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We introduce a new approach to investigate the stability of controlled tree-shaped wave networks and subtrees of complex wave
networks. It is motivated by regarding the network as branching out from a single edge. We present the recursive relations of the
Laplacian transforms of adjacent edges of the system in its branching order, which form the characteristic equation. In the stability
analysis, we estimate the infimums of the recursive expressions in the inverse order based on the spectral analysis. It is a feasible way
to check whether the system is exponentially stable under any control strategy or parameter choice. As an application we design
the control law and study the stability of a 12-edge tree-shaped wave network.

1. Introduction

The stability analysis of networks of flexible elements, such
as vibrating strings, beams, membranes, and plates has been
intensively and extensively studied in the past decades (see
[1–3] for some general works and [4–17] for wave networks).
A wave network can be asymptotically stabilized by some
appropriate feedback control strategy. However, its exponen-
tial stability is difficult to check. The exponential stability of
a dynamic system is usually analyzed by multiplier method
([18, 19], etc.), resolvent estimation ([20, 21], etc.), or spectral
analysis and Riesz basis approach ([4, 8–12, 14], etc.). For
wave networks, an appropriate multiplier has not been found
so far and the resolvent is too complicated to estimate; thus
the spectral analysis becomes a possible technique. In fact,
suppose that the spectral determined growth assumption
(SDGA) holds for a network, which means that the energy
decay rate of the network is exactly the supremum of the real
parts of its spectra.Then a dissipative system is exponentially
stable if and only if the imaginary axis is not an asymptote
of its spectra. That is, the characteristic equation 𝐷(𝜆) of the
network satisfies

inf
𝜎∈R

|𝐷 (𝑖𝜎)| > 0. (1)

Generally speaking, most controlled wave networks satisfy
SDGA under certain conditions. However, as for the spec-
trum of these networks, it is only known that the spectra lie in
a vertical strip in the complex plane. More precise properties,
such as the asymptote, of the spectra remain unknown in
general. Besides, the characteristic equation has been derived
for wave networks of some special types (e.g., [2] presented
nice results about the characteristic equation of generic trees),
but its expression form does not seem very convenient for
checking (1).These are challenging problems in both stability
analysis of wave networks and spectral theory of nonadjoint
operators.

In this paper, we will introduce a relatively easy approach
to study the exponential stability of a controlled wave
network. It is valid for tree-shaped networks and subtrees
of complex networks. The basic idea is motivated by the
natural growth of a tree. Regarding a tree-shaped network as
branching out from a single edge, we can obtain a simple form
of its characteristic equation by recurrence, which leads to an
easy verification of (1). Our idea is illustrated below in detail.

First we consider a tree of only one edge, the dynamic
behavior ofwhich is governed by the followingwave equation
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Branching out from the single-edge tree (2)
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Figure 1: Tree-shaped wave network (3) branching out from the single-edge tree (2).

and boundary conditions:

𝑇
1
𝑦
1,𝑥𝑥

(𝑥, 𝑡) = 𝑚
1
𝑦
1,𝑡𝑡

(𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0

𝑦
1
(0, 𝑡) = 0

𝑇
1
𝑦
1,𝑥
(1, 𝑡) = 𝑅

1
(𝑡) ,

(2)

where 𝑅
1
(𝑡) denotes the extra force acting at the boundary

end of the edge.
Then we consider another tree of 𝑁 edges, whose

dynamic behavior is governed by

𝑇
𝑘
𝑦
𝑘,𝑥𝑥

(𝑥, 𝑡) = 𝑚
𝑘
𝑦
𝑘,𝑡𝑡

(𝑥, 𝑡) , 𝑥 ∈ (0, 1) ,

𝑡 > 0, 𝑘 = 1, 2, . . . , 𝑁

𝑦
1
(0, 𝑡) = 0

𝑦
1
(1, 𝑡) = 𝑦

𝑘
(0, 𝑡) , 𝑘 = 2, . . . , 𝑁

𝑇
1
𝑦
1,𝑥
(1, 𝑡) =

𝑁

∑

𝑘=2

𝑇
𝑘
𝑦
𝑘,𝑥
(0, 𝑡)

𝑇
𝑘
𝑦
𝑘,𝑥
(1, 𝑡) = 𝑅

𝑘
(𝑡) , 𝑘 = 2, . . . , 𝑁,

(3)

where 𝑅
𝑘
(𝑡), 𝑘 = 2, . . . , 𝑁 are the extra forces acting at the

corresponding boundary ends.
Comparing (2) and (3), we can regard the tree-shaped

wave network (3) as branching out from the single-edge tree
(2), based on the “branching force principle”:

𝑅
1
(𝑡) =

𝑁

∑

𝑘=2

𝑇
𝑘
𝑦
𝑘,𝑥
(0, 𝑡) . (4)

We can see this “branching” process clearly in Figure 1.
According to this principle, we can describemore compli-

cated tree-shaped wave networks. Moreover, we can deduce
from it the characteristic equation of the networks, which has

a simple form to check (1). This can be done by the Laplacian
transform of (3):

𝑇
𝑘
𝑓
𝑘,𝑥𝑥

(𝑥, 𝜆) = 𝑚
𝑘
𝜆
2

𝑓
𝑘
(𝑥, 𝜆) ,

𝑥 ∈ (0, 1) , 𝑘 = 1, 2, . . . , 𝑁

𝑓
1
(0, 𝜆) = 0

𝑓
1
(1, 𝜆) = 𝑓

𝑘
(0, 𝜆) , 𝑘 = 2, . . . , 𝑁

𝑇
1
𝑓
1,𝑥
(1, 𝜆) = 𝑅̂

1
(𝜆)

𝑅̂
1
(𝜆) =

𝑁

∑

𝑘=2

𝑇
𝑘
𝑓
𝑘,𝑥
(0, 𝜆)

𝑇
𝑘
𝑓
𝑘,𝑥
(1, 𝜆) = 𝑅̂

𝑘
(𝜆) , 𝑘 = 2, . . . , 𝑁,

(5)

where 𝑓
𝑘
(𝑥, 𝜆) and 𝑅̂

𝑘
(𝜆) are the transforms of 𝑦

𝑘
(𝑥, 𝑡) and

𝑅
𝑘
(𝑡), respectively.
Note that for 𝜆 ̸= 0, the solutions 𝑓

𝑘
(𝑥, 𝜆), 𝑘 = 1, 2, . . . , 𝑁

to the differential equations in (5) have the general form

𝑓
𝑘
(𝑥, 𝜆) = 𝑐

𝑘
[𝐹
𝑘
(𝜆) cosh 𝜆𝜌

𝑘
𝑥 − 𝐺

𝑘
(𝜆) sinh 𝜆𝜌

𝑘
𝑥] ,

𝜌
𝑘
= √

𝑚
𝑘

𝑇
𝑘

, 𝑘 = 1, 2, . . . , 𝑁,

(6)

where 𝐹
𝑘
(𝜆), 𝐺

𝑘
(𝜆) ∈ C are arbitrary constants related to 𝜆,

and 𝑐
𝑘
are nonzero auxiliary constants.

Substituting (6) into the first boundary condition in (5),
we obtain that

𝐹
1
(𝜆) = 0. (7)

Substituting (6) into 𝑓
𝑘
(1, 𝜆) and the last boundary

condition in (5), we have that

𝑓
𝑘
(1, 𝜆) = 𝑐

𝑘
[𝐹
𝑘
(𝜆) cosh 𝜆𝜌

𝑘
− 𝐺
𝑘
(𝜆) sinh 𝜆𝜌

𝑘
] ,

𝑅̂
𝑘
(𝜆) = 𝜆𝑇

𝑘
𝜌
𝑘
𝑐
𝑘
[𝐹
𝑘
(𝜆) sinh 𝜆𝜌

𝑘
− 𝐺
𝑘
(𝜆) cosh 𝜆𝜌

𝑘
] ,

𝑘 = 2, . . . , 𝑁.

(8)
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From the above we can express the coefficients 𝐹
𝑘
(𝜆) and

𝐺
𝑘
(𝜆) by 𝑓

𝑘
(1, 𝜆) and 𝑅̂

𝑘
(𝜆) for 𝑘 = 2, . . . , 𝑁 as follows:

𝐹
𝑘
(𝜆)

=
1

𝑐
𝑘
𝑇
𝑘
𝜌
𝑘

[𝑇
𝑘
𝜌
𝑘
𝑓
𝑘
(1, 𝜆) cosh 𝜆𝜌

𝑘
−
1

𝜆
𝑅̂
𝑘
(𝜆) sinh 𝜆𝜌

𝑘
] ,

𝐺
𝑘
(𝜆)

=
1

𝑐
𝑘
𝑇
𝑘
𝜌
𝑘

[𝑇
𝑘
𝜌
𝑘
𝑓
𝑘
(1, 𝜆) sinh𝜆𝜌

𝑘
−
1

𝜆
𝑅̂
𝑘
(𝜆) cosh 𝜆𝜌

𝑘
] ,

𝑘 = 2, . . . , 𝑁,

(9)

where 𝑅̂
𝑘
(𝜆), 𝑘 = 2, . . . , 𝑁 are to be determined.

Substituting (6) into other connective conditions in (5),
we get that

𝑅̂
1
(𝜆) = 𝜆𝑐

1
𝑇
1
𝜌
1
[𝐹
1
(𝜆) sinh 𝜆𝜌

1
− 𝐺
1
(𝜆) cosh 𝜆𝜌

1
]

= −𝜆

𝑁

∑

𝑘=2

𝑐
𝑘
𝑇
𝑘
𝜌
𝑘
𝐺
𝑘
(𝜆)

𝑓
1
(1, 𝜆) = 𝑐

1
[𝐹
1
(𝜆) sinh 𝜆𝜌

1
− 𝐺
1
(𝜆) cosh 𝜆𝜌

1
]

= 𝑐
𝑘
𝐹
𝑘
(𝜆) , 𝑘 = 2, . . . , 𝑁.

(10)

Solving the above equations, we can express 𝐹
1
(𝜆) and 𝐺

1
(𝜆)

by 𝐹
𝑘
(𝜆), 𝐺

𝑘
(𝜆), 𝑘 = 2, . . . , 𝑁 with appropriately chosen

constants 𝑐
𝑘
, 𝑘 = 2, . . . , 𝑁. It remains to be determined

the expressions of 𝐹
𝑘
(𝜆), 𝐺

𝑘
(𝜆), 𝑘 = 2, . . . , 𝑁, that is, the

expressions of 𝑅̂
𝑘
(𝜆) (or equivalently 𝑅

𝑘
(𝑡)), 𝑘 = 2, . . . , 𝑁.

This can be done in the following two cases.

Case 1. The network under consideration is described as (3).
Let 𝑅
𝑘
(𝑡), 𝑘 = 2, . . . , 𝑁 be the feedback controls, such as

the collocated velocity feedback control 𝑅
𝑘
(𝑡) = −𝛼𝑦

𝑘,𝑥
(1, 𝑡),

𝑘 = 2, . . . , 𝑁. Then we can directly get the expressions of
𝐹
𝑘
(𝜆), 𝐺

𝑘
(𝜆), 𝑘 = 2, . . . , 𝑁 by (9).

Case 2. The network under consideration is a bigger tree
branching out from (3).

We proceed similarly to the boundary of the system by
recurrence.

In both cases, we can finally obtain the recursive expres-
sions of 𝐹

1
(𝜆), and hence 𝐹

1
(𝜆) = 0 is the characteristic

equation of the system. The process is in accordance with
the natural growth of a tree. In the stability analysis, we only
need to estimate the infimums of each recursive expression
in the inverse order to assert whether (1) holds or not. Thus
the exponential stability analysis can be carried out in an
easy manner. This can be similarly carried out for subtrees
of complex wave networks.

The content is arranged as follows. In Section 2, we state
our main results for general tree-shaped wave network and
present a complete proof. In Section 3, we investigate a 12-
edge tree-shaped wave network as an application to the main
results. In Section 4, we give a conclusion.

2. Main Results

In this section, we will give a rigorous statement of the main
results in general. For this aim, we deal with a general subtree
A of a complex wave network 𝐺. We adopt the notations
introduced in [1, pp. 104] to describe a tree or a subtree.

LetA be a subtree (or a tree). By the degree of a vertex of
A we mean the number of the edges that branch out from it.
A vertex is called a boundary vertex if its degree is one and an
interior vertex otherwise. Let 𝑁 be the number of the edges
ofA.

Choose a boundary vertex as the root of A, denoted by
R. The other edges and vertices are denoted by 𝑒

𝛼
and V

𝛼
,

respectively, where 𝛼 = (𝛼
1
, . . . , 𝛼

𝑘
) is a multi-index (possibly

empty) defined by recurrence in the following way. For the
edge containing R we choose the empty index; that is, it is
denoted by 𝑒 and its vertex different from R is denoted by
V. Assume that the interior vertex V

𝛼
, contained in the edge

𝑒
𝛼
, has multiplicity𝑚

𝛼
+1. Then there are𝑚

𝛼
edges, different

from 𝑒
𝛼
, branching out from V

𝛼
. Denote them by 𝑒

𝛼∘𝛽
, where

𝛽 = 1, 2, . . . , 𝑚
𝛼
, 𝛼 ∘ 𝛽 = (𝛼

1
, . . . , 𝛼

𝑘
, 𝛽), and the other vertex

of the edge 𝑒
𝛼∘𝛽

is denoted by V
𝛼∘𝛽

.
LetA

𝑀
andA

𝑆
be the set of all the interior and boundary

vertices, respectively,R being excepted. Set J
𝑀
= {𝛼 | V

𝛼
∈

A
𝑀
},J
𝑆
= {𝛼 | V

𝛼
∈ A
𝑆
}, andJ = J

𝑀
∪J
𝑆
.

Suppose without loss of generality that the length of the
edge 𝑒

𝛼
is 1. Then 𝑒

𝛼
can be parameterized by its arc length by

means of the function 𝜋
𝛼
defined as 𝜋

𝛼
: [0, 1] → 𝑒

𝛼
, 𝛼 ∈ J

such that𝜋
𝛼
(0) = V

𝛼
and𝜋
𝛼
(1) is the other vertex of 𝑒

𝛼
. In this

way, 𝑒
𝛼
and its end points can be identified with the interval

[0, 1].
Assume that a tree-shaped subnetwork coincides with

A at rest and performs a small perpendicular vibration. Let
𝑦
𝛼

= 𝑦
𝛼

(𝑥, 𝑡) : [0, 1] × R+ → R describe the transversal
displacement of 𝑒

𝛼
at position 𝜋

𝛼
(𝑥) and time 𝑡. Suppose

that all the interior vertices satisfy the geometric continuity
condition and Kirchhoff law.Then the dynamical behavior of
the subtreeA is governed by

𝑇
𝛼

𝑦
𝛼

𝑥𝑥
(𝑥, 𝑡) = 𝑚

𝛼

𝑦
𝛼

𝑡𝑡
(𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0, 𝛼 ∈ J,

𝑦
𝛼

(1, 𝑡) = 𝑦
𝛼∘𝛽

(0, 𝑡) , 𝛼 ∈ J
𝑀
, 𝛽 = 1, 2, . . . , 𝑚

𝛼
,

𝑇
𝛼

𝑦
𝛼

𝑥
(1, 𝑡) = 𝑅

𝛼

(𝑡) , 𝛼 ∈ J
𝑀
,

𝑅
𝛼

(𝑡) =

𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝑦
𝛼∘𝛽

𝑥
(0, 𝑡) , 𝛼 ∈ J

𝑀
.

(11)

The Laplacian transform of the subtree (11) is

𝑇
𝛼

𝑓
𝛼

𝑥𝑥
(𝑥, 𝜆) = 𝑚

𝛼

𝜆
2

𝑓
𝛼

(𝑥, 𝜆) , 𝑥 ∈ (0, 1) , 𝛼 ∈ J,

𝑓
𝛼

(1, 𝜆) = 𝑓
𝛼∘𝛽

(0, 𝜆) , 𝛼 ∈ J
𝑀
, 𝛽 = 1, 2, . . . , 𝑚

𝛼
,

𝑇
𝛼

𝑓
𝛼

𝑥
(1, 𝜆) = 𝑅̂

𝛼

(𝜆) , 𝛼 ∈ J
𝑀
,

𝑅̂
𝛼

(𝜆) =

𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝑓
𝛼∘𝛽

𝑥
(0, 𝜆) , 𝛼 ∈ J

𝑀
,

(12)
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where 𝑓𝛼(𝑥, 𝜆) and 𝑅̂𝛼(𝜆) are the transforms of 𝑦𝛼(𝑥, 𝑡) and
𝑅
𝛼

(𝑡), respectively.
According to the differential equations in (12), we can set

𝑓
𝛼

(𝑥, 𝜆) = 𝑐
𝛼

[𝐹
𝛼

(𝜆) cosh 𝜆𝜌𝛼𝑥 − 𝐺𝛼 (𝜆) sinh 𝜆𝜌𝛼𝑥] ,

𝜌
𝛼

= √
𝑚
𝛼

𝑇𝛼
, 𝛼 ∈ J,

(13)

where the coefficients 𝑐𝛼 are nonzero auxiliary coefficients;
𝐹
𝛼

(𝜆), 𝐺
𝛼

(𝜆) are arbitrary constants related to 𝜆, which are to
be determined as recursive expressions.

For any fixed 𝛼 ∈ J
𝑀
, we consider the edge 𝑒𝛼 and the𝑚

𝛼

edges 𝑒𝛼∘𝛽, 𝛽 = 1, 2, . . . , 𝑚
𝛼
, which branch out from 𝑒

𝛼. Their
vibration is governed by

𝑇
𝛼

𝑦
𝛼

𝑥𝑥
(𝑥, 𝑡) = 𝑚

𝛼

𝑦
𝛼

𝑡𝑡
(𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0

𝑇
𝛼∘𝛽

𝑦
𝛼∘𝛽

𝑥𝑥
(𝑥, 𝑡) = 𝑚

𝛼∘𝛽

𝑦
𝛼∘𝛽

𝑡𝑡
(𝑥, 𝑡) , 𝑥 ∈ (0, 1) ,

𝑡 > 0, 𝛽 = 1, 2, . . . , 𝑚
𝛼

𝑦
𝛼

(1, 𝑡) = 𝑦
𝛼∘𝛽

(0, 𝑡) , 𝛽 = 1, 2, . . . , 𝑚
𝛼

𝑇
𝛼

𝑦
𝛼

𝑥
(1, 𝑡) = 𝑅

𝛼

(𝑡)

𝑅
𝛼

(𝑡) =

𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝑦
𝛼∘𝛽

𝑥
(0, 𝑡) .

(14)

According to (12) and (13), the Laplacian transformof (14)
yields

𝑓
𝛼

(𝑥, 𝜆) = 𝑐
𝛼

[𝐹
𝛼

(𝜆) cosh 𝜆𝜌𝛼𝑥 − 𝐺𝛼 (𝜆) sinh 𝜆𝜌𝛼𝑥]

𝑓
𝛼∘𝛽

(𝑥, 𝜆)

= 𝑐
𝛼∘𝛽

[𝐹
𝛼∘𝛽

(𝜆) cosh 𝜆𝜌𝛼∘𝛽𝑥 − 𝐺𝛼∘𝛽 (𝜆) sinh 𝜆𝜌𝛼∘𝛽𝑥] ,

𝛽 = 1, 2, . . . , 𝑚
𝛼

𝑓
𝛼

(1, 𝜆) = 𝑓
𝛼∘𝛽

(0, 𝜆) , 𝛽 = 1, 2, . . . , 𝑚
𝛼

𝑇
𝛼

𝑓
𝛼

𝑥
(1, 𝜆) = 𝑅̂

𝛼

(𝜆)

𝑅̂
𝛼

(𝜆) =

𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝑓
𝛼∘𝛽

𝑥
(0, 𝜆) .

(15)

The following theorem indicates the recursive relations
between the coefficients 𝐹𝛼(𝜆), 𝐺𝛼(𝜆), and 𝐹𝛼∘𝛽(𝜆), 𝐺𝛼∘𝛽(𝜆),
𝛽 = 1, 2, . . . , 𝑚

𝛼
of the adjacent edges. It provides us with the

easy manner for the exponential stability analysis.

Theorem 1. Let 𝐺 be a complex wave network and A be a
subtree of 𝐺 described by (11). Assume that 𝜆 ̸= 0. Then for

any 𝛼 ∈ J
𝑀
, the recursive expressions of 𝐹𝛼(𝜆) and 𝐺𝛼(𝜆) in

𝐹
𝛼∘𝛽

(𝜆), 𝐺𝛼∘𝛽(𝜆), 𝛽 = 1, 2, . . . , 𝑚
𝛼
are given by

𝐹
𝛼

(𝜆) =
1

𝑇𝛼𝜌𝛼
[

[

𝑇
𝛼

𝜌
𝛼

𝑚
𝛼

∏

𝛽=1

𝐹
𝛼∘𝛽

(𝜆) cosh 𝜆𝜌𝛼

+ sinh 𝜆𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝜆)

×

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹
𝛼∘𝛾

(𝜆)]

]

𝐺
𝛼

(𝜆) =
1

𝑇𝛼𝜌𝛼
[

[

𝑇
𝛼

𝜌
𝛼

𝑚
𝛼

∏

𝛽=1

𝐹
𝛼∘𝛽

(𝜆) sinh 𝜆𝜌𝛼

+ cosh 𝜆𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝜆)

×

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹
𝛼∘𝛾

(𝜆)]

]

.

(16)

Moreover, if

inf
𝜎∈R

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛼∘𝛽

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨
> 0, R (𝐺

𝛼∘𝛽

(𝑖𝜎) 𝐹
𝛼∘𝛽

(𝑖𝜎)) > 0 (17)

hold for every 𝛽 = 1, 2, . . . , 𝑚
𝛼
, then

inf
𝜎∈R

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛼

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨
> 0, R (𝐺

𝛼

(𝑖𝜎) 𝐹
𝛼
(𝑖𝜎)) > 0. (18)

Proof. According to (15), we obtain that

𝑓
𝛼

(1, 𝜆) = 𝑐
𝛼

[𝐹
𝛼

(𝜆) cosh 𝜆𝜌𝛼 − 𝐺𝛼 (𝜆) sinh 𝜆𝜌𝛼]

𝑅̂
𝛼

(𝜆) = 𝑇
𝛼

𝑓
𝛼

𝑥
(1, 𝜆)

= 𝜆𝑐
𝛼

𝑇
𝛼

𝜌
𝛼

[𝐹
𝛼

(𝜆) sinh 𝜆𝜌𝛼 − 𝐺𝛼 (𝜆) cosh 𝜆𝜌𝛼] ,
(19)

which indicates

𝐹
𝛼

(𝜆)

=
1

𝑐𝛼𝑇𝛼𝜌𝛼
[𝑇
𝛼

𝜌
𝛼

𝑓
𝛼

(1, 𝜆) cosh 𝜆𝜌𝛼 − 1

𝜆
𝑅̂
𝛼

(𝜆) sinh 𝜆𝜌𝛼]

𝐺
𝛼

(𝜆)

=
1

𝑐𝛼𝑇𝛼𝜌𝛼
[𝑇
𝛼

𝜌
𝛼

𝑓
𝛼

(1, 𝜆) sinh 𝜆𝜌𝛼 − 1

𝜆
𝑅̂
𝛼

(𝜆) cosh 𝜆𝜌𝛼] .

(20)

Note that

𝑓
𝛼

(1, 𝜆) = 𝑓
𝛼∘𝛽

(0, 𝜆) = 𝑐
𝛼∘𝛽

𝐹
𝛼∘𝛽

(𝜆) , 𝛽 = 1, 2, . . . , 𝑚
𝛼
,

𝑅̂
𝛼

(𝜆) =

𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝑓
𝛼∘𝛽

𝑥
(0, 𝜆) = −𝜆

𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝑐
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝜆) .

(21)
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Substituting the above into (20), we have

𝐹
𝛼

(𝜆) =
1

𝑐𝛼𝑇𝛼𝜌𝛼
[

[

𝑇
𝛼

𝜌
𝛼

𝑐
𝛼∘𝛽

𝐹
𝛼∘𝛽

(𝜆) cosh 𝜆𝜌𝛼

+ sinh 𝜆𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝑐
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝜆)]

]

𝐺
𝛼

(𝜆) =
1

𝑐𝛼𝑇𝛼𝜌𝛼
[

[

𝑇
𝛼

𝜌
𝛼

𝑐
𝛼∘𝛽

𝐹
𝛼∘𝛽

(𝜆) sinh 𝜆𝜌𝛼

+ cosh 𝜆𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝑐
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝜆)]

]

.

(22)

Take

𝑐
𝛼∘𝛽

= 𝑐
𝛼

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹
𝛼∘𝛾

(𝜆) , 𝛽 = 1, 2, . . . , 𝑚
𝛼
, (23)

then (22) yields

𝐹
𝛼

(𝜆) =
1

𝑇𝛼𝜌𝛼
[

[

𝑇
𝛼

𝜌
𝛼

𝑚
𝛼

∏

𝛽=1

𝐹
𝛼∘𝛽

(𝜆) cosh 𝜆𝜌𝛼

+ sinh 𝜆𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝜆)

×

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹
𝛼∘𝛾

(𝜆)]

]

𝐺
𝛼

(𝜆) =
1

𝑇𝛼𝜌𝛼
[

[

𝑇
𝛼

𝜌
𝛼

𝑚
𝛼

∏

𝛽=1

𝐹
𝛼∘𝛽

(𝜆) sinh 𝜆𝜌𝛼

+ cosh 𝜆𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝜆)

×

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹
𝛼∘𝛾

(𝜆)]

]

.

(24)

Thus we have proved (16) in the theorem.
Since inf

𝜎∈R|𝐹
𝛼∘𝛽

(𝑖𝜎)| > 0, 𝛽 = 1, 2, . . . , 𝑚
𝛼
, we derive

from (16) that

𝑇
𝛼

𝜌
𝛼

𝐹
𝛼

(𝑖𝜎)

∏
𝑚
𝛼

𝛽=1
𝐹𝛼∘𝛽 (𝑖𝜎)

= 𝑇
𝛼

𝜌
𝛼 cos𝜎𝜌𝛼

+ 𝑖 sin𝜎𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝑖𝜎)

𝐹𝛼∘𝛽 (𝑖𝜎)

= 𝑇
𝛼

𝜌
𝛼 cos𝜎𝜌𝛼

− sin𝜎𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

I (𝐺
𝛼∘𝛽

(𝑖𝜎) 𝐹
𝛼∘𝛽

(𝑖𝜎))

󵄨󵄨󵄨󵄨𝐹
𝛼∘𝛽

(𝑖𝜎)
󵄨󵄨󵄨󵄨

2

+ 𝑖 sin𝜎𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

R (𝐺
𝛼∘𝛽

(𝑖𝜎) 𝐹
𝛼∘𝛽

(𝑖𝜎))

󵄨󵄨󵄨󵄨𝐹
𝛼∘𝛽

(𝑖𝜎)
󵄨󵄨󵄨󵄨

2
.

(25)

Thus the assumption (17) reads that

inf
𝜎∈R

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛼

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨
> 0. (26)

To complete the proof, we deduce from (16) that

(𝑇
𝛼

𝜌
𝛼

)
2

𝐺
𝛼

(𝑖𝜎) 𝐹
𝛼
(𝑖𝜎)

= [

[

𝑖𝑇
𝛼

𝜌
𝛼

𝑚
𝛼

∏

𝛽=1

𝐹
𝛼∘𝛽

(𝑖𝜎) sin𝜎𝜌𝛼

+ cos 𝜆𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝑖𝜎)

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹
𝛼∘𝛾

(𝑖𝜎)]

]

⋅ [

[

𝑇
𝛼

𝜌
𝛼

𝑚
𝛼

∏

𝛽=1

𝐹𝛼∘𝛽 (𝑖𝜎) cos𝜎𝜌𝛼

− 𝑖 sin𝜎𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺𝛼∘𝛽 (𝑖𝜎)

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹𝛼∘𝛾 (𝑖𝜎)]

]

=
𝑖

2
(𝑇
𝛼

𝜌
𝛼

)
2

𝑚
𝛼

∏

𝛽=1

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛼∘𝛽

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨

2

sin 2𝜎𝜌𝛼

−
𝑖

2
sin 2𝜎𝜌𝛼

𝑚
𝛼

∑

𝛽=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝑖𝜎)

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹
𝛼∘𝛾

(𝑖𝜎)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 𝑇
𝛼

𝜌
𝛼sin2𝜎𝜌𝛼

𝑚
𝛼

∏

𝛽=1

𝐹
𝛼∘𝛽

(𝑖𝜎)

×

𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺𝛼∘𝛽 (𝑖𝜎)

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹𝛼∘𝛾 (𝑖𝜎)

+ 𝑇
𝛼

𝜌
𝛼cos2𝜎𝜌𝛼

𝑚
𝛼

∏

𝛽=1

𝐹𝛼∘𝛽 (𝑖𝜎)

×

𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝑖𝜎)

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹
𝛼∘𝛾

(𝑖𝜎)

:= Θ
1
+ Θ
2
+ Θ
3
+ Θ
4
,

(27)
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whereRΘ
1
= RΘ

2
= 0, and

R (Θ
3
+ Θ
4
) = 𝑇
𝛼

𝜌
𝛼

𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

×R (𝐺𝛼∘𝛽 (𝑖𝜎)𝐹
𝛼∘𝛽

(𝑖𝜎) sin2𝜎𝜌𝛼

+𝐺
𝛼∘𝛽

(𝑖𝜎) 𝐹
𝛼∘𝛽

(𝑖𝜎)cos2𝜎𝜌𝛼)

×

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛼∘𝛾

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨

2

= 𝑇
𝛼

𝜌
𝛼

𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

R (𝐺
𝛼∘𝛽

(𝑖𝜎) 𝐹
𝛼∘𝛽

(𝑖𝜎))

×

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛼∘𝛾

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨

2

.

(28)

Thus

R (𝐺
𝛼

(𝑖𝜎) 𝐹
𝛼
(𝑖𝜎))

=
1

𝑇𝛼𝜌𝛼

𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

×R (𝐺
𝛼∘𝛽

(𝑖𝜎) 𝐹
𝛼∘𝛽

(𝑖𝜎))

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛼∘𝛾

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨

2

.

(29)

Therefore the assumption (17) together with the equality
above implies that

R (𝐺
𝛼

(𝑖𝜎) 𝐹
𝛼
(𝑖𝜎)) > 0. (30)

The proof is then complete.

Remark 2. In (11), there is no interior controller. If a velocity
feedback controller is equipped at some interior vertex V𝛼,
𝛼 ∈ J

𝑀
, thenwe only have to add a term−𝑎

𝛼

𝑦
𝛼

𝑡
(1, 𝑡) to𝑅𝛼(𝑡),

where 𝑎
𝛼 is the nonnegative feedback gain constant, and

−𝑎
𝛼

𝑦
𝛼

𝑡
(1, 𝑡) can be regarded as a branching damping. In this

situation, the results in Theorem 1 can be proved similarly.
The only difference is that the recursive expression (16) is
modified by

𝐹
𝛼

(𝜆) =
1

𝑇𝛼𝜌𝛼
[

[

𝑤
𝛼

(𝜆)

𝑚
𝛼

∏

𝛽=1

𝐹
𝛼∘𝛽

(𝜆)

+ sinh𝜆𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝜆)

×

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹
𝛼∘𝛾

(𝜆)]

]

𝐺
𝛼

(𝜆) =
1

𝑇𝛼𝜌𝛼
[

[

V𝛼 (𝜆)
𝑚
𝛼

∏

𝛽=1

𝐹
𝛼∘𝛽

(𝜆)

+ cosh 𝜆𝜌𝛼
𝑚
𝛼

∑

𝛽=1

𝑇
𝛼∘𝛽

𝜌
𝛼∘𝛽

𝐺
𝛼∘𝛽

(𝜆)

×

𝑚
𝛼

∏

𝛾=1,𝛾 ̸= 𝛽

𝐹
𝛼∘𝛾

(𝜆)]

]

,

(31)

where

𝑤
𝛼

(𝜆) = 𝑇
𝛼

𝜌
𝛼 cosh 𝜆𝜌𝛼 + 𝑎𝛼 sinh 𝜆𝜌𝛼

V𝛼 (𝜆) = 𝑇𝛼𝜌𝛼 sinh 𝜆𝜌𝛼 + 𝑎𝛼 cosh 𝜆𝜌𝛼,

𝑎
𝛼

≥ 0.

(32)

Now we consider the special case thatA is a tree-shaped
network. We applyTheorem 1 to its stability analysis. Herein,
the boundary conditions are set to be

𝑇
𝛼

𝑦
𝛼

𝑥
(1, 𝑡) = 𝑅

𝛼

(𝑡) , 𝛼 ∈ J
𝑆
. (33)

If the root R is clamped, that is, 𝑦(0, 𝑡) = 0, then we get
from its Laplacian transform𝑓(0, 𝜆) = 0 that𝐹(𝜆) = 0, which
is the characteristic equation of A. Using (16) in Theorem 1,
we obtain the recursive expression of 𝐹(𝜆). Moreover, if we
choose appropriate 𝑅𝛼(𝑡), 𝛼 ∈ J

𝑆
such that

inf
𝜎∈R

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛼

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨
> 0, R (𝐺

𝛼

(𝑖𝜎) 𝐹
𝛼
(𝑖𝜎)) > 0, ∀𝛼 ∈ J

𝑆
,

(34)

then the second assertion of Theorem 1 says that

inf
𝜎∈R

|𝐹 (𝑖𝜎)| > 0. (35)

The inequality (35) guarantees the exponential stability ofA,
provided thatA satisfies SDGA. If (34)-(35) are not true, the
exponential stability of A no longer holds. However, we can
still obtain the asymptotic stability of it as long as 𝐹(𝑖𝜎) ̸= 0,
𝜎 ∈ R.

If the rootR is free, we can similarly analyze the stability.
In fact, we can prove similarly that if

inf
𝜎∈R

󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼∘𝛽

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨
> 0, R (𝐺

𝛼∘𝛽

(𝑖𝜎) 𝐹
𝛼∘𝛽

(𝑖𝜎)) > 0 (36)

hold for every 𝛽 = 1, 2, . . . , 𝑚
𝛼
, then

inf
𝜎∈R

󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨
> 0, R (𝐺

𝛼

(𝑖𝜎) 𝐹
𝛼
(𝑖𝜎)) > 0. (37)

In the same way, Theorem 1 can also be applied for the
stability analysis of subtrees of complex networks.
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Figure 2: The “branching” process of the 12-edge tree-shaped wave network.

3. Application Example

In this section, wewill give an example of 12-edge tree-shaped
wave network as an application toTheorem 1.Wewill see that
the stability analysis of the controlled system can be simply
carried out by our approach.

The structure of the network is shown in the rightmost of
Figure 2. It is viewed as branching out from a single edge; the
process is divided into 4 steps (also see Figure 2).

The network is described by

𝑇
𝛼

𝑦
𝛼

𝑥𝑥
(𝑥, 𝑡) = 𝑚

𝛼

𝑦
𝛼

𝑡𝑡
(𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0, 𝛼 ∈ J

𝑦 (0, 𝑡) = 0

𝑦
𝛼

(1, 𝑡) = 𝑦
𝛼∘𝛽

(0, 𝑡) , 𝛼 ∈ J
𝑀
, 𝛽 = 1, 2

𝑇
𝛼

𝑦
𝛼

𝑥
(1, 𝑡) = 𝑅

𝛼

(𝑡) , 𝛼 ∈ J
𝑀

𝑅
𝛼

(𝑡) =

2

∑

𝛽=1

𝑇
𝛼∘𝛽

𝑦
𝛼∘𝛽

𝑥
(0, 𝑡) , 𝛼 ∈ J

𝑀

𝑇
𝛼

𝑦
𝛼

𝑥
(1, 𝑡) = 𝑅

𝛼

(𝑡) , 𝛼 ∈ J
𝑆
,

(38)

where J
𝑀

= {empty index, (1), (2), (3), (1, 1)}, J
𝑆

=

{(1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (1, 1, 1), (1, 1, 2)}, and J =

J
𝑀
∪J
𝑆
.

Since no edge branches out from V𝛼, 𝛼 ∈ J
𝑆
, we take the

extra forces to be the collocated velocity feedback control:

𝑅
𝛼

(𝑡) = −𝑎
𝛼

𝑦
𝛼

𝑡
(1, 𝑡) , 𝑎

𝛼

> 0, 𝛼 ∈ J
𝑆
. (39)

Thus the 12-edge tree-shaped wave network is described
by (38)-(39). A standard regulation of (38)-(39) results in its
vector-valued form, which falls into the model discussed in
[14]. Thus all the theoretic results in [14] hold, among which
we emphasize that

(1) the system is well-posed;

(2) 𝜆 ̸= 0; and

(3) if 𝑎𝛼 ̸= √𝑇𝛼/𝑚𝛼, 𝛼 ∈ J
𝑆
, then the SDGA satisfies.

Moreover, we have the following assertion.

Proposition 3. Let 𝐷(𝜆), 𝜆 ∈ C be the characteristic equa-
tion of (38)-(39). Suppose that 𝑎𝛼 ̸= √𝑇𝛼/𝑚𝛼, 𝛼 ∈ J

𝑆
. If

inf
𝜎∈R|𝐷(𝑖𝜎)| ̸= 0, then the system (38)-(39) is exponentially

stable.

In the sequel, we will deduce the characteristic equation
by our approach shown in Section 2, prove inf

𝜎∈R|𝐷(𝑖𝜎)| ̸= 0

by Theorem 1, and obtain the exponential stability of system
(38)-(39) according to Proposition 3.

To this end, we first derive the recursive expressions of the
coefficients 𝐹𝛼(𝜆) and 𝐺𝛼(𝜆), 𝛼 ∈ J in its branching order.
Taking the Laplacian transform of (38)-(39), one has

𝑓
𝛼

(𝑥, 𝜆) = 𝑐
𝛼

[𝐹
𝛼

(𝜆) cosh 𝜆𝜌𝛼𝑥 − 𝐺𝛼 (𝜆) sinh𝜆𝜌𝛼𝑥] ,

𝜌
𝛼

= √
𝑚
𝛼

𝑇𝛼
, 𝛼 ∈ J,

(40)

𝑓 (0, 𝜆) = 0, (41)

𝑓 (1, 𝜆) = 𝑓
(𝑘)

(0, 𝜆)

𝑇𝑓
𝑥
(1, 𝜆) = 𝑅̂ (𝜆) =

3

∑

𝑘=1

𝑇
(𝑘)

𝑓
(𝑘)

𝑥
(0, 𝜆)

𝑓
(𝑘)

(1, 𝜆) = 𝑓
(𝑘,𝑗)

(0, 𝜆)

𝑇
(𝑘)

𝑓
(𝑘)

𝑥
(1, 𝜆) = 𝑅̂

(𝑘)

(𝜆) =

2

∑

𝑗=1

𝑇
(𝑘,𝑗)

𝑓
(𝑘,𝑗)

𝑥
(0, 𝜆)

𝑓
(1,1)

(1, 𝜆) = 𝑓
(1,1,𝑙)

(0, 𝜆)

𝑇
(1,1)

𝑓
(1,1)

𝑥
(1, 𝜆) = 𝑅̂

(1,1)

(𝜆) =

2

∑

𝑙=1

𝑇
(1,1,𝑙)

𝑓
(1,1,𝑙)

𝑥
(0, 𝜆)

𝑘 = 1, 2, 3, 𝑗, 𝑙 = 1, 2,

(42)

𝑇
𝛼

𝑓
𝛼

𝑥
(1, 𝜆) = 𝑅̂

𝛼

(𝜆) = −𝜆𝑎
𝛼

𝑓
𝛼

(1, 𝜆) , 𝛼 ∈ J
𝑆
. (43)

Firstly, substituting (40) into (41) indicates

𝐹 (𝜆) = 0 (44)

which is the characteristic equation of the system (38)-(39) to
be determined.
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Figure 3: Fewer controllers are needed for the exponential stability.

Then, according to (16) inTheorem 1, we get the recursive
expressions of 𝐹𝛼(𝜆) and 𝐺𝛼(𝜆), 𝛼 ∈ J

𝑀
:

𝐹 (𝜆) =
1

𝑇𝜌

[

[

𝑇𝜌 cosh 𝜆𝜌
3

∏

𝑘=1

𝐹
(𝑘)

(𝜆)

+ sinh 𝜆𝜌
3

∑

𝑘=1

𝑇
(𝑘)

𝜌
(𝑘)

𝐺
(𝑘)

(𝜆)

×

3

∏

𝑗=1,𝑗 ̸= 𝑘

𝐹
(𝑗)

(𝜆)]

]

𝐺 (𝜆) =
1

𝑇𝜌

[

[

𝑇𝜌 sinh 𝜆𝜌
3

∏

𝑘=1

𝐹
(𝑘)

(𝜆)

+ cosh 𝜆𝜌
3

∑

𝑘=1

𝑇
(𝑘)

𝜌
(𝑘)

𝐺
(𝑘)

(𝜆)

×

3

∏

𝑗=1,𝑗 ̸= 𝑘

𝐹
(𝑗)

(𝜆)]

]

,

(45)

𝐹
(𝑘)

(𝜆) =
1

𝑇(𝑘)𝜌(𝑘)

× [

[

𝑇
(𝑘)

𝜌
(𝑘) cosh 𝜆𝜌(𝑘)

2

∏

𝑗=1

𝐹
(𝑘,𝑗)

(𝜆)

+ sinh 𝜆𝜌(𝑘)
2

∑

𝑗=1

𝑇
(𝑘,𝑗)

𝜌
(𝑘,𝑗)

𝐺
(𝑘,𝑗)

(𝜆)

×

2

∏

𝑙=1,𝑙 ̸= 𝑗

𝐹
(𝑘,𝑙)

(𝜆)]

]

𝐺
(𝑘)

(𝜆) =
1

𝑇(𝑘)𝜌(𝑘)

× [

[

𝑇
(𝑘)

𝜌
(𝑘) sinh 𝜆𝜌(𝑘)

2

∏

𝑗=1

𝐹
(𝑘,𝑗)

(𝜆)

+ cosh 𝜆𝜌(𝑘)
2

∑

𝑗=1

𝑇
(𝑘,𝑗)

𝜌
(𝑘,𝑗)

𝐺
(𝑘,𝑗)

(𝜆)

×

2

∏

𝑙=1,𝑙 ̸= 𝑗

𝐹
(𝑘,𝑙)

(𝜆)]

]

𝑘 = 1, 2, 3,

(46)

𝐹
(1,1)

(𝜆) =
1

𝑇(1,1)𝜌(1,1)

× [

[

𝑇
(1,1)

𝜌
(1,1) cosh 𝜆𝜌(1,1)

2

∏

𝑘=1

𝐹
(1,1,𝑘)

(𝜆)

+ sinh 𝜆𝜌(1,1)
2

∑

𝑘=1

𝑇
(1,1,𝑘)

𝜌
(1,1,𝑘)

𝐺
(1,1,𝑘)

(𝜆)

×

2

∏

𝑗=1,𝑗 ̸= 𝑘

𝐹
(1,1,𝑗)

(𝜆)]

]

𝐺
(1,1)

(𝜆) =
1

𝑇(1,1)𝜌(1,1)

× [

[

𝑇
(1,1)

𝜌
(1,1) sinh 𝜆𝜌(1,1)

2

∏

𝑘=1

𝐹
(1,1,𝑘)

(𝜆)

+ cosh 𝜆𝜌(1,1)
2

∑

𝑘=1

𝑇
(1,1,𝑘)

𝜌
(1,1,𝑘)

𝐺
(1,1,𝑘)

(𝜆)

×

2

∏

𝑗=1,𝑗 ̸= 𝑘

𝐹
(1,1,𝑗)

(𝜆)]

]

.

(47)



Abstract and Applied Analysis 9

Finally, we substitute (40) into (43) to get

𝐹
𝛼

(𝜆) (𝑇
𝛼

𝜌
𝛼 sinh 𝜆𝜌𝛼 + 𝛼𝛼 cosh 𝜆𝜌𝛼)

− 𝐺
𝛼

(𝜆) (𝑇
𝛼

𝜌
𝛼 cosh 𝜆𝜌𝛼 + 𝛼𝛼 sinh𝜆𝜌𝛼) = 0,

𝛼 ∈ J
𝑆
.

(48)

Thus we can take

𝐹
𝛼

(𝜆) = 𝑇
𝛼

𝜌
𝛼 cosh 𝜆𝜌𝛼 + 𝑎𝛼 sinh 𝜆𝜌𝛼

𝐺
𝛼

(𝜆) = 𝑇
𝛼

𝜌
𝛼 sinh 𝜆𝜌𝛼 + 𝑎𝛼 cosh 𝜆𝜌𝛼,

𝛼 ∈ J
𝑆
.

(49)

By now, one has obtained all the recursive expressions
(44)–(49) of the coefficients 𝐹

𝛼

(𝜆) and 𝐺
𝛼

(𝜆), 𝛼 ∈ J,
which form the characteristic equation of (38)-(39). Now we
will prove the exponential stability of the system (38)-(39).
Proposition 3 says it suffices to prove that 𝐹(𝜆) defined in
(45) satisfies inf

𝜎∈R|𝐹(𝑖𝜎)| > 0. We will verify this by easily
estimating the infimums of (44)–(49) in the inverse order.

By (49), a direct calculation leads to

𝐹
𝛼

(𝑖𝜎) = 𝑇
𝛼

𝜌
𝛼 cos𝜎𝜌𝛼 + 𝑖𝑎𝛼 sin𝜎𝜌𝛼,

𝐺
𝛼

(𝑖𝜎) = 𝑖𝑇
𝛼

𝜌
𝛼 sin𝜎𝜌𝛼 + 𝑎𝛼 cos𝜎𝜌𝛼.

(50)

Thus one has

inf
𝜎∈R

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛼

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨
= inf
𝜎∈R

󵄨󵄨󵄨󵄨󵄨
𝐺
𝛼

(𝑖𝜎)
󵄨󵄨󵄨󵄨󵄨
= min {𝑎𝛼, 𝑇𝛼𝜌𝛼} > 0 (51)

for 𝛼 ∈ J
𝑆
.

Moreover, it holds that

R (𝐺
𝛼

(𝑖𝜎) 𝐹
𝛼
(𝑖𝜎))

= R ((𝑇
𝛼

𝜌
𝛼 cos𝜎𝜌𝛼 − 𝑖𝑎𝛼 sin𝜎𝜌𝛼)

× (𝑖𝑇
𝛼

𝜌
𝛼 sin𝜎𝜌𝛼 + 𝑎𝛼 cos𝜎𝜌𝛼))

= 𝑎
𝛼

𝑇
𝛼

𝜌
𝛼

> 0, 𝛼 ∈ J
𝑆
.

(52)

ThusTheorem 1, (34)-(35), and (51)-(52) read that

inf
𝜎∈R

|𝐹 (𝜆)| > 0. (53)

Therefore Proposition 3 indicates the theorem below.

Theorem4. Let the 12-edge tree-shapedwave network be given
by (38)-(39). If 𝑎𝛼 ̸= √𝑇𝛼/𝑚𝛼, 𝛼 ∈ J

𝑆
, then it is exponentially

stable.

Remark 5. Theorem 4 implies that the tree-shaped wave
network is exponentially stabilized by boundary collocated
velocity feedback control. We can also study the stability of
the system under other control laws. As stated in Remark 2,
by adding the term −𝑎

𝛼

𝑦
𝛼

𝑡
(1, 𝑡) to 𝑅

𝛼

(𝑡), 𝛼 ∈ J
𝑀
, the

characteristic equation of the modified controlled system can

be obtained similarly and its stability can be analyzed in the
same way. For instance, if 𝑇𝛼 = 𝜌

𝛼

= 1, 𝛼 ∈ J, fewer
controllers are needed for the system to be exponentially
stable. This is shown in Figure 3, where the dots stand for the
controllers. We omit the details.

4. Conclusion

In this paper, we introduce a new approach for the stability
analysis of wave networks. Viewing the network as branching
out from a single edge, we divide this process into several
steps. Then we get the recursive expressions of the Laplacian
transform of the adjacent edges of the system in its branching
order. These recursive expressions together form the charac-
teristic equation of the system. In the stability analysis, we
estimate the infimums of these recursive expressions in the
inverse order. Then the exponential stability of the system
can be finished in an easy manner. This approach is valid for
tree-shaped networks and subtrees of complex networks. For
the stability analysis of networks with circuits, it needs some
improvements, which will be studied in the future.
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