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𝑘-means algorithm is a widely used clustering algorithm in data mining and machine learning community. However, the initial
guess of cluster centers affects the clustering result seriously, which means that improper initialization cannot lead to a desirous
clustering result. How to choose suitable initial centers is an important research issue for 𝑘-means algorithm. In this paper, we
propose an adaptive initialization framework based on spatial local information (AIF-SLI), which takes advantage of local density
of data distribution. As it is difficult to estimate density correctly, we develop two approximate estimations: density by 𝑡-nearest
neighborhoods (𝑡-NN) and density by 𝜖-neighborhoods (𝜖-Ball), leading to two implements of the proposed framework. Our
empirical study on more than 20 datasets shows promising performance of the proposed framework and denotes that it has several
advantages: (1) can find the reasonable candidates of initial centers effectively; (2) it can reduce the iterations of 𝑘-means’ methods
significantly; (3) it is robust to outliers; and (4) it is easy to implement.

1. Introduction

Clustering is a process of grouping a set of data objects into
clusters based on information found in that data [1], which
has a long history in a variety of scientific disciplines from
statistics and computer science to biology,medicine, and even
psychology. The main goals of clustering involve compress-
ing, classifying, and gaining some useful information from
data.

Clustering algorithms can be divided into two categories
roughly: hierarchical and partitional [2]. Hierarchical clus-
tering algorithms recursively find nested clusters either in
agglomerative (button-up) mode or in divisive (top-down)
mode, whereas partitional algorithms find clusters simul-
taneously as a partition of the dataset. Most hierarchical
algorithms have quadratic or higher time complexity with
the number of data points [3] and therefore are not suitable
for large scale big data application. However, partitional
algorithms often have lower time complexity and are used
in many large scale tasks including bag-of-features (BoF)
method in computer vision [4], color quantization in graphics

and image processing [5], bag-of-words model for text
classification [6], and pretraining of deep learning nowadays
[7].

The 𝑘-means algorithm is undoubtedly one of the most
popular and widely used clustering algorithms [8]. 𝑘-means
algorithm is a hard partitional algorithm, which divides
a dataset into a set of exhaustive and mutually exclusive
clusters. That is, for a given dataset X = {x1, . . . , xn} in R𝑑,
𝑘-means algorithm iteratively divides X into 𝐾 clusters 𝐶 =
{𝐶1, . . . , 𝐶𝐾}, subject to X = ⋃

𝐾

𝑖=1
𝐶𝑖 and 𝐶𝑖 ∩ 𝐶𝑗 = 0, for

all 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝐾. The 𝑘-means algorithm usually generates
clusters by optimizing a certain criterion function, and the
most intuitive and frequently used one is the Sum of Squared
Error (SSE) which is given by

SSE =
𝐾

∑

𝑖=1

∑

𝑥𝑗∈𝐶𝑖

󵄩󵄩󵄩󵄩󵄩
xj − ci

󵄩󵄩󵄩󵄩󵄩

2

2
, (1)

where ‖ ⋅ ‖2 denotes the Euclidean norm or ℓ2 norm and ci =
(1/|𝐶𝑖|) ∑𝑗∈𝐶𝑖

xj is the center of cluster 𝐶𝑖 whose cardinality
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is |𝐶𝑖|. As a result, finding the optimal clusters for 𝑘-means
algorithm turns to minimize a criterion function. Other
criterion functions can also be used, such as city block (ℓ1
norm), hamming distance, and cosine dissimilarity.

After giving the initial centers, 𝑘-means algorithm repeats
two alternate procedures to group data points into 𝐾 desired
clusters [9]: it first properly assigns each data point to one of
the 𝐾 separate initial centers and then updates the clusters’
center based on the assignments. The assignment and update
procedures are repeated until either there is no further
changes of the criterion function or the maximum number
of iteration reaches.

In spite of it is popularity, 𝑘-means algorithm has some
drawbacks [10]: (1) it needs the user to specify the number
of clusters in advance or run independently for different
values of 𝐾 and then selects the partition that appears to
be the most meaningful by domain experts; (2) it can only
detect compact, hyperphysical clusters that are well separated
and is not suitable for high dimension task because of using
Euclidean distance as its default similarity metric; (3) it is
sensitive to noise and outliers in datasets, for even a few
of such data points can significantly influence the center
(mean) of their respective cluster; (4) it often converges
to a local minimum of the criterion function due to its
gradient descent nature and nonconvexity of the criterion
function; (5) it is highly sensitive to the selection of the initial
guess of centers. Adverse effects of improper initialization
include empty cluster, slower convergence, and higher chance
of getting stuck in bad local minima [5]. As discussed by
Celebi et al. [10], all of these drawbacks except for choosing
the number of clusters can be remedied by using a suitable
adaptive initialization method.

As mentioned by Celebi and Kingravi in [11], initial
centers should avoid choosing outliers and being too close to
each other. There are many studies focusing on initialization
of 𝑘-means, such as random selection, probability-based
initialmethods, and factor analysis. Amore intuitive idea is to
determine initial centers according to the spatial distribution
of data points.That is, if we choose initial centers from regions
with high local density of data distribution, which is a kind
of spatial local information of data points, outliers will be
prevented from being chosen. And, by keeping them away
with certain distance, we will get the suitable initial centers
for 𝑘-means algorithm (as shown in Figure 2).

Inspired by the discussion above, we propose an adaptive
initialization framework based on spatial local information
(AIF-SLI), which takes advantage of local density of data
distribution, and develop two approximate estimations for
density, that is, density by 𝑡-nearest neighborhoods (𝑡-NN)
and density by 𝜖-neighborhoods (𝜖-Ball), leading to two
implements of the proposed framework. Both implements
need three steps. Firstly, we have to find out the high density
regions of data points based on the estimation of local data
density. Secondly, we need to mark data points that belong
to high density regions as candidates of initial centers. And
thirdly, we should determine which candidates should be
selected as initial centers and make sure that they are kept
away with certain distance.

The contributions of this paper are as follows: (1) we
propose an adaptive framework of initial guess of clusters’
center based on spatial local information; (2) we derive
two implements of the proposed framework; (3) we give a
comparative empirical study among the proposed framework
and the state-of-the-art techniques and analyse the rationality
of the proposed framework.

Our empirical study on more than 20 datasets shows
promising performance of the proposed framework and
denotes that it has several advantages: (1) it can find the
suitable candidates of initial centers effectively; (2) it can
reduce the iteration of 𝑘-means methods significantly; (3) it
is robust to outliers; and (4) it is easy to implement.

The rest of this paper is organized as follows. Section 2
reviews the related work in the literature of initialization for
𝑘-means algorithm. Section 3 gives the proposed adaptive
initialization framework based on spatial local information.
The two implements of the proposed framework, 𝑡-nearest
neighborhoods (𝑡-NN) and 𝜖-neighborhoods (𝜖-Ball), are
derived in Section 4. Section 5 describes the datasets, fea-
ture normalization, the performance criteria, and parameter
settings in our experiments. Section 6 denotes our exten-
sive empirical study of evaluating the performance of the
proposed method. Section 7 analyses the complexity for our
method and the suitability of initialing 𝑘-means algorithm
based on spatial local information. After that, we conclude
this work.

2. Related Work

There is a considerable amount of literature on the initializa-
tion methods of 𝑘-means algorithm; we briefly review some
of the commonly used ones. A comprehensive review can be
found in recent work by Celebi et al. [10].

There are a number of initialization methods selecting
the initial centers in a probability manner, implicitly or
explicitly. The most used initial method for 𝑘-means algo-
rithm is MacQueen’s second initialization, that is, selecting
the initial centers randomly [12]. Due to its random nature,
it inevitably selects outliers as the initial centers and leads
to more iteration or bad local minima. 𝑘-means based on
this initial method usually needs to run several times with
multiple different initial partitions and chooses the partition
with the smallest squared error. Forgy’s method [13] is a
random assignment method, which first assigns each point
to one of the 𝐾 clusters uniformly. Then the initial centers
are obtained by centroids of data points according to their
assignment. This method usually confuses with MacQueen’s
second method discussed above in which the first step is
selecting initial centers not doing assignment. Both methods
can be viewed as selecting (assigning) under the uniform
distribution of data points. The 𝑘-means++ method [14]
chooses the first center arbitrarily and the 𝑖th center (𝑖 ∈
{2, 3, . . . , 𝐾}) with a probability of md(x󸀠)2/(∑𝑛

𝑖=1
md(x𝑖)

2
),

where md(x) denotes the minimum distance from a point
x to the previously selected centers. It implies that data
points with larger distance to the selected centers have
higher probability to be chosen as new initial centers. A
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parallel version of 𝑘-means++ algorithm was developed in
[15].

Several works consider choosing initial centers with a
desired distance apart fromeach other. Ball andHall’smethod
[16] takes the centroid of datasetX as the first initial center;
that is, 𝑐0

1
= (1/|X|) ∑x𝑖∈X x𝑖. It then takes the data point,

which is at least 𝑇 units apart from the previously selected
centers, as initial center until 𝐾 centers are obtained. This
method chooses data points with a desired distance apart
from each other and at the same time prevents initial centers
from becoming too close to each other. However, it is difficult
to determine a reasonable threshold 𝑇. Maximin method
[17, 18] takes the first center arbitrarily in dataset X. And
the second initial center is chosen with the largest distance
from the first center. Other initial centers are chosen to be the
points with the greatest minimum distance to the previously
selected centers. It should be noted that in the work of [18],
it chooses the data point with maximum norm in dataset
X as the first center. Erisoglu et al. [19] choose two of 𝑑
features that describe the changes best in the dataset as main
axes, where 𝑑 is the dimension of the space where dataset
X lies. All initial centers are chosen based on the main axes
by projecting dataset X to main axes. The data point with
maximum distance from the mean of dataset is chosen as the
first initial center. The 𝑖th center is chosen with the largest
sum of distance from previously selected centers, until 𝐾
centers are obtained. They cannot guarantee not selecting
outliers as initial centers.

Recently, researches utilize factor analysis method to
initialize 𝑘-means algorithm. The PCA-Part method [20]
uses a divisive hierarchical approach based on Principal
Component Analysis (PCA). This method iteratively selects
the cluster with the greatest SSE and divides it into two sub-
clusters by a hyperplane that passes through the cluster center
and orthogonal to the direction of the principal eigenvector
of related covariance matrix. In the first step, it takes the
entire dataset as the cluster with the greatest SSE. The Var-
Part method [20] is an approximation to PCA-Part, which
assumes that the covariance matrix is diagonal. In this case,
the direction of hyperplane is orthogonal to the coordinate
axis with the greatest variance. Celebi and Kingravi [11] use
Otsu’s algorithm to get an adaptive threshold for PCA-Part
and Var-Part algorithm [20], in which original takes the clus-
ter center as threshold to divide a cluster into two subclusters.
This leads a deterministic initialization method for 𝑘-means
and experiments to show that it gets promising performance
compared to the original algorithm. Onoda et al. [21] acquire
initial centers by independent components analysis (ICA).
They first calculate the𝐾 independent components ofX and
then choose the point that has the least cosine distance from
the 𝑖th independent components as the 𝑖th (𝑖 ∈ {1, 2, . . . , 𝐾})
center.

Al-Daoud’s method [22] first uniformly partitions the
data space into𝑀 grids. It takes 𝐾𝑚 points as initial centers
from grid𝑚, 𝑚 = 1, . . . ,𝑀, where 𝐾𝑚 = 𝐾𝑁𝑚/𝑁, 𝑁𝑚 is the
number of data points in grid 𝑚 and 𝑁 is the total number
of data points in dataset X. This method can be viewed as
a density-based initialization method. However, this method

would ignore clusters with fewer number of data points and
it is not easy to decide how many grids𝑀 are suitable.

The proposed initializationmethod bears some similarity
to that of Al-Daoud and Robetrs [22], in which local density
of data points is taken into consideration when determin-
ing initial centers. However, the proposed method differs
remarkably from Al-Daoud’s method. In their work, local
density is estimated based on artificial and hard grid seg-
mentation; different grid segmentation leads to different local
density estimation. Our method estimates local density of
data points according to their local spatial distribution, which
can be regarded as a nature and soft group segmentation,
and initial centers are determined by the distribution of data
points.

3. Proposed Framework of AIF-SLI

Since reasonable initial centers should avoid choosing out-
liers and being too close to each other, we propose an adaptive
initialization framework based on spatial local information
(AIF-SLI) for 𝑘-means algorithm.

AIF-SLI takes advantage of local density of data points;
that is, for a given dataset X = {x1, . . . , xn} in R𝑑, we
first estimate its local density via defining a function 𝑑(x) to
describe the local density for each data point x ∈ X. For point
x, 𝑑(x) describes the compact of data points within a small
region containing x as its inner point. After that, we then find
out regions with density higher than a threshold 𝜔. Initial
centers of 𝑘-means algorithm are chosen from these regions
with higher local density.

Generally, the proposed initialization framework involves
three steps: (1) estimating local density for each data point
𝑥 ∈ X; (2) finding out regions with density higher than
a threshold and marking data points in these regions as
candidates for initial centers; (3) determining initial centers
from candidates and making sure that the initial centers are
separate with certain distance. The workflow of the proposed
framework is demonstrated in Figure 1.

It should be noticed that although being used to initialize
𝑘-means algorithm, the proposed framework can be easily
extended to other clustering algorithms such as the Gaussian
Mixture Model.

4. Two Implements for AIF-SLI

In this section, we denote the two implements of the proposed
framework: based on 𝑡-nearest neighborhoods (𝑡-NN) and
based on 𝜖-neighborhoods (𝜖-Ball), leading to two adaptive
initialization methods. We also give an algorithm to deter-
mine initial centers from candidates.

4.1. AIF-SLI Based on t-Nearest Neighborhoods (t-NN). In
this subsection, we denote an approximate estimation for
local density of dataset by 𝑡-nearest neighborhoods (𝑡-NN).
It is well known that 𝑡-NN is a natural choice for the
approximate estimation of local density. Inspired by the
superiority of Laplacian eigenmaps [23], we first construct
an adjacency graph by 𝑡-NN and obtain a Gram matrix from
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Data input
Estimate local
density of data

distribution

Find regions with
higher density and
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Determine initial
centers and keep them
with certain distance

Run k-means

The proposed framework

Figure 1: The workflow of the proposed framework.
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(a) Candidates obtained by AIF-SLI-𝑡-NN
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(b) Candidates obtained by AIF-SLI-𝜖-Balls

Figure 2: Rationality analysis of the proposed two algorithms derived from the framework of AIF-SLI.The red points denote the candidates,
the yellow triangles are the initial centers chosen from candidates, and the final centers (centers after clustering) are presented with green
diamonds.

the constructed graph. Grammatrix can be precomputed and
loaded to memory before clustering. Values for Gram matrix
is computed by

𝑊𝑖𝑗 =

{{{

{{{

{

exp
{

{

{

−

󵄩󵄩󵄩󵄩󵄩
𝑥𝑖 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩󵄩
𝑥𝑗
󵄩󵄩󵄩󵄩󵄩

}

}

}

if 𝑥𝑗 ∈ 𝑁𝑡 (𝑥𝑖)

0 otherwise,

(2)

where𝑁𝑡(𝑥𝑖) denotes the 𝑡-nearest neighborhood of 𝑥𝑖.
Then, we introduce a vector ⃗𝑑 with 𝑛 components whose

entries are given by 𝑑𝑖 = ∑
𝑛

𝑗=1
𝑊𝑖𝑗. The vector ⃗𝑑 provides a

natural measure of local density of data points: for data point
𝑥𝑖, if the value of 𝑑𝑖 is larger, the local density is higher.

Algorithm 1 shows the detailed steps of approximate
version of the AIF-SLI method based on 𝑡-nearest neigh-
borhoods (𝑡-NN). In step (4), the median( ⃗𝑑) denotes the
median value of vector ⃗𝑑 (in our experiments, we use the
median function inMATLAB); other criteria can also be used
to determine the threshold 𝜔, such as the mean or certain
confidence interval of quantile.

4.2. AIF-SLI Based on 𝜖-Neighborhoods (𝜖-Ball). In this
subsection, we denote an approximate estimation for local

density of dataset by 𝜖-neighborhoods (𝜖-Ball). We also
construct an adjacency graph and Gram matrix. Values for
Gram matrix are computed by

𝑊𝑖𝑗 = {
1 if 󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩
< 𝜖

0 otherwise.
(3)

The definition above of (3) seems much more intuitive
than the definition of (2). Equation (3) counts the number of
data points in a small region which contains x𝑖 as its center.
More numbers in a region seemmore compact of data points
in that region.Here, the value of 𝜖 is also an issue that needs to
be considered, and we set it to a weighted half of the average
distance of points in X; that is, 𝜖 = 0.5 × MeanDist. The
MeanDist means average distance of points in X which is
computed as follow:

MeanDist =
∑
𝑛

𝑖,𝑗=1
𝑑 (𝑥𝑖, 𝑥𝑗)

𝑛 × (𝑛 − 1)
, (4)

where 𝑑(𝑥𝑖, 𝑥𝑗) is the distance of data points 𝑥𝑖 and 𝑥𝑗.
Algorithm for density by 𝜖-neighborhoods (𝜖-Ball),

which we give its name as AIF-SLI-𝜖-Ball, describes the same
steps as Algorithm 1, and its details are shown in Algorithm
2.
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Input:The datasetX.
Output: Candidate set 𝐶cand.

(1) Initial candidate set 𝐶cand = 0;
(2) Construct the Gram matrix𝑊𝑖𝑗 based on (2);
(3) Compute vector ⃗𝑑 with 𝑑𝑖 = ∑

𝑛

𝑗=1
𝑊𝑖𝑗;

(4) Determine a threshold 𝜔 = median( ⃗𝑑);
(5) for all data points inX

(6) if data point 𝑥𝑗 with local density 𝑑𝑗 > 𝜔,
(7) Mark data point 𝑥𝑗 as a candidate initial center, that is 𝐶cand = 𝐶cand ∪ 𝑥𝑗;
(8) end if
(9) end for

Algorithm 1: AIF-SLI-𝑡-NN.

Input: The datasetX.
Output: Candidate set 𝐶cand.

(1) Initial candidate set 𝐶cand = 0;
(2) Construct the Gram matrix𝑊𝑖𝑗 based on (3);
(3) Compute vector ⃗𝑑 with 𝑑

𝑖
= ∑
𝑛

𝑗=1
𝑊
𝑖𝑗
;

(4) Determine a threshold 𝜔 = median( ⃗𝑑);
(5) for all data points inX

(6) if data point 𝑥𝑗 with local density 𝑑𝑗 > 𝜔,
(7) Mark data point 𝑥𝑗 as a candidate initial center, that is 𝐶cand = 𝐶cand ∪ 𝑥𝑗;
(8) end if
(9) end for

Algorithm 2: AIF-SLI-𝜖-Balls.

Input: cluster number𝐾, candidate set 𝐶cand (obtained by Algorithm 1 or Algorithm 2).
Output: Initial centers {c0

1
, . . . , c0

𝐾
}.

(1) c0
1
= 𝑥𝑖, 𝑥𝑖 is random chosen from 𝐶cand, set 𝑘 = 1;

(2) c0
2
= argmax𝑥𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥𝑗 − c01

󵄩󵄩󵄩󵄩󵄩
, ∀𝑥𝑗 ∈ 𝐶cand, set 𝑘 = 2;

(3) if 𝑘 < 𝐾 do
(4) set 𝑘 = 𝑘 + 1, c0

𝑘
= argmax

𝑥𝑗
{min 󵄩󵄩󵄩󵄩󵄩𝑥𝑗 − c

0

𝑡

󵄩󵄩󵄩󵄩󵄩
, ∀𝑥
𝑗
∈ 𝐶cand, 𝑡 = 1, . . . , 𝑘 − 1};

(5) repeat step (4) until 𝑘 = 𝐾.

Algorithm 3: Determining initial centers from candidates.

4.3. Determining Initial Centers from Candidates. In this
subsection, we describe the details of how to determine
initial centers from candidates.We propose an algorithmvery
similar to the Maximin method [17] in the candidates set
obtained by Algorithm 1 or Algorithm 2. Algorithm 3 shows
the detailed steps of the proposed algorithm. Without loss of
generality, we choose the first data point in candidates set as
the first initial center in our experiments, which makes our
algorithm deterministic. It should be noted that any other
methods such as 𝑘-means++ can also be used to determine
initial centers from candidates in our work and lead to
promising performance.

5. Experiment Setup

5.1. Dataset Description. We use 25 common datasets from
the UCI machine learning repository [24] to perform our
experiments. Table 1 gives the descriptions for these UCI
datasets. For each dataset, the number of clusters (𝐾) is set
to be equal to the true number of classes (𝐾󸀠), as commonly
seen in the related literature [9–11, 20].

5.2. Performance Criteria. As in [10, 11], the performance of
the initialization methods is quantified using two effective-
ness (quality) and one efficiency (speed) criteria.
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Table 1: UCI dataset descriptions (𝑁: number of data points,𝐷: number of data dimensions, and𝐾󸀠: number of classes).

ID Dataset 𝑁 𝐷 𝐾
󸀠

1 Abalone 4177 7 29
2 Breast cancer Wisconsin (diagnostic) 699 9 2
3 Breast tissue 106 9 6
4 E. coli 336 7 8
5 Glass identification 214 9 6
6 Haberman’s survival 306 3 2
7 ILPD (Indian liver patient dataset) 583 10 2
8 Image segmentation 2310 19 7
9 Ionosphere 351 34 2
10 Iris 150 4 4
11 Heart disease (processed Cleveland) 303 13 5
12 ISOLET 5 1559 617 26
13 Letter recognition 20000 16 26
14 Libras movement 360 90 15
15 Lung cancer 32 56 3
16 Multiple features (Fourier) 2000 76 10
17 Musk (version 1, clean 2) 6598 166 2
18 One hundred plant species leaves dataset 1600 64 100
19 Page blocks classification 5473 10 5
20 Parkinson’s disease 195 22 2
21 Pima Indians diabetes 768 8 2
22 Semeion handwritten digit 1593 256 10
23 Spambase 4601 57 2
24 Wine 178 13 3
25 Yeast 1484 8 10

(i) Initial SSE. This is the SSE value calculated after
the initialization phase, before the clustering phase.
It gives us a measure of the effectiveness of an
initialization method by itself.

(ii) Final SSE. This is the SSE value calculated after the
clustering phase. It gives us a measure of the effec-
tiveness of an initialization method when its output
is refined by 𝑘-means; lower value infers compact
clusters. Note that SSE value is the objective function
of 𝑘-means algorithm, that is, (1).

(iii) Number of Iterations.This is the number of iterations
that 𝑘-means requires until reaching convergence
when initialized by a particular initializationmethod.
It is an efficiency measure independent of program-
ming language, implementation style, compiler, and
CPU architecture.

All methods compared in this paper are implemented
usingMATLAB and executed on a PCwith 2.5GHzCPU and
4GBRAM.

5.3. Attributes Normalization. Feature normalization is a
common preprocessing step in computer vision andmachine
learning community. Normalization is necessary to prevent

features with large ranges from dominating the distance
calculations and also to avoid numerical instabilities in the
computations. Two commonly used normalization schemes
are linear scaling to unit range (min-max normalization) and
linear scaling to unit variance (𝑍-score normalization). Min-
max normalization is shown as follows:

𝑥 =
(𝑥 − 𝑥min)

(𝑥max − 𝑥min)
, (5)

where 𝑥min, 𝑥max denote the minimum and maximum values
of the feature, respectively.Min-max normalization scales the
attribute to the [0, 1] interval.
𝑍-score normalization approximately maps the attribute

almost to the [−2, 2] interval using

𝑥 =
(𝑥 − 𝜇)

𝜎
, (6)

where 𝜇 and 𝜎 denote the mean and variance of the feature,
respectively.

Several studies reveal that the former is more preferable
than the latter in clustering research since the latter is likely
to eliminate valuable between-cluster variation [20, 25]. In
this paper, we apply the min-max normalization to map the
attributes of each dataset to the [0, 1] interval.
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Table 2: Final SSE by different choices of 𝑡 in AIF-SLI-𝑡-NN.

ID 0.1 × 𝑛/𝐾 𝑡 = 1 5 10 20 50 100
1 14 33.93 34.03 33.91 33.89 33.96 34.41
4 4 18.43 18.51 18.03 18.07 26.38 26.92
8 33 496.4 419.9 419.9 415.7 405.0 409.1
13 77 2759 2764 2811 2792 2752 2762
19 109 227.4 227.4 215.8 215.8 215.8 215.5
25 15 68.87 68.60 68.17 60.99 60.27 68.48

Table 3: Initial SSE comparison of the initialization methods. The optimal results are marked in bold font and the second optimal results in
italic font. The last line summarizes the number of optimal and the second optimal results.

ID Random Kpp PCA-Part Var-Part Maximin AIF-SLI-t-NN AIF-SLI-𝜖-Balls
1 98.95 64.81 633.92 736.45 145.47 62.17 70.40
2 700.7 495.9 239.3 247.5 610.2 312.8 364.4
3 20.61 14.05 20.23 14.39 17.73 16.41 13.65
4 39.73 36.49 42.12 25.31 76.49 36.04 35.38
5 42.25 34.33 31.73 28.36 116.55 33.73 34.23
6 47.52 43.45 26.32 25.28 170.04 40.02 44.26
7 187.38 234.37 104.54 90.96 742.78 150.22 111.38
8 924.8 761.2 958.7 959.4 1616.8 782.7 771.4
9 1224.3 1357.7 638.0 631.7 1791.1 1040.5 1035.6
10 20.01 18.16 9.57 10.31 20.23 11.33 12.06
11 469.95 469.84 339.96 300.45 566.83 449.29 454.22
12 46083.9 46086.6 41464.3 40860.2 54989.6 42273.2 42909.1
13 4542.9 4522.2 5700.7 5803.9 7583.4 2234.9 2262.1
14 909.10 908.60 1253.6 992.17 1113.8 941.02 917.97
15 301.92 294.30 185.31 165.57 320.80 290.01 297.83
16 5500.3 5600.1 4033.4 3781.0 7820.8 5247.2 5150.6
17 80298.8 75099.1 45909.6 37333.9 107164.8 81283.7 81203.6
18 958.25 948.95 1789.2 1343.8 1023.4 960.67 949.54
19 442.30 398.15 327.76 467.08 2343.1 352.09 392.41
20 176.32 177.84 99.45 121.73 355.85 160.15 169.54
21 238.21 229.15 129.17 124.27 666.08 218.43 210.69
22 123059 124883 77513 76608 128445 122645 121506
23 1088.1 1171.6 783.89 782.23 13155 1035.1 1023.6
24 109.84 108.12 60.37 52.24 185.47 93.07 93.77
25 107.66 110.98 127.61 125.42 260.78 101.84 107.22

0/1 3/2 4/13 14/3 0/0 3/1 1/5

5.4. Parameter Settings. In ourAIF-SLI-𝑡-NNalgorithm, how
to choose the number of neighborhood, 𝑡, is an important
issue.We analyse the final SSE by different choices of the value
of 𝑡 on some datasets described in Table 1, and the results are
demonstrated in Table 2.

From this table, we set 𝑡 = max{20, 0.1 × 𝑛/𝐾} in our
experiments, which shows neither less discriminatory nor
sensitive to outliers. And the convergence of 𝑘-means was
controlled by two criteria: the number of iterations reaches a
maximum allowable value (we set the maximum value to be
100 in our experiments) or the relative improvement in SSE
between two consecutive iterations drops below a threshold;
that is, |SSE𝑖+1 − SSE𝑖|/SSE𝑖 < 𝜖, and 𝜖 = 10

−6.

6. Experimental Results

In this section, we compare two implements of our AIF-SLI
method: AIF-SLI-𝑡-NN and AIF-SLI-𝜖-Balls, with five state-
of-the-art methods: MacQueen’s second method (random)
[12], Maximin method (Maximin) [18], 𝑘-means++ (Kpp)
[14], Var-Part [20], and PCA-Part [20]. All seven methods
are executed 100 times and the mean is collected for each
performance criterion. Tables 3, 4, 5, and 6 denote the
performance measurements for each method with respect to
initial SSE, final SSE, percentage comparison for final SSE,
and number of iterations, respectively. We should note that
Maximin method (Maximin) [18], Var-Part [20], PCA-Part
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Table 4: Final SSE comparison of the initialization methods.

ID Random Kpp PCA-Part Var-Part Maximin AIF-SLI-t-NN AIF-SLI-𝜖-Balls
1 37.10 34.04 235.01 591.65 38.45 33.89 34.63
2 237.99 237.99 237.99 237.99 237.99 237.99 237.99
3 8.41 7.73 17.28 13.73 6.85 7.40 7.34
4 18.24 18.39 32.67 21.94 20.04 18.07 18.47
5 20.07 19.57 29.15 25.88 23.26 19.87 19.60
6 25.32 25.31 25.37 25.28 25.38 25.33 25.34
7 90.96 90.96 90.96 90.96 90.96 90.96 90.96
8 416.97 417.98 473.34 745.33 443.42 414.70 417.87
9 628.90 628.90 628.89 628.90 628.90 628.89 628.90
10 6.75 5.65 7.13 7.13 6.06 5.91 5.87
11 258.41 256.95 310.94 300.21 254.87 241.04 236.21
12 24660.8 24626.6 35349.4 31272.5 24880.1 24565.3 24648.7
13 2764.0 2742.0 4519.6 5358.1 2783.4 2744.9 2747.2
14 519.57 508.70 1111.4 820.47 502.43 512.43 511.13
15 161.67 162.11 185.31 164.10 161.87 160.09 161.20
16 3175.2 3183.2 3635.2 3252.8 3283.7 3169.5 3174.8
17 36944.3 36944.3 38278.1 36372.7 38278.1 36944.3 37325.4
18 516.53 515.14 1378.4 1024.5 508.61 511.14 514.10
19 216.66 216.42 242.76 443.21 294.96 215.50 217.59
20 98.67 98.67 98.67 98.67 98.67 98.67 98.67
21 121.25 122.88 121.25 121.25 121.25 121.25 123.60
22 66656 66691 67472 67461 66387 66797 66655
23 775.6 784.3 777.5 777.5 764.7 777.5 780.73
24 48.97 48.97 48.98 48.96 48.96 48.97 48.96
25 68.10 64.12 113.16 113.15 69.35 60.99 66.13

0/3 3/7 0/1 2/1 5/0 8/5 1/6

[20], and our two algorithms AIF-SLI-𝑡-NN and AIF-SLI-𝜖-
Balls are deterministic algorithms.

Table 3 shows that PCA-Part and Var-Part obtaining low-
est initial SSE over other methods at most datasets, and our
two algorithms achieve second optimal value. This may be
because PCA-Part and Var-Part take themean of each feature
as threshold. Table 4 shows PCA-Part and Var-Part obtaining
largest final SSE over other methods, which infers that PCA-
Part andVar-Part cannot get compact clusters after clustering.
Table 4 also shows that AIF-SLI-𝑡-NN and AIF-SLI-𝜖-Balls
get lowest final SSEs on most datasets, which infers that
they obtain more compact clusters after clustering than other
methods. Table 5 describes the percentage comparison for
final SSE.We take the Kpp as the baseline algorithm, which is
demonstrated by number “1”; the values in this table denote
the percentage of algorithms compared to Kpp; the symbol
“+” (“−”) denotes that its value is larger (smaller) than Kpp.
Take the dataset 4 as an example; the value −0.8% under
algorithm random denotes that the final SSE by random is
smaller than that of Kpp by 0.8%, and +9.0% under algorithm
Maximin denotes that the final SSE byMaximin is larger than
that of Kpp by 9.0%. The last line of this table denotes the
average percentage of these algorithms compared to Kpp, and
this line shows that both AIF-SLI-𝑡-NN and AIF-SLI-𝜖-Balls
get better final SSE than Kpp. Table 6 describes the number

of iterations from after initialization until 𝑘-means algorithm
terminates. This table implies that AIF-SLI-𝑡-NN and AIF-
SLI-𝜖-Balls converge quickly at most datasets.

From the experiment results, the proposed two algo-
rithms reduce the number of iterations for 𝑘-means methods
significantly, and fromfinal SSE results in Tables 4 and 5, both
proposed algorithms get compact clusters, which infers that
our initial centers are suitable for 𝑘-means algorithm, and
this suitability or reasonableness comes from the advantage
of spatial local information. The proposed two algorithms
are approximate estimation of spatial local information; if we
make use of more elegant approaches to estimate the spatial
local information, better results may be obtained.

7. Discussion

7.1. Complexity Analysis. Table 7 gives the average CPU time
over 100 times executed by seven algorithms mentioned
above under a subset of datasets in Table 1 (as the CPU time
is dependent on implementation style, compiler, and CPU
architecture, we do not add it as a performance criterion in
our experiments). The CPU time is taken by preprocessing
(including the calculation of Gram matrix), the initialization
and the 𝑘-means running time.
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Table 5: Percentage comparison for final SSE.

ID Random Kpp PCA-Part Var-Part Maximin AIF-SLI-t-NN AIF-SLI-𝜖-Balls
1 +9.0% 1 +590% +1638% +12.9% −0.4% +1.7%
2 +0.0% 1 +0.0% +0.0% +0.0% +0.0% +0.0%
3 +8.8% 1 +123.5% +77.6% −11.4% −4.3% −5.1%
4 −0.8% 1 +77.7% +19.3% +9.0% −1.8% +0.4%
5 +2.6% 1 +49.0% +32.2% +18.9% +1.5% +0.2%
6 +0.0% 1 +0.2% −0.1% +0.3% +0.1% +0.1%
7 +0.0% 1 +0.0% +0.0% +0.0% +0.0% +0.0%
8 −0.2% 1 +13.2% +78.3% +6.1% −0.8% −0.0%
9 +0.0% 1 −0.0% +0.0% +0.0% −0.0% +0.0%
10 +19.5% 1 +26.2% +26.2% +7.3% +4.6% +3.9%
11 +0.6% 1 +21.0% +16.8% −0.8% −6.2% −8.1%
12 +0.1% 1 +43.5% +27.0% +1.0% −0.3% +0.1%
13 +0.8% 1 +64.8% +95.4% +1.5% +0.1% +0.2%
14 +2.1% 1 +118% +61.3% −1.2% +0.7% +0.5%
15 −0.3% 1 +14.3% +1.2% −0.2% −1.3% −0.6%
16 −0.3% 1 +14.2% +2.2% +3.2% −0.4% −0.3%
17 0.0% 1 +3.6% −1.6% +3.6% 0.0% +1.0%
18 +0.3% 1 +168% +98.9% −1.3% −0.8% −0.2%
19 +0.1% 1 +12.2% +105% +36.3% −0.4% +0.5%
20 +0.0% 1 +0.0% +0.0% +0.0% +0.0% +0.0%
21 −1.3% 1 −1.3% −1.3% −1.3% −1.3% +0.6%
22 −0.1% 1 +1.2% +1.2% −0.5% +0.2% −0.1%
23 −1.1% 1 −0.9% −0.9% −2.5% −0.9% −0.5%
24 +0.0% 1 +0.0% −0.0% −0.0% +0.0% −0.0%
25 +6.2% 1 +76.5% +76.5% +8.2% −4.9% +3.1%
Average +1.84% 1 +56.6% +94.1% +3.6% −0.7% −0.1%

In Table 7, for datasets with small scale datasets and
low dimension, as datasets 4 and 5, all algorithms run
quickly. However, when the number of data points is large
but dimension is low, such as datasets 1, 13, and 25, both
algorithms, AIF-SLI-𝑡-NN and AIF-SLI-𝜖-Balls, need more
time to execute than others. As the dimension is larger, taking
datasets 8, 18, and 22 as an example, PCA-Part algorithm takes
the longest running time, followed by algorithms AIF-SLI-
𝑡-NN, Var-Part, and AIF-SLI-𝜖-Balls. The AIF-SLI-𝜖-Balls
algorithm always runs quicker than AIF-SLI-𝑡-NN, which is
due to the lower computational complexity of finding the 𝜖-
Balls than that of 𝑡-nearest neighborhood.

Table 8 shows the CPU time of a single running for each
component in AIF-SLI-𝑡-NN algorithm; these components
include calculating the vector ⃗𝑑 (including constructing the
Grammatrix), initialization, and running 𝑘-means. Calculat-
ing the vector ⃗𝑑 takes more than 90% of the running time for
large datasets, because of finding the 𝑡-nearest neighborhoods
for each data point, whose computational complexity is
𝑂(𝑛
2
), time consuming.
It is should be noted that the Grammatrix has dimension

𝑛
2, which can be very large for many applications when 𝑛

is of the order of a million or impossible for cases when
𝑛 is of the order of a billion. In our experiments, we use
the single command in MATLAB to change the data points

from 8 bytes to 4 bytes to save the memory, especially
for dataset 13. And also, if the parameter 𝑡 in 𝑡-nearest
neighborhood algorithm is small enough, the Gram matrix
can be very sparse and a sparse matrix can be constructed to
replace the full Grammatrix. Computational complexity and
optimization of memory of the proposed method are worthy
of study when the Gram matrix is sparse.

The AIF-SLI-𝜖-Balls algorithm has similar characteristic
to AIF-SLI-𝑡-NN, and we omit its analysis for the limited
space.

7.2. Rationality Analysis. In this section, we denote the
rationality analysis of the proposed framework. Figure 2
shows a dataset generated by three Gaussian functions
with different means and variance. Figure 2(a) denotes the
candidates obtained by AIF-SLI-𝑡-NN (Algorithm 1) and
Figure 2(b) denotes candidates obtained by AIF-SLI-𝜖-Balls
(Algorithm 2).

From Figure 2, we confirm that, by utilizing the spatial
local information, which takes advantage of local density
of dataset, the initial centers can be chosen from regions
with high local density and avoid choosing outliers as initial
centers, which is reasonable as discussed above. At the same
time, the initial centers are very close to the final centers
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Table 6: Number of iterations comparison of the initialization methods.

ID Random Kpp PCA-Part Var-Part Maximin AIF-SLI-t-NN AIF-SLI-𝜖-Balls
1 50.2 49.0 49.0 10.0 54.0 34.0 35.0
2 4.4 4.9 3.0 3.0 6.0 3.0 2.0
3 9.2 6.5 2.0 7.0 5.0 2.0 2.0
4 10.9 13.8 16.0 18.0 11.0 8.0 7.0
5 9.3 10.1 5.0 7.0 4.0 3.0 4.0
6 6.5 5.3 6.0 2.0 8.0 4.0 4.0
7 3.4 4.9 2.0 1.0 5.0 1.0 1.0
8 19.5 15.3 17.0 18.0 8.0 6.0 4.0
9 6.3 6.8 4.0 2.0 5.0 3.0 3.0
10 7.2 8.8 7.0 10.0 4.0 2.0 2.0
11 8.9 9.9 6.0 4.0 9.0 5.0 6.0
12 22.0 26.4 26.0 19.0 23.0 14.0 13.0
13 76.6 79.1 35.0 35.0 68.0 54.0 60.0
14 10.0 12.2 14.0 10.0 6.0 5.0 6.0
15 4.0 3.3 2.0 3.0 3.0 2.0 2.0
16 27.1 22.2 28.0 33.0 31.0 20.0 14.0
17 4.9 4.5 4.0 4.0 6.0 3.0 3.0
18 13.7 17.2 23.0 25.0 10.0 9.0 10.0
19 24.9 20.9 31.0 11.0 25.0 16.0 13.0
20 13.6 19.0 4.0 10.0 30.0 11.0 9.0
21 10.2 9.5 10.0 10.0 12.0 8.0 7.0
22 26.7 22.6 13.0 34.0 14.0 14.0 16.0
23 17.4 12.7 9.0 10.0 4.0 2.0 2.0
24 5.3 6.9 5.0 3.0 6.0 3.0 3.0
25 29.4 32.4 20.0 16.0 42.0 18.0 14.0

0/0 0/0 5/4 8/4 0/8 10/12 14/7

Table 7: The average CPU time (ms).

ID Random Kpp PCA-Part Var-Part Maximin AIF-SLI-t-NN AIF-SLI-𝜖-Balls
1 155 144 158 88 166 1485 567
4 7 9 8 10 6 14 10
5 5 6 5 5 4 9 7
8 259 323 515 320 221 501 326
13 894 1592 602 568 1315 15497 4712
18 187 326 830 487 195 470 169
22 259 323 515 320 221 501 326
25 19 26 23 16 34 171 91

Table 8: CPU time (ms) of each component in AIF-SLI-𝑡-NN.

ID AIF-SLI-t-NN Calculated ⃗𝑑 Initialization run 𝐾-means
1 1612 1206 19 215
4 25 6 4 12
5 22 5 5 7
13 15666 13565 46 1368
18 420 235 62 109
22 485 251 31 165
25 207 142 9 15

which explains the reason why our method can reduce the
iteration significantly.

8. Conclusion

In this paper, we propose an adaptive initialization frame-
work based on spatial local information (AIF-SLI) for 𝑘-
means algorithm, which is designed by taking advantage
of the local density of data points. We first describe the
framework of AIF-SLI based on defining a function to
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describe local density for data points. Since it is difficult to
estimate the local density correctly, we derive two approx-
imate estimations: density by 𝑡-nearest neighborhoods (𝑡-
NN) and density by 𝜖-neighborhoods (𝜖-Ball), leading to
two implements of the proposed framework. Experiments on
more than 20 datasets show promising performance of the
proposed methods and denote that the proposed methods
have several advantages: (1) they can find the reasonable
candidates of initial centers effective; (2) they are robust
to outliers; (3) they can reduce the iterations of 𝑘-means
methods significantly; and (4) they are easy to implement.

In the future, taking the Gaussian Mixture Model
(GMM), for example, we plan to extend our framework
to other clustering algorithms. And for the rapid growth
of applications for Big Data, we also plan to parallel our
framework on GPU or MapReduce platform to accelerate 𝑘-
means algorithm for large scale applications.
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