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Focusing on the parameter “Multiple” of CPPI strategy, this study proposes a dynamic setting model of multiple for gap risk
management purpose. First, CPPI gap risk is measured as the probability that the value loss of active asset exceeds its allowed
maximum drop determined by a given multiple setting. Moreover, according to the statistical estimation using SV-EVT approach,
a dynamic choice of multiple is detailed as a function of time-varying asset volatility, expected loss, and the possibility of occurrence
of extreme events in the active asset returns illustrated empirically on Shanghai composite index data. This study not only enriches
the literature of dynamic proportion portfolio insurance, but also provides a practical reference for CPPI investors to choose a
moderate risky exposure achieving gap risk management, which promotes CPPI’s application in emerging capital market.

1. Introduction

Portfolio insurance strategy can help investors control down-
side risk of asset value on retention of upward market
opportunities; it mainly includes dynamic strategies like
OBPI based on replication options, CPPI and TIPP based
on parameter setting, and static strategies like stop-loss and
buy-hold, in which CPPI (constant proportion portfolio
insurance) strategy is based on parameter setting. Black and
Jones [1] described basic execution procedure as follows: the
initial investment volume is V,, the period of ensuring not to
lose capital investment is T, terminal guaranteed value G is
proportional to the initial investment volume V;, G = AV,
and the required terminal asset value V; > G. In CPPI
strategy, we define the bottom-line value of the asset portfolio
F,=G-e™™D (0 <t < T)in every moment. r is risk-
free interest rate; the difference between portfolio value and
bottom-line value is a cushion; C, = V, — F,. We set the
multiple and multiply it by the cushion, invest the amount of
capital on risky assets and the remainder on risk-free assets,
dynamically allocate the risky and risk-free assets in the time
horizon, and achieve the goal of portfolio insurance. CPPI
strategy which is initially put forward by Black and Jones

shows considerable simplicity and flexibility compared with
other portfolio insurance strategies; for example, with no
maturity date limit, risk exposure can be chosen according
to risk appetite of investors. Meanwhile, CCPPI strategy has
solid theoretical foundation. Kingston [2] demonstrates that
CPPI strategy is optimal when and only when the investors
have decreasing absolute and relative risk aversion. Black
and Perold [3] studied the impact of transaction cost and
borrowing constraints on portfolio insurance strategy under
CPPI strategy. They find that when there is no transaction
cost, CPPI strategy is equivalent to permanent American
buy right investment, and piecewise HARA utility function
is optimal under the restriction of minimum consumption.
With the increasing of the multiple, the payofts of CPPI
strategy are close to those of stop-loss strategy; the rela-
tionship between expected payoffs in holding period and
multiplier is monotonous; expected payofts of CPPI strategy
are larger than those of stop-loss strategy [1-3]. Different
from portfolio insurance strategy based on option replication,
which needs complicated option pricing technology, CPPI
strategy is much easier in operation because it is only based
on parameter setting. Therefore, it is widely used as an
important investment technology in guaranteed fund [4]. All



the guaranteed funds in China have been using CPPI strategy
or other investment strategies with CPPI strategy at the core
since southern safe-haven growth fund, the first guaranteed
fund, came into existence.

The setting of multiple (denoted by m in the following
model) is crucial in the operation of CPPI strategy, since it
directly determines the risk exposure. The bigger the multiple
m, the stronger the portfolio participates in the growing
market. But it is also accompanied by much bigger risks.
When the risky assets fall, the portfolio value falls quickly.
Thus the research on CPPI strategy mainly focused on the
setting of the multiple m. In traditional CPPI strategy, m was
preestablished as a fixed value, and it never changes with the
market conditions. Some scholars make an improvement by
putting forward variable ratio portfolio insurance strategy,
which means dynamic parameter settings in CPPI strategy.

Chen et al. believe that the fixed multiple in CPPI strategy
should rectify with the market conditions. They put forth
dynamic constant proportion portfolio insurance (DPPI) by
using genetic algorithm considering several factors related
to the market volatility. The empirical results show that
DPPI strategy is more profitable than CPPI strategy [5].
Chen and Liao believe that the investor has his implicit
or explicit goal in an investment; thus they proposed goal-
directed strategy to describe the trading behavior of investors
which, being integrated with CPPI strategy, got a staged
goal-directed CPPI strategy (GDCPPI) and was further
extended into staged nonlinear goal-directed CPPI strat-
egy [6]. Lee et al. proposed variable proportion portfolio
insurance (VPPI) strategy, which enlarges or lessens the
multiple when share price rises or falls. They believe portfolio
insurance strategy based on this principle will produce better
performance [7].

Different multiple dynamic setting principles make the
CPPI strategy more profitable or more in line with the
investor’ targets. Unfortunately, the previous study ignored
a real problem in operation: the continuous adjustment of
assets in theory leads to some gap risks. Under continuous
time frame, CPPI portfolio value at any moment is shown in
formula (1) [3], in which V; is portfolio value at ¢; F, is bottom-
line value at t; S, is risky assets value at t; m is multiple in
CPPI strategy; r is risk-free interest rate; o is volatility of risk
assets value; 0 < t < T; V,, Fy, and S, denote initial values
(t = 0) of variables. V; is not less than F, regardless of m, and
terminal guaranteed value can always be achieved. It suggests
that when setting the multiple in the research on DPPI, we
need only to take into consideration the risk preference and
expected return rate of investors:
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In the real market conditions, because of the existence
of market friction factors like transaction cost, rebalancing
happens on the discrete adjustment point. It is possible that
portfolio value drops below bottom-line value because of the
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FIGURE 1: Gap risk of CPPL

sharp fall of risky assets value between two adjustment points,
facing the risk that CPPI portfolio value cannot achieve its
guaranteed value on the due day. Figure 1 shows the situation
in which gap risk happens between two adjustment points
t, and f,,, possibly because risky assets value falls sharply
before CPPI investors rebalance assets. Meanwhile, CPPI
portfolio value V; falls under bottom-line value F,. The whole
funds can only be invested on risk-free assets.

Therefore, Balder et al. defined discrete CPPI strategy
and its gap risk which is more congruent to the market
environment [8]. In terms of the management of gap risk in
CPPI strategy, Cont and Tankov [9] studied the situation of
downward jump of object portfolio and its CPPI strategy, the
possibility of portfolio value reaching the bottom-line value,
the expected loss and distribution of the loss, and the measure
of gap risk they took to study the problem of hedging the
gap risk in CPPI strategy by option. Considering transaction
cost and borrowing constraints, Jessen studied CPPI strategy
under the condition of discrete transactions. He believed that
gap risk can be avoided by charging, hedging, or setting a
“mendacious” guaranteed value, but the latter two cost less
for investors [10].

Although the study above considered gap risk in CPPI
strategy, it mainly concentrated on extracting the adminis-
trative cost and managing the gap risk by option hedging
without any attention to the setting of the multiple. In this
paper, based on the discrete CPPI strategy by Balder et al.
[8], we built a dynamic multiple setting model according
to the estimation of extreme changes in risky assets, aiming
at studying gap risk management in CPPI strategy from
“dynamic proportion” Different from mature capital markets,
financial derivatives and their trading are not that abundant
in China or in other developing countries. No financial
products can be used directly to hedge gap risks in CPPI
strategy; thus a multiple setting perspective is needed to
handle gap risks. No research has been done on how to
dynamically set the multiple in order to avoid gap risks and
improve the venture capital in fluctuating market environ-
ment. Additionally, dynamic multiple setting model in this
paper enriched theoretical system in dynamic proportion
portfolio insurance strategy. The basis of dynamic multiple
setting is given from the gap risk management perspective,
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which reveals that multiple setting is not simply to enlarge
or lessen the multiple according to the rise or fall of share
price [7] but is a complex decision based on risky assets
value fluctuation, the frequency of occurrence of extreme
prices, and expected loss. Since the dynamic multiple setting
provides a basis for gap risk management, the conclusion
in this paper offered upper limit of multiple setting in
CPPI strategy; further research may consider investment
preference and object of investors under this constraint.

2. Model

2.1. Gap Risks and Modeling Basis. In discrete CPPI strategy,
asset allocation happens on equally spaced time series [8],
defined as {t; = 0 < t}--+ < t < tf,,- < t, =
T,ty,, — tp = T/n}, where n denotes times number of assets
allocation in break-even period. In the practice, it has always
been adjusted week by week according to the fixed cycle
adjustment principle; since risky assets equal to the multiple
m multiply the cushion in CPPI strategy, the largest tolerable
drop of risky assets value is 1/m. If risky assets value drop is
1/m between two discrete adjustment points ¢, and t;,,, 7 is
risk-free interest rate between t;, and t;.,,, as shown in

1
Vi, =mCy, (1 - E) + (Vtk —mCtk) (1+7)

(Vi =Cu)+ (v

123

- mCtk) r 2

= Ftk + (Vtk - mCtk) r

s Ftk+1 :

Portfolio value V, =~ will be less than or equal to bottom-
line value F, at f;,,, and the whole CPPI portfolio assets
invested in risk-free assets increase with risk-free interest rate.
Therefore, 1/m provides the largest drop of risky assets in an
adjustment period (f;, t;.,,); we take the probability of risky
assets value loss more than 1/m in adjustment period as a
measurement of gap risks; the probability of risky assets value
loss more than 1/m should be very small when setting m in
the management of this risk. The measurement of gap risk is
shown in

P(xk>$>:0c, (3)

where x; denotes risky assets value loss in adjustment
period (t;, t;,;) and « denotes the probability of risky assets
value loss more than 1/m. Formula (3) demonstrates the
relationship between multiple and the change of risky assets
value under the requirement of gap risk management; «
is given based on the requirement of CPPI investors. The
smaller o« means a stronger risk control requirements. In this
paper, « = 0.1%. Multiple setting based on the probability
of gap risk offers an upper limit of the multiple for CPPI
investors. In this way, we increased risky assets investment
under the premise of gap risk avoiding and thus a higher
expected value.

2.2. Multiple Dynamic Setting Model in CPPI Strategy. Due to
the constant fluctuations in the value of assets, dynamic mul-
tiplier set is needed to meet the requirements of formula (3).
Firstly, we must describe the characteristics of the movements
of the risk asset value. Based on the SV-EVT description
of the extreme price behavior of the market, this paper
gives model to dynamically set the multiplier. Against the
price fluctuations and volatility clustering time-varying of the
risk asset, the autoregressive conditional heteroscedasticity
(ARCH) models [11, 12] and stochastic volatility (SV) model
[13] are applicative. ARCH model introduces conditional
variance to analyze the variance variability and the fluctua-
tion in the course is a linear function of the past observations
and the square of the hysteretic disturbance. But in view of
the financial time series “fat tail,” the ARCH model seems
fragile with the weak leverage and lasting square sequence
[14]. Besides, the SV model is considered more suitable for
describing the characteristics of the actual financial market
volatility because the fluctuation is decided by a random
process. Therefore, this paper uses the SV model to describe
the risk assets yield characteristics with the following form:
X =P+ 012, 7 ~iid

2 2 . 2 )
Inoy =v+¢ (lna,ﬁ1 - v) + 1 M~ 11dN (O,T ),

where x; denotes risky assets value loss in adjustment period
(t3>try1)> the loss can be defined as negative return, and
xi = —(p,, — Py)/py. Corresponding to formula (2),
we use hundred yields. p, ~and p, are assets value in
adjustment time point; y denotes expected loss of risky
assets; z; denotes residual items of independent identically
distribution; g}, denotes potential fluctuations; v is constant
terms of wave equation, and it denotes mean value of
logarithmic fluctuations; 7, denotes wave disturbance level of
independent identically distribution, which follows normal
distribution with 0 mean and 7> variance; error term 7
and z; are mutually independent; ¢ is continuous parameter,
reflecting the influence of current fluctuation on the future,
for [¢| < 1; SV model is covariance stationary.

According to formula (3), we control gap risk less than «,
namely, guarantee portfolio insurance with confidence level
1 - «, equivalent to

—00

1 1/my
P{xk<m_k}:,[ f(x)dx, =1-a, (5)

where f(x;) is probability density function of loss x;; the
standard form of the above Formula (5) is

-1
P{xk< L} :P{u . M}
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:P{zk<g(mk):mko—k_u} (6)

g(my)
J fz)dze=1-a.

—00



Therefore,

mp=g " (Fé1 (1- oc)) = [;,t +o.F, (1~ oc)]_l, (7)

where 0 can be obtained from SV modeling estimation and
F;(l — a), high fractal of f(z;) under confidence level 1 —
«, still needs to be estimated; f(z;) is probability density
function of residual term z;.

In the standard model, z; is independent of identically
distributed white noise, following normal distribution. In
the application of SV modeling, because of the fact that
return on assets series does not follow normal distribution,
we always assume that z; follows ¢ distribution, generalized
error distribution (GED), and mixed normal distribution to
describe the kurtosis, fat tail, and skewness of return on
assets. We introduce extreme value theory (EVT) to describe
the characters of z;, from formula (7). We are interested in
extreme risk of gap risks in CPPI strategy, that is, high score
sites of loss distribution. We do not have to estimate the
entire loss distribution because EVT can describe the tail of
loss, accordingly avoid assumption of loss distribution, and
reduce the risk of the model. Additionally, extreme value
rarely occurs in real data, and estimate efficiency will be
affected when estimating quantile by estimating distribution.
However, EVT makes the extrapolation based on practice
distribution smooth and thereby shows the entire shape of
the tail rather than several losses in the tail. It suits the
estimation under high confidence level involved in CPPI gap
risk management.

Extreme value theory is used specifically for abnormal
phenomena and small probability event. It is not modeled for
the entire distribution but concentrates on the approximate
expression of the tail distribution. Two types of model mainly
include traditional block maxima and peaks over threshold
(POT) model. POT model can use the original data more
effectively when observed value exceeds a certain big enough
threshold, especially for the financial risk measurement and
modeling [15]. It is suitable for the description of extreme risk
of gap risk in CPPI strategy. Thus, POT modeling was used to
describe tail area of z; distribution.

F(x) denotes cumulative distribution function (CDF) of
variable X; x, is upper extreme point of F. u denotes the big
enough threshold value; the number of samples exceeding
the threshold is N5 x,..., x)y denotes sample observations
of exceeding samples; let y = x — u; the exceeding loss
distribution F, (y) is shown in

F(y+u)-F(u)

1-F(u) ®

F,(y)=P(X-u<y|X>u)=

F,,(y) defines probability distribution of exceeding loss on the
right end, which is also cumulative probability distribution of
variable exceeding u under the condition of x > u. According
to Pickands III theorem [16], whenu — x,, for a wide range
probability distribution F(x)

lim  sup
u= X+0Systr —u

|Fu (%) = Gy ()] = 0 9)
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holds for certain & and fB(u). In other words, for a large
enough threshold u, F,(y) tends to be generalized Pareto
distribution (GPD) Gf)ﬁ(u)(')' Its function is as follows:

1—<1+%)1K if €40,

()

& denotes shape parameter; 3 denotes scale parameter. After
having the distribution function of exceeding loss, let x = y+
u; the tail distribution function is shown as

Gep (y) = (10)

if £=0.

F(x)=(1-FW)Ggp(x—u)+F(u). (11

N denotes the total number of observed samples; N,, denotes
the number of samples exceeding the threshold u. From
empirical data, we get the estimated value of F(u),(N —
N,)/N, which means that when x is large enough, the
estimation of tail cumulative distribution is

F= [1 (1 +%(x—u)>l/£] o (1-2)

and thus,

(12)

£
P;(l—a):u+§[(£;a> —1} (13)

u
Putting it into formula (7), we get

- 1 ‘
oo (B9 [(N/N)a) - 1]

M (14)

Formula (14) reveals the function relationship of multiple
m and risky assets value, frequency of extreme price, or
expected loss under the requirement of gap risk management.
When risky assets value fluctuated wildly, reduce the multiple
to reduce the risk exposure; when & is increasingly larger,
corresponding multiple gets smaller and smaller. Parameter
& depends on distribution shape and denotes the heaviness
of tail distribution. It indicates that when there is more
frequent extreme price, the risk exposure of CPPI portfolio
should be reduced. y denotes the expected loss of risky assets.
When expected loss is small, enlarge multiple to increase risk
exposure. It is intuitive that the proportion of risky assets
in CPPI portfolio should be increased in bull market, but
formula (14) reveals that multiple setting should consider
other factors from a gap risk management perspective, not
to overincrease risk exposure in bull market.

3. Empirical Studies

This paper selects the Shanghai composite index as a
risky asset investment portfolio (from January 02, 1997, to
December 31, 2010), for the following reasons. (1) From
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FIGURE 2: Time series of Shanghai composite index returns.

the perspective of risk measurement, the change of the
Shanghai composite index can reflect system risk. Moreover,
it covers the influence of extreme events such as Asian
financial crisis that happened in 1997 and the United States
financial crisis of 2008. (2) From the perspective of model
estimation, the Shanghai composite index has been compiled
for the longest time, which guarantees that there are enough
samples, especially plenty of weekly return data. (3) From
the perspective of the time span, because it was not until
December 16, 1996, that the price limit regime began to be
implemented, we choose the time span which is from January
1997 on so as to eliminate the abnormal samples resulting
from the unsound regulations, such as a 105.27% boom in
a single day on May 21, 1992. Corresponding to week by
week fixed cycle adjustment principle, we analyze assets value
changing by weekly return rate. 700 samples are included,
with percentile return rate.

3.1. Data Description. Firstly, basic statistical description of
return series is given. Figure 2 shows time series of Shanghai
composite index returns, in which wave agglomeration effect
can be seen in the series. Basic statistical description of return
series can be seen in Tablel; P values of corresponding
statistics are shown in brackets. Compared with the normal
distribution (skewness 0 and kurtosis 3), skewness and kurto-
sis characteristics can be shown in return series. Meanwhile,
Jarque-Bera normality test also shows a remarkable difference
from normal distribution. Moreover, ADF test of unit root
shows stability of return series, and Ljung-Box test shows
a noticeable autocorrelation. Thus, time series of Shanghai
composite index returns shows the characteristics of kurtosis,
skewness, and aggregation, which is suitable for SV modeling
and analysis.

3.2. Results. Secondly, dynamic multiple is set by model
parameter estimation in formula (14). It is achieved by
estimating the SV model by loss series of Shanghai composite
index returns. Fluctuation in SV model is a latent variable,

TABLE 1: Statistical characteristics of shanghai composite index
returns.

Statistical indicators Value
Mean 0.002
Maximum 0.149
Minimum —-0.138
Standard deviation 0.035
Skewness 0.194
Kurtosis 4.570
J-B statistic 76.36 (0.000)
ADF test -13.030 (0.000)
L-B Q(5) 14.006 (0.016)
L-B Q(10) 22.238 (0.014)
Threshold
—0.005090 0.002750 0.010000 0.019300 0.027900 0.045700
0.2 1
g
S 0.0
o
S -02-
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©
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FIGURE 3: Estimates of shape parameter as a function of the
threshold value.

and it is difficult to estimate the parameters by maximum
likelihood method; thus, Bayesian principle and MCMC
method are used in this paper [17]. By constructing a Markov
chain for the sampling of given multivariate probability den-
sity, statistical inference is made with the help of ergodicity
of Markov chain. Programmed and computed in Winbugs
[18], the expected estimation values of Bayesian posterior
distribution in SV modeling parameter are o = 0.007,$ =
0.859, and 7 = 0.119.

After that we estimate high fractal Fél (1 — «) of residual
sequence z;. First of all, we choose an appropriate threshold
value estimate generalized Pareto distribution parameter.
Since shape parameter & is the limited index of distribu-
tion independent of threshold value u, an effective way to
choose the threshold value (Figure 3) is to observe the shape
parameter & estimation curve in different threshold value.
Generally, we choose threshold value when shape parameter
& is relatively stable.

N,

W” [1 —<1+%(x—u)>_l/£] +<1— %) (15)

F(x) =
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TABLE 2: Estimates of GPD parameters and quantile of residuals z;.

u & [§
0.045 —0.101 0.024

N,/N F,'(1-a)
9.714% 0.133

Here, u = 0.045. We can also confirm through empirical
mean excess function plot (EMEF), which is the curve of
points (u,en(u)). The definition of ey(u) can be seen in
formula (16). The basis for the selection is whether a linear
trend is shown after exceeding a certain threshold. Figure 4
shows that threshold should be about 0.05. Considering the
judgment from Figures 3 and 4, we choose the threshold value
u = 0.045:

Zfia ('xi B M) ,

ey (u) = N-a-1 (16)

a=min{i | x; > u}.

After u is given, we can have estimated value of parame-
ters & and fB(u) based on maximum likelihood method esti-
mation. For a given generalized Pareto distribution sample,
o yNu}, GPD log-likelihood function of GPD can be

seen in formula (17). When 1-a = 99.9%, calculate F; (1-w);
the results are shown in Table 2:

L(&B1y)
-N,Inp- (1 + %)fzuln(l + %%) §#0,  (17)

1%
-N,Inp - EZ%
i=1

Figure 5 shows the sensitivity of 99.9% quantile estimates
to changes in the threshold. Obviously, when the threshold
value is large enough, the estimated value of F,'(1 - )
is not sensitive to the change of u. This indicates that
the estimation result has strong stability. Putting o} and
parameter estimation results in Table 2 into formula (14),
we have dynamic setting of multiple m in CPPI strategy
(see Figure 6). The selection range of multiple is about 5~10,
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FIGURE 6: Determination of dynamic CPPI multiple.

and the mean and the median are both 7.8. This range is a
little larger than the static multiple setting from Jessen [10].
Apart from different research methods, it is probably because
dynamic multiple setting increased risky assets investment
under the premise of gap risk avoiding, thus achieving a
higher expected value.

4. Conclusions

From a perspective of gap risk management, this paper
proposes a dynamic setting model of the parameter “Mul-
tiple” of CPPI strategy. According to the statistical estima-
tion of extreme value change of risky asset by using SV-
EVT approach, a dynamic choice of multiple is detailed
as a function of time-varying asset volatility, expected loss,
and the possibility of occurrence of extreme events in the
active asset returns. The empirical illustration on Shanghai
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composite index data shows that the multiple should be
chosen dynamically in the interval 5~10, which is larger than
the static results in prior studies. Our research promotes the
applicability of CPPI strategy in emerging capital market by
providing useful reference and tools for CPPI investors to
manage gap risk and choose a proper risk exposure level.
The model demonstrates the effect of time-varying asset
volatility, expected loss, and the possibility of occurrence of
extreme events in the active asset returns on multiple setting.
Therefore, investors can make decisions on changing multiple
to manage gap risk based on analyzing market conditions
from the above-mentioned three dimensions. Moreover, the
model allows investors to choose a moderate risk control
level according to their specific management target and risk
preference.
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