⋅
𝑥
𝛼+𝛽−1

𝑖

𝛼 + 𝛽 − 1
.

(57)

When 𝑥
𝑖
> 𝑥
𝑗
, by symmetry, there is

∫

1

0

𝜓
(𝑛)

𝑖
(𝑡) ⋅ 𝜓

(𝑛)

𝑗
(𝑡) 𝑑𝑡

=

𝑛

∑

𝛼=1

𝑛

∑

𝛽=1

(−1)
𝛼+𝛽

𝑞
𝑖,𝑛−𝛼

𝑞
𝑗,𝑛−𝛽

(𝑛 − 𝛼)! (𝛼 − 1)! (𝑛 − 𝛽)! (𝛽 − 1)!

⋅

𝑥
𝛼+𝛽−1

𝑗

𝛼 + 𝛽 − 1
.

(58)

Thus, substituting (56)–(58) into (7), we can obtain
⟨𝜓
𝑖
, 𝜓
𝑗
⟩
𝑛
(1 ≤ 𝑖, 𝑗 ≤ 𝑁).

5. Convergence and Error Estimation

In this section, we will consider the convergence and error
estimation of the approximate solution given by (49).

Lemma 9. 𝑓
𝑁
(𝑡) is convergent uniformly to 𝑓(𝑡) on [0, 1].

Proof. Since {�̃�
𝑖
} is a complete orthonormal system of

𝑊
𝑛

2
[0, 1], it is obvious that


𝑓 − 𝑓

𝑁



2

𝑛

=

𝑓
Λ
− (𝑓
Λ
)
𝑁



2

𝑛

=

∞

∑

𝑖=𝑁+1



𝑖

∑

𝑗=1

𝛽
𝑖𝑗
𝑢 (𝑥
𝑗
)



2

→ 0, 𝑁 → ∞.

(59)

From (14) and (15), it can be obtained that

𝐾
𝑛
(𝑡, 𝑡) =

𝑛

∑

𝑖=1

𝑡
2𝑖−2

[(𝑖 − 1)!]
2
+

𝑛

∑

𝑖=1

(−1)
𝑛−𝑖

(2𝑛 − 𝑖)! (𝑖 − 1)!
𝑡
2𝑛−1

. (60)

Since 𝐾
𝑛
(𝑡, 𝑡) is continuous on [0, 1], there exists a constant

𝑀 such that 0 ≤ 𝐾
𝑛
(𝑡, 𝑡) ≤ 𝑀. Moreover,


𝑓 (𝑡) − 𝑓

𝑁
(𝑡)


2

=

⟨𝑓 − 𝑓

𝑁
, 𝐾
𝑛
(⋅, 𝑡)⟩
𝑛



2

≤

𝑓 − 𝑓

𝑁



2

𝑛

𝐾𝑛 (⋅, 𝑡)


2

𝑛

=
𝑓 − 𝑓

𝑁



2

𝑛
𝐾
𝑛
(𝑡, 𝑡)

≤ 𝑀
𝑓 − 𝑓

𝑁



2

𝑛
.

(61)

Hence, 𝑓
𝑁
(𝑡) is convergent uniformly to 𝑓(𝑡) on [0, 1].

This completes the proof of Lemma 9.

Theorem 10. The exact solution and approximate solution of
(33) satisfy


𝑓 (𝑡) − 𝑓

𝑁
(𝑡)


2

≤

𝑓
Λ



2

𝑛

⋅ [𝐾
𝑛
(𝑡, 𝑡) −

𝑁

∑

𝑖=1

�̃�𝑖 (𝑡)


2

] . (62)
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Proof. From (48) and (49), we have

(𝑓
Λ
)
𝑁

(𝑡) =

𝑁

∑

𝑖=1

⟨𝑓
Λ
, �̃�
𝑖
⟩
𝑛

�̃�
𝑖
(𝑡)

= ⟨

𝑁

∑

𝑖=1

�̃�
𝑖
(𝑡) �̃�
𝑖
, 𝑓
Λ
⟩

𝑛

.

(63)

It follows that

𝑓 (𝑡) − 𝑓

𝑁
(𝑡)


2

=

𝑓
Λ
(𝑡) − (𝑓

Λ
)
𝑁

(𝑡)


2

=



⟨𝐾
𝑛
(⋅, 𝑡) −

𝑁

∑

𝑖=1

�̃�
𝑖
(𝑡) �̃�
𝑖
, 𝑓
Λ
⟩

𝑛



2

≤

𝑓
Λ



2

𝑛



𝐾
𝑛
(⋅, 𝑡) −

𝑁

∑

𝑖=1

�̃�
𝑖
(𝑡) �̃�
𝑖



2

𝑛

.

(64)

Since ∑𝑁
𝑖=1

�̃�
𝑖
(𝑡)�̃�
𝑖
= ∑
𝑁

𝑖=1
⟨𝐾
𝑛
(⋅, 𝑡), �̃�

𝑖
⟩�̃�
𝑖
, then

𝐾
𝑛
(⋅, 𝑡) −

𝑁

∑

𝑖=1

�̃�
𝑖
(𝑡) �̃�
𝑖
⊥

𝑁

∑

𝑖=1

�̃�
𝑖
(𝑡) �̃�
𝑖
. (65)

Therefore,


𝐾
𝑛
(⋅, 𝑡) −

𝑁

∑

𝑖=1

�̃�
𝑖
(𝑡) �̃�
𝑖



2

𝑛

= ⟨𝐾
𝑛
(⋅, 𝑡) , 𝐾

𝑛
(⋅, 𝑡)⟩
𝑛
−

𝑁

∑

𝑖=1

�̃�
𝑖
(𝑡) ⟨𝐾

𝑛
(⋅, 𝑡) , �̃�

𝑖
⟩
𝑛

= 𝐾
𝑛
(𝑡, 𝑡) −

𝑁

∑

𝑖=1

�̃�𝑖 (𝑡)


2

.

(66)

Thus, we prove that (62) is true.
This completes the proof of Theorem 10.

Remark 11. When we use Theorem 10 to estimate |𝑓(𝑡) −

𝑓
𝑁
(𝑡)|, the value of ‖𝑓

Λ
‖
2

𝑛
has to be evaluated. It is usually

difficult in practical problems.We will provide a newmethod
of estimation in the following.

As in Lemma 4, suppose that 𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑘
is a basis of

Ker 𝐿 and is dual to 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑘
. According to [6, 7], every

𝑓 ∈ 𝑊
𝑛

2
[0, 1] has the decomposition form as

𝑓 (𝑡) =

𝑘

∑

𝑖=1

(𝜆
𝑖
𝑓) 𝜑
𝑖
(𝑡) + ∫

1

0

𝐺
𝐿
(𝑡, 𝜏) ⋅ 𝐿𝑓 (𝜏) 𝑑𝜏, (67)

where𝐺
𝐿
(𝑡, 𝜏) is Green function of differential operator𝐿 and

satisfies

𝜆
𝑖
∫

1

0

𝐺
𝐿
(𝑡, 𝜏) ⋅ 𝑢 (𝜏) 𝑑𝜏 = 0, 𝑖 = 1, 2, . . . , 𝑘,

𝐿 ∫

1

0

𝐺
𝐿
(𝑡, 𝜏) ⋅ 𝑢 (𝜏) 𝑑𝜏 = 𝑢 (𝑡) , ∀𝑢 ∈ 𝐿

2

[0, 1] .

(68)

Since 𝐺
𝐿
(𝑡, 𝜏) is continuous, there exists a constant 𝐶 such

that |𝐺
𝐿
(𝑡, 𝜏)| ≤ 𝐶.

Theorem 12. Suppose that 𝑢
𝑖
= ∑
𝑖

𝑗=1
𝛽
𝑖𝑗
[𝑢(𝑥
𝑗
)]; then the exact

solution 𝑓(𝑡) and approximate solution 𝑓
𝑁
(𝑡) of (33) satisfy


𝑓 (𝑡) − 𝑓

𝑁
(𝑡)

≤ 𝐶∫

1

0



∞

∑

𝑖=𝑁+1

𝑖

∑

𝑙=1

𝑢
𝑖
𝛽
𝑖𝑙
[𝐿𝜓
𝑙
(𝑡)]



𝑑𝑡. (69)

The right-hand side of (69) converges to zero as𝑁 → ∞.

Proof. From (39), (48), and (67), it follows that, for any 𝑓
Λ
∈

𝐻
𝑛
, there is

𝑓
Λ
(𝑡) = ∫

1

0

𝐺
𝐿
(𝑡, 𝜏) ⋅ 𝐿𝑓 (𝜏) 𝑑𝜏

=

∞

∑

𝑖=1

𝑖

∑

𝑗=1

𝛽
𝑖𝑗
[𝐿𝑓 (𝑥

𝑗
)] �̃�
𝑖
(𝑡) .

(70)

Then, we have

𝑓
Λ
(𝑡) − (𝑓

Λ
)
𝑁

(𝑡)


≤ 𝐶∫

1

0


𝐿 [𝑓
Λ
(𝜏) − (𝑓

Λ
)
𝑁

(𝜏)]

𝑑𝜏.

(71)

From Lemmas 1 and 9, we know that the right-hand side of
(71) converges to zero as𝑁 → ∞. From (49), we can obtain


𝐿 [𝑓
Λ
(𝜏) − (𝑓

Λ
)
𝑁

(𝜏)]

=



∞

∑

𝑖=𝑁+1

𝑢
𝑖
⋅ [𝐿�̃�
𝑖
(𝑡)]



=



∞

∑

𝑖=𝑁+1

𝑖

∑

𝑙=1

𝑢
𝑖
𝛽
𝑖𝑙
[𝐿𝜓
𝑙
(𝑡)]



. (72)

Substituting this equation into (71) and |𝑓(𝑡) − 𝑓
𝑁
(𝑡)| =

|𝑓
Λ
(𝑡) − (𝑓

Λ
)
𝑁
(𝑡)|, we can get (69) and assert that the right-

hand side of (69) converges to zero as𝑁 → ∞.
This completes the proof of Theorem 12.

Remark 13. From (54), 𝐿𝜓
𝑙
(𝑡) can be easily obtained as the

piecewise polynomial.

6. Conclusion

When we use the reproducing kernel method to solve differ-
ential equation, we always hope that the reproducing kernel
is polynomial reproducing kernel. In general, to take the
reproducing kernel of 𝑊𝑠

2
[0, 1] as polynomial reproducing

kernel, the inner product taken must be as (7). But if we
take this fixed inner product, it is difficult to prove the
boundedness of operator and the completeness of {𝜓

𝑖
(𝑡)}.

How do these two aspects integrate effectively with each
other? For the linear differential operator equation with
functional constraints, this paper investigates this topic and
some meaningful results are presented. Moreover, the proofs
of some results do not depend on whether operator 𝐿

is differential operator. Therefore, these processes can be
extended for general linear bounded operator. In this paper,
some conclusions are based on𝑚 ≥ 1; they need to be further
explored for case𝑚 = 0.
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