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This paper investigates the analysis problem for stability of discrete-time neural networks (NNs) with discrete- and distribute-
time delay. Stability theory and a linear matrix inequality (LMI) approach are developed to establish sufficient conditions for the
NNs to be globally asymptotically stable and to design a state estimator for the discrete-time neural networks. Both the discrete
delay and distribute delays employ decomposing the delay interval approach, and the Lyapunov-Krasovskii functionals (LKFs)
are constructed on these intervals, such that a new stability criterion is proposed in terms of linear matrix inequalities (LMIs).
Numerical examples are given to demonstrate the effectiveness of the proposed method and the applicability of the proposed
method.

1. Introduction

In the past decades, recurrent neural networks (RNNs)
have been widely studied due to their wide applications in
some areas such as pattern recognition, associative mem-
ory, combinatorial optimization, and signal processing. Dy-
namical behaviors (e.g., stability, instability, periodic oscil-
latory, and chaos) of the neural networks are known to
be crucial in applications. It is noted that the stability of
neural networks is a prerequisite for some optimization
problems. As is known to all, many biological and ar-
tificial neural networks contain inherent time delays in sig-
nal transmission due to the finite speed of information
processing, which may cause oscillation, divergence, and
instability. In recent years, a great number of papers have
been published on various networks with time delays
[1–10].

On one hand, delay-dependent stability condition for
continuous-time RNNswith time-varying delays was derived
by defining a newLyapunov functional, and the obtained con-
dition could include some existing time delay-independent

ones; see [11, 12]. Up to now, however, when we use com-
puter to simulate, experimentalize or compute continuous-
time RNNs, it is necessary to discretize the continuous-
time networks to formulate a discrete-time system. So, the
study on the dynamics of discrete-time neural networks is
crucially needed. In particular, the stability of discrete-time
neural networks (DNNs) has been studied in [13–18], since
DNNs play amore important role than their continuous-time
counterparts in today’s digital life.

On the other hand, the neuron states are seldom fully
available in the network outputs in many applications; the
neuron state estimation problem becomes important to
utilize the estimated neuron state through the available
measurements. Recently, the state estimation problem for
the neural networks has engaged lots of scholars’ attention
and interest. Therefore, delay-dependent state estimation
problem has been studied widely for NNs; see [19–26].

Stochastic disturbances are mostly inevitable owing to
thermal noise in electronic implementations. It has also been
revealed that certain stochastic inputs could make a neural
network unstable.
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Summarizing the above discussion, in this paper, the
stability problem is considered for discrete-time neural
networks with discrete and distribute delays. Firstly, the
mathematical models are established. Secondly, a less con-
servative and new stability criterion is derived by using a
novel Lyapunov-Krasovskii functional. Thirdly, a numeri-
cal example is provided to show the effectiveness of the
main result. The technical difficulties of our paper are the
partition of the distributed time-varying delays. The novel
contribution of this work with respect to existing litera-
ture is to construct a novel Lyapunov-Krasovskii functional
according to the situation of the distributed time-varying
delays’ partition. In Corollary 11, we use Lemma 7, which
we have proved in Section 2, and we can get a new stability
criterion.

Notation. Throughout this paper, R𝑛 and R𝑛×𝑚 denote,
respectively, the 𝑛-dimensional Euclidean space and the
set of all real matrices. The superscript 𝑇 denotes matrix
transposition and the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌), where
𝑋 and 𝑌 are symmetric matrices, which means that 𝑋 − 𝑌 is
positive semidefinite (resp., positive definite). In symmetric
block matrices, the symbol ∗ is used as an ellipsis for terms
induced by symmetry. | ⋅ | stands for the Euclidean vector
norm in R𝑛. Sym(𝑀) is defined as Sym(𝑀) = 𝑀 +𝑀

𝑇. 𝑍
≥0

denotes the set including zero and positive integers. E{𝑥} and
E{𝑥 | 𝑦} denote the expectation of 𝑥 and the expectation of 𝑥
conditional on 𝑦. (Ω,F,P) is a probability space, whereΩ is
the sample space,F is the 𝜎-algebra of subsets of the sample
space, andP is the probability measure onF.

2. Preliminaries

Consider the following discrete-time recurrent neural net-
work with time-varying delays described by

𝑥 (𝑘 + 1) = 𝐶𝑥 (𝑘) + 𝐴𝐹 (𝑥 (𝑘)) + 𝐵𝐺 (𝑥 (𝑘 − 𝜏 (𝑘)))

+ 𝐷

−1

∑

𝑖=−𝑑(𝑘)

𝐻(𝑥 (𝑘 + 𝑖)) + 𝛿 (𝑘, 𝑥 (𝑘)) 𝜔 (𝑘) + 𝐽,

(1)

where 𝑥(𝑘) = [𝑥
1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑛
(𝑘)]
𝑇 is the neural state

vector at time 𝑘;𝐶 = diag[𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
]with |𝑐

𝑖
| < 1 is the state

feedback coefficient matrix; the 𝑛 × 𝑛 matrices 𝐴 = [𝑎
𝑖𝑗
]
𝑛×𝑛

,
𝐵 = [𝑏

𝑖𝑗
]
𝑛×𝑛

and 𝐷 = [𝑑
𝑖𝑗
]
𝑛×𝑛

are the connection weight
matrix, the discretely delayed connection weight matrix and
distributively delayed connectionweightmatrix, respectively;
𝐽 = [𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
]
𝑇 is the exogenous input; 𝐹(𝑥(𝑘)), 𝐺(𝑥(𝑘)),

and 𝐻(𝑥(𝑘)) are the neuron activation functions, which
satisfy 𝐹(𝑥(𝑘)) = [𝑓

1
(𝑥
1
(𝑘)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑘))]
𝑇, 𝐺(𝑥(𝑘)) =

[𝑔
1
(𝑥
1
(𝑘)), 𝑔

2
(𝑥
2
(𝑘)), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑘))]
𝑇, and𝐻(𝑥(𝑘)) = [ℎ

1
(𝑥
1

(𝑘)), ℎ
2
(𝑥
2
(𝑘)), . . . , ℎ

𝑛
(𝑥
𝑛
(𝑘))]
𝑇; and 𝜏(𝑘), 𝑑(𝑘) respectively,

denote the discrete and distributed time-varying delays. 𝜔(𝑘)
is a scalar Wiener process on a probability space (Ω,F,P)

with E{𝜔(𝑘)} = 0, E{𝜔2(𝑘)} = 1, and E{𝜔(𝑖)𝜔(𝑗)} = 0

(𝑖 ̸= 𝑗).

Assumption 1. For any 𝑥, 𝑦 ∈ 𝑅, (𝑥 ̸= 𝑦), 𝑖 ∈ {1, 2, . . . , 𝑛}, the
activation functions satisfy

𝑓
−

𝑖
≤

𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑦)

𝑥 − 𝑦

≤ 𝑓
+

𝑖
; 𝑔

−

𝑖
≤

𝑔
𝑖
(𝑥) − 𝑔

𝑖
(𝑦)

𝑥 − 𝑦

≤ 𝑔
+

𝑖
;

ℎ
−

𝑖
≤

ℎ
𝑖
(𝑥) − ℎ

𝑖
(𝑦)

𝑥 − 𝑦

≤ ℎ
+

𝑖
,

(2)

where 𝑓−
𝑖
, 𝑓
+

𝑖
, 𝑔
−

𝑖
, 𝑔
+

𝑖
; ℎ
−

𝑖
, and ℎ+

𝑖
are constants.

Remark 2. The condition on the activation function in
Assumption 1 was originally employed in [27] and has been
subsequently used in recent papers with the problem of
stability of neural networks; see [5, 6, 11, 28, 29], for example.

Assumption 3. The noise intensity function vector 𝛿(⋅, ⋅) :

Z
≥0
×R𝑛 → R𝑛 satisfies the Lipschitz condition; that is, there

exists a constant 𝜉 such that for any 𝑘 ∈ Z
≥0

the following
inequality:

𝛿(𝑘, 𝑥 (𝑘))
𝑇

𝛿 (𝑘, 𝑥 (𝑘)) ≤ 𝜉𝑥
𝑇

(𝑘) 𝑥 (𝑘) . (3)

Assumption 4. The time-varying delays 𝜏(𝑘) and 𝑑(𝑘) are
bounded, 0 < 𝜏

𝑚
≤ 𝜏(𝑘) ≤ 𝜏

𝑀
, 0 < 𝑑

𝑚
≤ 𝑑(𝑘) ≤ 𝑑

𝑀
, and

its probability distribution can be observed. Assume that 𝜏(𝑘)
takes values in [𝜏

0
, 𝜏
1
]⋃ ⋅ ⋅ ⋅ ⋃ (𝜏

𝑛
1
−1
, 𝜏
𝑛
1

] and Prob{𝜏(𝑘) ∈

[𝜏
𝑖−1
, 𝜏
𝑖
)} = 𝜌

𝑖
= 1 − 𝜌

𝑖
, where 0 ≤ 𝜌

𝑖
≤ 1, ∑

𝑖
𝜌
𝑖
= 1,

and 𝜏
0

= 𝜏
𝑚
, 𝜏
𝑛
1

= 𝜏
𝑀
. Similarly, 𝑑(𝑘) takes values in

[𝑑
0
, 𝑑
1
]⋃ ⋅ ⋅ ⋅ ⋃ (𝑑

𝑛
2
−1
, 𝑑
𝑛
2

], and Prob{𝑑(𝑘) ∈ [𝑑
𝑖−1
, 𝑑
𝑖
)} =

𝜉
𝑖
= 1−

̃
𝜉
𝑖
, where 0 ≤ 𝜉

𝑖
≤ 1,∑

𝑖
𝜉
𝑖
= 1, and 𝑑

0
= 𝑑
𝑚
, 𝑑
𝑛
1

= 𝑑
𝑀
.

Remark 5. It is noted that the introduction of binary stochas-
tic variable was first introduced in [6].

To describe the probability distribution of time-varying
delays, we define the following sets A

𝑖
= (𝜏
𝑖−1
, 𝜏
𝑖
], 𝑖 =

1, 2, . . . , 𝑛
1
, and B

𝑖
= (𝑑
𝑖−1
, 𝑑
𝑖
], 𝑖 = 1, 2, . . . , 𝑛

2
. Define

mapping functions

𝜏
𝑖
(𝑘) = {

𝜏 (𝑘) , 𝜏 (𝑘) ∈ A
𝑖
,

𝜏
𝑖−1
, else,

𝑑
𝑖
(𝑘) = {

𝑑 (𝑘) , 𝑑 (𝑘) ∈ B
𝑖
,

𝑑
𝑖−1
, else,

𝜌
𝑖
(𝑘) = {

1, 𝜏 (𝑘) ∈ A
𝑖
,

0, else,
𝜉
𝑖
(𝑘) = {

1, 𝑑 (𝑘) ∈ B
𝑖
,

0, else.
(4)

Remark 6. Consider Prob{𝜌
𝑖
(𝑘) = 1} = E{𝜌

𝑖
(𝑘)} = 𝜌

𝑖
,

Prob{𝜌
𝑖
(𝑘) = 0} = 𝜌

𝑖
,

E {𝜌
𝑖
(𝑘) ∗ 𝜌

𝑗
(𝑘)} = {

𝜌
𝑖
, 𝑖 = 𝑗,

0, else,

E {(𝜌
𝑖
(𝑘) − 𝜌

𝑖
) (𝜌
𝑗
(𝑘) − 𝜌

𝑗
)} = {

𝜌
𝑖
𝜌
𝑖
, 𝑖 = 𝑗,

−𝜌
𝑖
𝜌
𝑗
, else.

(5)
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Similarly, Prob{𝜉
𝑖
(𝑘) = 1} = E{𝜉

𝑖
(𝑘)} = 𝜉

𝑖
, Prob{𝜉

𝑖
(𝑘) =

0} =
̃
𝜉
𝑖
,

E {𝜉
𝑖
(𝑘) ∗ 𝜉

𝑗
(𝑘)} = {

𝜉
𝑖
, 𝑖 = 𝑗,

0, else,

E {(𝜉
𝑖
(𝑘) − 𝜉

𝑖
) (𝜉
𝑗
(𝑘) − 𝜉

𝑗
)} = {

𝜉
𝑖

̃
𝜉
𝑖
, 𝑖 = 𝑗,

−𝜉
𝑖
𝜉
𝑗
, else.

(6)

Proof. When 𝑖 ̸= 𝑗, 𝜏(𝑘) ∈ [𝜏
𝑖−1
, 𝜏
𝑖
) and as Prob{𝜏(𝑘) ∈

[𝜏
𝑖−1
, 𝜏
𝑖
)} = 𝜌

𝑖
= 1−𝜌

𝑖
, we can easily deduce 𝜌

𝑖
(𝑘) = 1, 𝜌

𝑗
(𝑘) =

0, so

E {𝜌
𝑖
(𝑘) ∗ 𝜌

𝑗
(𝑘)} = {

𝜌
𝑖
, 𝑖 = 𝑗,

0, else,

E {(𝜌
𝑖
(𝑘) − 𝜌

𝑖
) (𝜌
𝑗
(𝑘) − 𝜌

𝑗
)}

= E {𝜌
𝑖
(𝑘) 𝜌
𝑗
(𝑘) − 𝜌

𝑖
𝜌
𝑗
(𝑘) − 𝜌

𝑖
(𝑘) 𝜌
𝑗
+ 𝜌
𝑖
𝜌
𝑗
}

= 0 − 𝜌
𝑖
𝜌
𝑗
− 𝜌
𝑖
𝜌
𝑗
+ 𝜌
𝑖
𝜌
𝑗
= −𝜌
𝑖
𝜌
𝑗
.

(7)

Similarly, the result about 𝜉
𝑖
(𝑘) can be deduced. The proof is

complete.

The system (1) can be rewritten as

𝑥 (𝑘 + 1) = 𝐶𝑥 (𝑘) + 𝐴𝐹 (𝑥 (𝑘)) +

𝑛
1

∑

𝑖=1

𝜌
𝑖
(𝑘) 𝐵𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘)))

+

𝑛
2

∑

𝑖=1

𝜉
𝑖
(𝑘)𝐷

−1

∑

𝑗=−𝑑
𝑖(𝑘)

𝐻(𝑥 (𝑘 + 𝑗))

+ 𝛿 (𝑘, 𝑥 (𝑘)) 𝜔 (𝑘) + 𝐽.

(8)

Asmentioned before, it is very difficult or even impossible
to acquire the complete information of the neuron states in
relatively large-scale neural networks. The main purpose of
this study is to develop a novel approach to estimating the
neuron states via the network outputs. As mentioned above,
the objective of this study is to present an efficient algorithm
to estimate the neuron states via available network outputs. It
is assumed that themeasured network outputs are of the form

𝑦 (𝑘) = 𝐸𝑥 (𝑘) + 𝑂 (𝑘, 𝑥 (𝑘)) , (9)

where 𝑦(𝑡) ∈ 𝑅
𝑚 is the measured output, 𝐸 is known

constant matrix with appropriate dimensions, and 𝑂 : Z
≥0
×

R𝑛 → R𝑚 is a nonlinear disturbance on the network outputs
satisfying

󵄨
󵄨
󵄨
󵄨
𝑂 (𝑘, 𝑥) − 𝑂 (𝑘, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝐿 (𝑥 − 𝑦)

󵄨
󵄨
󵄨
󵄨
, ∀𝑘 ∈ Z

≥0
, 𝑥, 𝑦 ∈ R

𝑛

.

(10)

As a matter of fact, the activation functions 𝐹(⋅)

are known. In order to fully utilize the information of

the activation function, the state estimator for the neural
network is constructed as

𝑥 (𝑘 + 1) = 𝐶𝑥 (𝑘) + 𝐴𝐹 (𝑥 (𝑘)) +

𝑛
1

∑

𝑖=1

𝜌
𝑖
𝐵𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘)))

+

𝑛
2

∑

𝑖=1

𝜉
𝑖
𝐷

𝑘−1

∑

𝑗=𝑘−𝑑
𝑖(𝑘)

𝐻(𝑥 (𝑗))

− 𝐾 [𝑦 (𝑘) − 𝐸𝑥 (𝑘) − 𝑂 (𝑘, 𝑥 (𝑘))] + 𝐽,

(11)

where 𝑥(𝑘 + 1) is the estimation of the neuron state and 𝐾 ∈

R𝑛×𝑚 is the estimator gain matrix to be determined. Define
the error signal 𝑒(𝑘 + 1) = 𝑥(𝑘 + 1) − 𝑥(𝑘 + 1); thus, we obtain
the error state system as follows:

𝑒 (𝑘 + 1)

= (𝐶 + 𝐾𝐸) 𝑒 (𝑘) + 𝐴 (𝐹 (𝑥 (𝑘)) − 𝐹 (𝑥 (𝑘)))

+

𝑛
1

∑

𝑖=1

𝜌
𝑖
𝐵 (𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘))) − 𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘))))

+

𝑛
2

∑

𝑖=1

−1

∑

𝑗=−𝑑
𝑖(𝑘)

𝜉
𝑖
𝐷[𝐻 (𝑥 (𝑘 + 𝑗)) − 𝐻 (𝑥 (𝑘 + 𝑗))]

+

𝑛
1

∑

𝑖=1

(𝜌
𝑖
(𝑘) − 𝜌

𝑖
) 𝐵𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘)))

+

𝑛
2

∑

𝑖=1

−1

∑

𝑗=−𝑑
𝑖(𝑘)

(𝜉
𝑖
(𝑘) − 𝜉

𝑖
)𝐷𝐻 (𝑥 (𝑘 + 𝑗))

+ 𝐾 [𝑂 (𝑘, 𝑥 (𝑘)) − 𝑂 (𝑘, 𝑥 (𝑘))] + 𝛿 (𝑘, 𝑥 (𝑘)) 𝜔 (𝑘) .

(12)

Denote 𝑓(𝑘) = 𝐹(𝑥(𝑘)) − 𝐹(𝑥(𝑘)), 𝑔(𝑘 − 𝜏
𝑖
(𝑘)) = 𝐺(𝑥(𝑘 −

𝜏
𝑖
(𝑘))) − 𝐺(𝑥(𝑘 − 𝜏

𝑖
(𝑘))), ℎ(𝑘 + 𝑖) = 𝐻(𝑥(𝑘 + 𝑖)) − 𝐻(𝑥(𝑘 +

𝑖), 𝑜(𝑘) = 𝑂(𝑘, 𝑥(𝑘)) − 𝑂(𝑘, 𝑥(𝑘)), then (12) can be rewritten
as

𝑒 (𝑘 + 1)

= (𝐶 + 𝐾𝐸) 𝑒 (𝑘) + 𝐴𝑓 (𝑘) +

𝑛
1

∑

𝑖=1

𝜌
𝑖
𝐵𝑔 (𝑘 − 𝜏

𝑖
(𝑘))

+

𝑛
2

∑

𝑖=1

−1

∑

𝑗=−𝑑
𝑖(𝑘)

𝜉
𝑖
𝐷ℎ (𝑘 + 𝑖) + 𝐾𝑜 (𝑘) + 𝛿 (𝑘, 𝑥 (𝑘)) 𝜔 (𝑘)

+

𝑛
2

∑

𝑖=1

−1

∑

𝑗=−𝑑
𝑖(𝑘)

(𝜉
𝑖
(𝑘) − 𝜉

𝑖
)𝐷𝐻 (𝑥 (𝑘 + 𝑗))

+

𝑛
1

∑

𝑖=1

(𝜌
𝑖
(𝑘) − 𝜌

𝑖
) 𝐵𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘))) .

(13)
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The initial condition associated with the error system (13)
is given as

𝑒 (𝑘) = 𝜙 (𝑘) , 𝑘 = −𝜍
𝑀
, −𝜍
𝑀
+ 1, . . . , 0, (14)

where 𝜍
𝑀
= max{𝜏

𝑀
, 𝑑
𝑀
} and ‖𝜙‖ = sup

−𝜍
𝑀
≤𝑘≤0

|𝜙|
2

< ∞.
By defining 𝑒(𝑘) = [𝑥

𝑇

(𝑘), 𝑒
𝑇

(𝑘)]
𝑇 and combing (8) and

(13) with 𝐽 = 0, we can obtain the following system:

𝑒 (𝑘 + 1) = 𝐶𝑒 (𝑘) + 𝐴
̂
𝑓 (𝑘) + 𝜌 (𝑘) 𝐵𝐺 (𝑘)

+ 𝜌
1
𝐵𝑔 (𝑘) +

̂
𝜉 (𝑘)𝐷𝐻̂ (𝑘) +

̂
𝜉
1
𝐷
̂
ℎ (𝑘)

+ 𝐾̂𝑜 (𝑘) + 𝐼𝛿 (𝑘, 𝑥 (𝑘)) 𝜔 (𝑘) ,

(15)

where

𝜌 (𝑘) = [

𝜌
1
(𝑘) 𝐼 𝜌

2
(𝑘) 𝐼 ⋅ ⋅ ⋅ 𝜌

𝑛
1
(𝑘) 𝐼

𝜌
1
(𝑘) 𝐼 − 𝜌

1
𝐼 𝜌
2
(𝑘) 𝐼 − 𝜌

2
𝐼 ⋅ ⋅ ⋅ 𝜌

𝑛
1
(𝑘) 𝐼 − 𝜌

𝑛
1

𝐼
] ,

𝜌
1
= [

0 0 ⋅ ⋅ ⋅ 0

𝜌
1
𝐼 𝜌
2
𝐼 ⋅ ⋅ ⋅ 𝜌

𝑛
1

𝐼
] ,

̂
𝜉 (𝑘) = [

𝜉
1
(𝑘) 𝐼 𝜉

2
(𝑘) 𝐼 ⋅ ⋅ ⋅ 𝜉

𝑛
2
(𝑘) 𝐼

𝜉
1
(𝑘) 𝐼 − 𝜉

1
𝐼 𝜉
2
(𝑘) 𝐼 − 𝜉

2
𝐼 ⋅ ⋅ ⋅ 𝜉

𝑛
2
(𝑘) 𝐼 − 𝜉

𝑛
2

𝐼
] ,

̂
𝜉
1
= [

0 0 ⋅ ⋅ ⋅ 0

𝜉
1
𝐼 𝜉
2
𝐼 ⋅ ⋅ ⋅ 𝜉

𝑛
2

𝐼
] ,

̂
𝑓 (𝑘) = (𝐹

𝑇

(𝑥 (𝑘)) , 𝑓
𝑇

(𝑘))

𝑇

,

𝐺 (𝑘) = (𝐺
𝑇

(𝑥 (𝑘 − 𝜏
1
(𝑘))) ,

𝐺
𝑇

(𝑥 (𝑘 − 𝜏
2
(𝑘))) , . . . , 𝐺

𝑇

(𝑘 − 𝜏
𝑛
1
(𝑘)))

𝑇

,

𝑔 (𝑘) = (𝑔
𝑇

(𝑘 − 𝜏
1
(𝑘)) ,

𝑔
𝑇

(𝑘 − 𝜏
2
(𝑘)) , . . . , 𝑔

𝑇

(𝑘 − 𝜏
𝑛
1
(𝑘)))

𝑇

,

𝐻̂ (𝑘) = (

−1

∑

𝑖=−𝑑
1(𝑘)

𝐻
𝑇

(𝑘 + 𝑖) ,

−1

∑

𝑖=−𝑑
2(𝑘)

𝐻
𝑇

(𝑘 + 𝑖) , . . . ,

−1

∑

𝑖=−𝑑
𝑛2
(𝑘)

𝐻
𝑇

(𝑘 + 𝑖))

𝑇

,

̂
ℎ (𝑘) = (

−1

∑

𝑖=−𝑑
1(𝑘)

ℎ
𝑇

(𝑘 + 𝑖)
𝑇

,

−1

∑

𝑖=−𝑑
2(𝑘)

ℎ
𝑇

(𝑘 + 𝑖)
𝑇

, . . . ,

−1

∑

𝑖=−𝑑
𝑛2
(𝑘)

ℎ
𝑇

(𝑘 + 𝑖))

𝑇

,

𝐶 = [

𝐶 0

0 𝐶 + 𝐾𝐸
]

𝑇

, 𝐴 = [

𝐴 0

0 𝐴
] ,

𝐵 =
[

[

𝐵

d
𝐵

]

]𝑛
1
×𝑛
1

, 𝐷 =
[

[

𝐷

d
𝐷

]

]𝑛
2
×𝑛
2

,

𝐾̂ = [

0

𝐾
] , 𝐼 = [

𝐼

𝐼
] .

(16)

Then, it is easy to show the following equations:

𝐸 {𝜌 (𝑘)} = 𝜌
2
= [

𝜌
1
𝐼 𝜌
2
𝐼 ⋅ ⋅ ⋅ 𝜌

𝑛
1

𝐼

0 0 ⋅ ⋅ ⋅ 0
] ,

𝐸 {
̂
𝜉 (𝑘)} =

̂
𝜉
2
= [

𝜉
1
𝐼 𝜉
2
𝐼 ⋅ ⋅ ⋅ 𝜉

𝑛
2

𝐼

0 0 ⋅ ⋅ ⋅ 0
] .

(17)

Lemma 7. For any constant matrix 𝑀 ∈ 𝑅
𝑛×𝑛, any integers

𝛾
2
≥ 𝛾
1
, and any vector function 𝜔 : [𝛾

1
, 𝛾
1
+ 1, . . . , 𝛾

2
] → 𝑅

𝑛

where 𝑀 staisfies 𝑀 = 𝑀
𝑇

> 0 such that the sums in the
following are well defined, then

−

𝛾
2

∑

𝑖=𝛾
1

𝜔
𝑇

(𝑖)𝑀𝜔 (𝑖) ≤ (𝛾
2
− 𝛾
1
+ 1) 𝜁

𝑇

(𝑘) 𝐹
𝑇

𝑀
−1

𝐹𝜁 (𝑘)

+ 2𝜁
𝑇

(𝑘) 𝐹
𝑇

𝛾
2

∑

𝑖=𝛾
1

𝜔 (𝑖) ,

(18)

where, matrix 𝐹 and vector 𝜁(𝑘) independent of 𝛾
1
and 𝛾
2
are

appropriate dimensional arbitrary ones.

Proof. It’s well known that

−2𝑎
𝑇

𝑏 ≤ 𝑎
𝑇

𝑊
−1

𝑎 + 𝑏
𝑇

𝑊𝑏, (19)

where where the vector 𝑎, 𝑏,𝑊with appropriate dimensional
and𝑊 > 0. From this, we can get

− 2𝜁
𝑇

(𝑘) 𝐹
𝑇

𝛾
2

∑

𝑖=𝛾
1

𝜔 (𝑖)

=

𝛾
2

∑

𝑖=𝛾
1

− 2𝜁
𝑇

(𝑘) 𝐹
𝑇

𝜔 (𝑖)

≤

𝛾
2

∑

𝑖=𝛾
1

𝜔
𝑇

(𝑖)𝑀𝜔 (𝑖) +

𝛾
2

∑

𝑖=𝛾
1

𝜁
𝑇

(𝑘) 𝐹
𝑇

𝑀
−1

𝐹𝜁 (𝑘)

≤

𝛾
2

∑

𝑖=𝛾
1

𝜔
𝑇

(𝑖)𝑀𝜔 (𝑖) + (𝛾
2
− 𝛾
1
+ 1) 𝜁

𝑇

(𝑘) 𝐹
𝑇

𝑀
−1

𝐹𝜁 (𝑘) ,

(20)

which is equivalent to (18).
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Lemma 8 (Zhu and Yang [28]). For any constant matrix𝑀 ∈

𝑅
𝑛×𝑛, any integers 𝛾

2
≥ 𝛾
1
, and any vector function 𝜔 : [𝛾

1
, 𝛾
1
+

1, . . . , 𝛾
2
] → 𝑅

𝑛 where 𝑀 satisfies 𝑀 = 𝑀
𝑇

> 0, such that
the sums in the following are well defined; then

− (𝛾
2
− 𝛾
1
+ 1)

𝛾
2

∑

𝑖=𝛾
1

𝜔
𝑇

(𝑖)𝑀𝜔 (𝑖)

≤ −(

𝛾
2

∑

𝑖=𝛾
1

𝜔 (𝑖))

𝑇

𝑀(

𝛾
2

∑

𝑖=𝛾
1

𝜔 (𝑖)) .

(21)

3. New Stability Criteria

In this section, we will establish new stability criteria for
system (1). Since the system in (8) involves a stochastic

parameter, to investigate its stability, we need the following
definition.

Definition 9. The system (11) is said to be globally asymptoti-
cally state estimator of the system (8), if the estimation error
system (13) satisfies is globally asymptotical stable in mean
square; that is,

lim
𝑘→+∞

E {|𝑒 (𝑘)|
2

} = 0. (22)

Theorem 10. Under Assumptions 1, 3, and 4, the system (15)
is globally asymptotically stable in mean square, if there exist
matrices 𝑃 = 𝑃

𝑇

= diag{𝑃
1
, 𝑃
2
} > 0, 𝑅

𝑖
= diag{𝑅

𝑖1
, 𝑅
𝑖2
} ≥

0 (𝑖 = 1, . . . , 𝑛
2
− 1), 𝑆

𝑖
≥ 0 (𝑖 = 1, . . . , 𝑛

1
), 𝑋 > 0,

and 𝑇
𝑖
≥ 0 (𝑖 = 1, . . . , 𝑛

2
), and positive diagonal matrices

𝑈 = diag(𝑢
1
, . . . , 𝑢

𝑛
), 𝑉 = diag(V

1
, . . . , V

𝑛
), and 𝑊 =

diag(𝑤
1
, . . . , 𝑤

𝑛
), and scalars 𝜖 > 0 and 𝜗 > 0 such that the

following LMI holds:

Γ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
1
Γ
1,2

0 Γ
1,4

0 0 Γ
1,7

Γ
1,8

0 Γ
1,10

Γ
1,11

Γ
1,12

0 𝑋 − 𝐼 𝑋

∗ Γ
2

0 0 0 0 Γ
2,7

0 0 0 0 0 0 0 0

∗ ∗ Γ
3

0 0 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ Γ
4

0 0 Γ
4,7

Γ
4,8

0 0 0 0 0 𝐴
𝑇

𝑃 𝐴
𝑇

𝑃

∗ ∗ ∗ ∗ Γ
5

0 0 0 0 0 0 0 0 𝐵
𝑇

𝜌
𝑇

1
𝑃 𝐵
𝑇

𝜌
𝑇

1
𝑃

∗ ∗ ∗ ∗ ∗ Γ
6

0 0 0 0 0 0 0 𝐷
𝑇̂
𝜉
𝑇

1
𝑃 𝐷
𝑇̂
𝜉
𝑇

1
𝑃

∗ ∗ ∗ ∗ ∗ ∗ Γ
7

Γ
7,8

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
8

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
9

0 0 0 0 𝑋
𝑇

𝑋
𝑇

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
10

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
11

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
12

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
13

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −

𝑃

ℎ ⋅ 𝜏
𝑀

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0,

(23)

Γ
1
= −2𝑃 +

𝑛
2
−1

∑

𝑖=1

(𝑑
𝑖+1

− 𝑑
𝑖−1
) 𝑅
𝑖
+ [

𝜎𝜉𝐼 0

0 𝜗𝐿
𝑇

𝐿

] + [

−𝑈𝐹
1
− 𝑉𝐻
1

0

0 −𝑈𝐹
1
− 𝑉𝐻
1
−𝑊𝐺

1

] ,

Γ
1,2

= (𝑃, . . . , 0) , Γ
1,4

= [

𝑈𝐹
2

0

0 𝑈𝐹
2

] , Γ
1,7

= 𝑋𝜌
2
𝐵, Γ

1,8
= 𝑋

̂
𝜉
2
𝐷,

Γ
1,10

= [

0

𝑊𝐺
2

] , Γ
1,11

= [

0

𝑉𝐻
2

] , Γ
1,12

= [

𝑉𝐻
2

0
] ,

Γ
2
=

[

[

[

[

−2𝑃 𝑃

d d
−2𝑃 𝑃

−𝑃

]

]

]

](𝑛
1
+1)×(𝑛

1
+1)

+

[

[

[

[

−𝑊𝐺
1

d
−𝑊𝐺
1

0

]

]

]

]

,

Γ
2,7

=

[

[

[

[

𝑊𝐺
2

d
𝑊𝐺
2

0

]

]

]

]

,
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Γ
3
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−

1

𝑑
2
− 𝑑
𝑚

𝑅
1

1

𝑑
2
− 𝑑
𝑚

𝑅
1

−

1

𝑑
2
− 𝑑
𝑚

𝑅
1
−

1

𝑑
3
− 𝑑
1

𝑅
2

1

𝑑
3
− 𝑑
1

𝑅
2

d d

d
1

𝑑
𝑛
2

− 𝑑
𝑛
2
−2

𝑅
𝑛
2
−1

−

1

𝑑
𝑛
2

− 𝑑
𝑛
2
−2

𝑅
𝑛
2
−1

]

]

]

]

]

]

]

]

]

]

]

]

]

](𝑛
2
×𝑛
2
)

,

Γ
4
= −𝑈̂, Γ

4,7
= 𝐴
𝑇

𝑃𝜌
2
𝐵, Γ

4,8
= 𝐴
𝑇

𝑃
̂
𝜉
2
𝐷, Γ

5
= −𝑆, Γ

6
= −

̂
𝑇
2
,

Γ
7
= 2𝐵
𝑇

𝑃̂𝐵 − 𝑊̂, Γ
7,8

= 𝐵
𝑇

𝜌
𝑇

2
𝑃
̂
𝜉
2
𝐷, Γ

8
= 2𝐷
𝑇

𝑃𝐷 −
̂
𝑇
1
,

Γ
8,9

= 𝐷
𝑇̂
𝜉
𝑇

2
[

0

𝑋
] , Γ

9
= −𝜗𝐼, Γ

10
=

𝑛
1

∑

𝑖=1

(𝜏
𝑖
− 𝜏
𝑖−1

+ 1) 𝑆
𝑖
−𝑊,

Γ
11
=

𝑛
2

∑

𝑖=1

(𝑑
𝑖
− 𝑑
𝑖−1

+ 1) (𝑑
𝑖
+ 𝑑
𝑖−1
)

2

𝑇
𝑖2
− 𝑉, Γ

12
=

𝑛
2

∑

𝑖=1

(𝑑
𝑖
− 𝑑
𝑖−1
) (𝑑
𝑖
+ 𝑑
𝑖−1

+ 1)

2

𝑇
𝑖1
− 𝑉,

Γ
13
= 2 (𝑃

1
+ 𝑃
2
) − 𝜎𝐼, 𝑋 = [

𝐶
𝑇

𝑃
1

0

0 𝐶
𝑇

𝑃
2
+ 𝐸
𝑇

𝑋

] ,

ℎ = max
𝑖=2,...,𝑛

1

{𝜏
𝑚
− 𝜏
1
(𝑘) , 𝜏
𝑀
− 𝜏
𝑛
1
(𝑘) , 𝜏
𝑖
− 𝜏
𝑖−1

(𝑘)} , 𝐹
1
= diag (𝑓−

1
𝑓
+

1
, 𝑓
−

2
𝑓
+

2
, . . . , 𝑓

−

𝑛
𝑓
+

𝑛
) ,

𝐹
2
= diag(

𝑓
−

1
+ 𝑓
+

1

2

, . . . ,

𝑓
−

𝑛
+ 𝑓
+

𝑛

2

) , 𝐺
1
= diag (𝑔−

1
𝑔
+

1
, 𝑔
−

2
𝑔
+

2
, . . . , 𝑔

−

𝑛
𝑔
+

𝑛
) ,

𝐺
2
= diag(

𝑔
−

1
+ 𝑔
+

1

2

, . . . ,

𝑔
−

𝑛
+ 𝑔
+

𝑛

2

) , 𝐻
1
= diag (ℎ−

1
ℎ
+

1
, . . . , ℎ

−

𝑛
ℎ
+

𝑛
) ,

𝐻
2
= diag(

ℎ
−

1
+ ℎ
+

1

2

, . . . ,

ℎ
−

𝑛
+ ℎ
+

𝑛

2

) , 𝑆 = diag {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
1

} , 𝑉̂ = diag {𝑉, 𝑉, . . . , 𝑉} ,

𝑊𝐺
1
= diag {𝑊𝐺

1
, 0} , 𝑊̂ = diag {𝑊,𝑊, . . . ,𝑊} , 𝑈̂ = diag {𝑈, 𝑈} ,

̂
𝑇
2
= diag{𝑇12

𝑑
1

,

𝑇
22

𝑑
2

, . . . ,

𝑇
𝑛
2
2

𝑑
𝑛
2

} ,
̂
𝑇
1
= diag{𝑇11

𝑑
1

,

𝑇
21

𝑑
2

, . . . ,

𝑇
𝑛
2
1

𝑑
𝑛
2

} , 𝑊𝐺
2
= diag {𝑊𝐺

2
, 0} ,

𝑃̂ =

[

[

[

[

[

[

[

𝜌
1
𝑃
1
+ 𝜌
1
𝜌
1
𝑃
2

−𝜌
1
𝜌
2
𝑃
2

−𝜌
1
𝜌
3
𝑃
2

⋅ ⋅ ⋅ −𝜌
1
𝜌
𝑛
1

𝑃
2

∗ 𝜌
2
𝑃
1
+ 𝜌
2
𝜌
2
𝑃
2

−𝜌
2
𝜌
3
𝑃
2

⋅ ⋅ ⋅ −𝜌
2
𝜌
𝑛
1

𝑃
2

∗ ∗ 𝜌
3
𝑃
1
+ 𝜌
3
𝜌
3
𝑃
2
⋅ ⋅ ⋅ −𝜌

3
𝜌
𝑛
1

𝑃
2

...
...

... d
...

∗ ∗ ∗ ⋅ ⋅ ⋅ 𝜌
𝑛
1

𝑃
1
+ 𝜌
𝑛
1

𝜌
𝑛
1

𝑃
2

]

]

]

]

]

]

]

;

𝑃 =

[

[

[

[

[

[

[

[

[

𝜉
1
𝑃
1
+ 𝜉
1

̃
𝜉
1
𝑃
2

−𝜉
1
𝜉
2
𝑃
2

−𝜉
1
𝜉
3
𝑃
2

⋅ ⋅ ⋅ −𝜉
1
𝜉
𝑛
2

𝑃
2

∗ 𝜉
2
𝑃
1
+ 𝜉
2

̃
𝜉
2
𝑃
2

−𝜉
2
𝜉
3
𝑃
2

⋅ ⋅ ⋅ −𝜉
2
𝜉
𝑛
2

𝑃
2

∗ ∗ 𝜉
3
𝑃
1
+ 𝜉
3

̃
𝜉
3
𝑃
2
⋅ ⋅ ⋅ −𝜉

3
𝜉
𝑛
2

𝑃
2

...
...

... d
...

∗ ∗ ∗ ⋅ ⋅ ⋅ 𝜉
𝑛
2

𝑃
1
+ 𝜉
𝑛
2

̃
𝜉
𝑛
2

𝑃
2

]

]

]

]

]

]

]

]

]

.

(24)

And the estimator gain can be designed as 𝐾 = 𝑃
−1

2

𝑋.
Proof. We construct a new Lyapunov-Krasovskii functional
as
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𝑉 (𝑒
𝑘
, 𝑘) =

5

∑

𝑖=1

𝑉
𝑖
(𝑒
𝑘
, 𝑘) , (25)

where

𝑉
1
(𝑒
𝑘
, 𝑘) = 𝑒

𝑇

(𝑘) 𝑃𝑒 (𝑘) ,

𝑉
2
(𝑒
𝑘
, 𝑘) = ℎ

−1

∑

𝑖=−𝜏
𝑀

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇

(𝑗) 𝑃𝜂 (𝑗) ,

𝑉
3
(𝑒
𝑘
, 𝑘) =

𝑛
2
−1

∑

𝑖=1

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖+1

𝑘−1

∑

𝑙=𝑘+𝑗

𝑒
𝑇

(𝑙) 𝑅
𝑖
𝑒 (𝑙) ,

𝑉
4
(𝑒
𝑘
, 𝑘) =

𝑛
1

∑

𝑖=1

𝑘−1

∑

𝑗=𝑘−𝜏
𝑖(𝑘)

𝑔
𝑇

(𝑗) 𝑆
𝑖
𝑔 (𝑗)

+

𝑛
1

∑

𝑖=1

𝜏
𝑖
−1

∑

𝑗=𝜏
𝑖−1

𝑘−1

∑

𝑖=𝑘−𝑗

𝑔
𝑇

(𝑖) 𝑆
𝑖
𝑔 (𝑖) ,

𝑉
5
(𝑒
𝑘
, 𝑘)

=

𝑛
2

∑

𝑖=1

{

{

{

−1

∑

𝑗=−𝑑
𝑖(𝑘)

𝑘−1

∑

𝑙=𝑘+𝑗

ℎ

𝑇

(𝑙) 𝑇
𝑖
ℎ (𝑙)

+

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖

−1

∑

𝑙=𝑗+1

𝑘−1

∑

𝑟=𝑘+𝑙

ℎ

𝑇

(𝑟) 𝑇
𝑖
ℎ (𝑟)

}

}

}

,

𝜂 (𝑘) = 𝑒 (𝑘 + 1) − 𝑒 (𝑘) ,

ℎ (𝑘) = (𝐻
𝑇

(𝑥 (𝑘)) , ℎ
𝑇

(𝑘))

𝑇

, 𝑇
𝑖

= diag {𝑇
𝑖1
, 𝑇
𝑖2
} .

(26)

Taking the difference of the functional along the solution
of the system, we obtain

E {Δ𝑉 (𝑒
𝑘
, 𝑘)} =

4

∑

𝑖=1

E {Δ𝑉
𝑖
(𝑒
𝑘
, 𝑘)} ,

E {Δ𝑉
1
(𝑒
𝑘
, 𝑘)}

= E {E {𝑉
1
(𝑒
𝑘+1

, 𝑘 + 1) | 𝑒
𝑘
} − 𝑉
1
(𝑒
𝑘
, 𝑘)}

= E {𝑒
𝑇

(𝑘 + 1) 𝑃𝑒 (𝑘 + 1) − 𝑒
𝑇

(𝑘) 𝑃𝑒 (𝑘)}

= 𝑒
𝑇

(𝑘) (𝐶
𝑇

𝑃𝐶 − 𝑃) 𝑒 (𝑘) + 2𝑒
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐴
̂
𝑓 (𝑘)

+ 2𝑒
𝑇

(𝑘) 𝐶
𝑇

𝑃𝐾̂𝑜 (𝑘) + 2𝑒
𝑇

(𝑘) 𝐶
𝑇

𝑃𝜌
1
𝐵𝑔 (𝑘)

+ 2𝑒
𝑇

(𝑘) 𝐶
𝑇

𝑃
̂
𝜉
1
𝐷
̂
ℎ (𝑘) + 2𝑒

𝑇

(𝑘) 𝐶
𝑇

𝑃𝜌
2
𝐵𝐺 (𝑘)

+ 2𝑒
𝑇

(𝑘) 𝐶
𝑇

𝑃
̂
𝜉
2
𝐷𝐻̂ (𝑘) +

̂
𝑓
𝑇

(𝑘) 𝐴
𝑇

𝑃𝐴
̂
𝑓 (𝑘)

+ 2
̂
𝑓
𝑇

(𝑘) 𝐴
𝑇

𝑃𝜌
1
𝐵𝑔 (𝑘) + 2

̂
𝑓
𝑇

(𝑘) 𝐴
𝑇

𝑃
̂
𝜉
1
𝐷
̂
ℎ (𝑘)

+ 2
̂
𝑓
𝑇

(𝑘) 𝐴
𝑇

𝑃𝜌
2
𝐵𝐺 (𝑘) + 2

̂
𝑓
𝑇

(𝑘) 𝐴
𝑇

𝑃
̂
𝜉
2
𝐷𝐻̂ (𝑘)

+ 2
̂
𝑓
𝑇

(𝑘) 𝐴
𝑇

𝑃𝐾̂𝑜 (𝑘) + 𝑜
𝑇

(𝑘) 𝐾̂
𝑇

𝑃𝐾̂𝑜 (𝑘)

+ 2𝑜
𝑇

(𝑘) 𝐾̂
𝑇

𝑃𝜌
1
𝐵𝑔 (𝑘) + 2𝑜

𝑇

(𝑘) 𝐾̂
𝑇

𝑃
̂
𝜉
1
𝐷
̂
ℎ (𝑘)

+ 2𝑜
𝑇

(𝑘) 𝐾̂
𝑇

𝑃𝜌
2
𝐵𝐺 (𝑘) + 2𝑜

𝑇

(𝑘) 𝐾̂
𝑇

𝑃
̂
𝜉
2
𝐷𝐻̂ (𝑘)

+ 𝑔
𝑇

(𝑘) 𝐵
𝑇

𝜌
𝑇

1
𝑃𝜌
1
𝐵𝑔 (𝑘) + 2𝑔

𝑇

(𝑘) 𝐵
𝑇

𝜌
𝑇

1
𝑃
̂
𝜉
1
𝐷
̂
ℎ (𝑘)

+2𝑔
𝑇

(𝑘) 𝐵
𝑇

𝜌
𝑇

1
𝑃𝜌
2
𝐵𝐺 (𝑘)+ 2𝑔

𝑇

(𝑘) 𝐵
𝑇

𝜌
𝑇

1
𝑃
̂
𝜉
2
𝐷𝐻̂ (𝑘)

+
̂
ℎ
𝑇

(𝑘)𝐷
𝑇̂
𝜉
𝑇

1
𝑃
̂
𝜉
1
𝐷
̂
ℎ (𝑘) + 2

̂
ℎ
𝑇

(𝑘)𝐷
𝑇̂
𝜉
𝑇

1
𝑃𝜌
2
𝐵𝐺 (𝑘)

+ 2
̂
ℎ
𝑇

(𝑘)𝐷
𝑇̂
𝜉
𝑇

1
𝑃
̂
𝜉
2
𝐷𝐻̂ (𝑘)

+ E {𝐺
𝑇

(𝑘) 𝐵
𝑇

𝜌
𝑇

(𝑘) 𝑃𝜌 (𝑘) 𝐵𝐺 (𝑘)

+ 𝐻̂
𝑇

(𝑘)𝐷
𝑇̂
𝜉
𝑇

(𝑘) 𝑃
̂
𝜉 (𝑘)𝐷𝐻̂ (𝑘)}

+ 2𝐺
𝑇

(𝑘) 𝐵
𝑇

𝜌
𝑇

2
𝑃
̂
𝜉
2
𝐷𝐻̂ (𝑘)

+ 𝛿
𝑇

(𝑘, 𝑥 (𝑘)) (𝑃
1
+ 𝑃
2
) 𝛿 (𝑘, 𝑥 (𝑘)) .

(27)

From Remark 6, we can get

E {𝐺
𝑇

(𝑘) 𝐵
𝑇

𝜌(𝑘)
𝑇

𝑃𝜌 (𝑘) 𝐵𝐺 (𝑘)}

= E
{

{

{

(

𝑛
1

∑

𝑖=1

𝜌
𝑖
(𝑘) 𝐵𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘))))

𝑇

× 𝑃
1
(

𝑛
1

∑

𝑖=1

𝜌
𝑖
(𝑘) 𝐵𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘))))

+ (

𝑛
1

∑

𝑖=1

(𝜌
𝑖
(𝑘) − 𝜌

𝑖
) 𝐵𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘))))

𝑇

×𝑃
2
(

𝑛
1

∑

𝑖=1

(𝜌
𝑖
(𝑘) − 𝜌

𝑖
) 𝐵𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘))))

}

}

}

=

𝑛
1

∑

𝑖=1

𝜌
𝑖
𝐺
𝑇

(𝑥 (𝑘 − 𝜏
𝑖
(𝑘))) 𝐵

𝑇

𝑃
1
𝐵𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘)))

+

𝑛
1

∑

𝑖=1

𝜌
𝑖
𝜌
𝑖
𝐺
𝑇

(𝑥 (𝑘 − 𝜏
𝑖
(𝑘))) 𝐵

𝑇

𝑃
2
𝐵𝐺 (𝑥 (𝑘 − 𝜏

𝑖
(𝑘)))

−

𝑛
1

∑

𝑖=1

𝑛
1

∑

𝑗=1,𝑖 ̸= 𝑗

𝜌
𝑖
𝜌
𝑗
𝐺
𝑇

(𝑥 (𝑘 − 𝜏
𝑖
(𝑘)))

× 𝐵
𝑇

𝑃
2
𝐵𝐺 (𝑥 (𝑘 − 𝜏

𝑗
(𝑘)))

= 𝐺
𝑇

(𝑘) 𝐵
𝑇

𝑃̂𝐵𝐺 (𝑘) .

(28)
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Similarly, the following equation can be deduced:

E {𝐻̂
𝑇

(𝑘)𝐷
𝑇̂
𝜉
𝑇

(𝑘) 𝑃
̂
𝜉 (𝑘)𝐷𝐻̂ (𝑘)} = 𝐻̂

𝑇

(𝑘)𝐷
𝑇

𝑃𝐷𝐻̂ (𝑘) .

(29)

And it is easy to deduce that 𝐵𝑇𝜌𝑇
1
𝑃𝜌
2
𝐵 = 0, 𝐵𝑇𝜌𝑇

1
𝑃
̂
𝜉
2
𝐷 = 0,

and𝐷𝑇̂𝜉𝑇
1
𝑃𝜌
2
𝐵 = 0. Consider

E {Δ𝑉
2
(𝑒
𝑘
, 𝑘)}

= E {E {𝑉
2
(𝑒
𝑘+1

, 𝑘 + 1) | 𝑒
𝑘
} − 𝑉

2
(𝑒
𝑘
, 𝑘)}

=E
{

{

{

ℎ

−1

∑

𝑖=−𝜏
𝑀

𝑘

∑

𝑗=𝑘+𝑖+1

𝜂
𝑇

(𝑗) 𝑃𝜂 (𝑗) − ℎ

−1

∑

𝑖=−𝜏
𝑀

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇

(𝑗) 𝑃𝜂 (𝑗)

}

}

}

= 𝜏
𝑀
ℎ𝜂
𝑇

(𝑘) 𝑃𝜂 (𝑘) −

−1

∑

𝑖=−𝜏
𝑀

ℎ𝜂
𝑇

(𝑘 + 𝑖) 𝑃𝜂 (𝑘 + 𝑖) ,

E {Δ𝑉
3
(𝑒
𝑘
, 𝑘)}

= E {E {𝑉
3
(𝑒
𝑘+1

, 𝑘 + 1) | 𝑒
𝑘
} − 𝑉
3
(𝑒
𝑘
, 𝑘)}

=

𝑛
2
−1

∑

𝑖=1

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖+1

𝑘

∑

𝑙=𝑘+𝑗+1

𝑒
𝑇

(𝑙) 𝑅
𝑖
𝑒 (𝑙)

−

𝑛
2
−1

∑

𝑖=1

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖+1

𝑘−1

∑

𝑙=𝑘+𝑗

𝑒
𝑇

(𝑙) 𝑅
𝑖
𝑒 (𝑙)

=

𝑛
2
−1

∑

𝑖=1

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖+1

[

[

(𝑒
𝑇

(𝑘) 𝑅
𝑖
𝑒 (𝑘) +

𝑘−1

∑

𝑙=𝑘+𝑗+1

𝑒
𝑇

(𝑙) 𝑅
𝑖
𝑒 (𝑙))

− (

𝑘−1

∑

𝑙=𝑘+𝑗+1

𝑒
𝑇

(𝑙) 𝑅
𝑖
𝑒 (𝑙)

+𝑒
𝑇

(𝑘 + 𝑗) 𝑅
𝑖
𝑒 (𝑘 + 𝑗))

]

]

=

𝑛
2
−1

∑

𝑖=1

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖+1

(𝑒
𝑇

(𝑘) 𝑅
𝑖
𝑒 (𝑘) − 𝑒

𝑇

(𝑘 + 𝑗) 𝑅
𝑖
𝑒 (𝑘 + 𝑗)) .

(30)

Then, by using Lemma 7 and 𝑑
𝑖
(𝑘) ∈ (𝑑

𝑖−1
, 𝑑
𝑖
], we have

−

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖+1

𝑒
𝑇

(𝑘 + 𝑗) 𝑅
𝑖
𝑒 (𝑘 + 𝑗))

≤ −

1

𝑑
𝑖+1

− 𝑑
𝑖−1

(

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖+1

𝑒 (𝑘 + 𝑗))

𝑇

× 𝑅
𝑖
(

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖+1

𝑒
𝑇

(𝑘 + 𝑗))

≤ −

1

𝑑
𝑖+1

− 𝑑
𝑖−1

(

𝑘−𝑑
𝑖
(𝑘)

∑

𝑗=𝑘−𝑑
𝑖+1(𝑘)

𝑒 (𝑗))

𝑇

𝑅
𝑖
(

𝑘−𝑑
𝑖
(𝑘)

∑

𝑗=𝑘−𝑑
𝑖+1(𝑘)

𝑒 (𝑗))

= −

1

𝑑
𝑖+1

− 𝑑
𝑖−1

(

𝑘−1

∑

𝑗=𝑘−𝑑
𝑖+1(𝑘)

𝑒 (𝑗) −

𝑘−1

∑

𝑗=𝑘−𝑑
𝑖(𝑘)

𝑒 (𝑗))

𝑇

× 𝑅
𝑖
(

𝑘−1

∑

𝑗=𝑘−𝑑
𝑖+1(𝑘)

𝑒 (𝑗) −

𝑘−1

∑

𝑗=𝑘−𝑑
𝑖(𝑘)

𝑒 (𝑗)) ,

E {Δ𝑉
4
(𝑒
𝑘
, 𝑘)}

= E {E {𝑉
4
(𝑒
𝑘+1

, 𝑘 + 1) | 𝑒
𝑘
} − 𝑉
4
(𝑒
𝑘
, 𝑘)}

= E
{

{

{

𝑛
1

∑

𝑖=1

𝑘

∑

𝑗=𝑘+1−𝜏
𝑖(𝑘+1)

𝑔
𝑇

(𝑗) 𝑆
𝑖
𝑔 (𝑗)

+

𝑛
1

∑

𝑖=1

𝜏
𝑖
−1

∑

𝑗=𝜏
𝑖−1

𝑘

∑

𝑖=𝑘−𝑗+1

𝑔
𝑇

(𝑖) 𝑆
𝑖
𝑔 (𝑖)

−
[

[

𝑛
1

∑

𝑖=1

𝑘−1

∑

𝑗=𝑘−𝜏
𝑖(𝑘)

𝑔
𝑇

(𝑗) 𝑆
𝑖
𝑔 (𝑗)

+

𝑛
1

∑

𝑖=1

𝜏
𝑖
−1

∑

𝑗=𝜏
𝑖−1

𝑘−1

∑

𝑖=𝑘−𝑗

𝑔
𝑇

(𝑖) 𝑆
𝑖
𝑔 (𝑖)

]

]

}

}

}

=

𝑛
1

∑

𝑖=1

{

{

{

𝑔
𝑇

(𝑘) 𝑆
𝑖
𝑔 (𝑘) − 𝑔

𝑇

(𝑘 − 𝜏
𝑖
(𝑘)) 𝑆
𝑖
𝑔 (𝑘 − 𝜏

𝑖
(𝑘))

+

𝑘−1

∑

𝑗=𝑘−𝜏
𝑖(𝑘+1)+1

𝑔
𝑇

(𝑗) 𝑆
𝑖
𝑔 (𝑗)

−

𝑘−1

∑

𝑗=𝑘−𝜏
𝑖(𝑘)+1

𝑔
𝑇

(𝑗) 𝑆
𝑖
𝑔 (𝑗)

+

𝜏
𝑖
−1

∑

𝑗=𝜏
𝑖−1

(𝑔
𝑇

(𝑘) 𝑆
𝑖
𝑔 (𝑘) − 𝑔

𝑇

(𝑘 − 𝑗) 𝑆
𝑖
𝑔 (𝑘 − 𝑗))

}

}

}

≤

𝑛
1

∑

𝑖=1

{ (𝜏
𝑖
− 𝜏
𝑖−1

+ 1) 𝑔
𝑇

(𝑘) 𝑆
𝑖
𝑔 (𝑘)

− 𝑔
𝑇

(𝑘 − 𝜏
𝑖
(𝑘)) 𝑆
𝑖
𝑔 (𝑘 − 𝜏

𝑖
(𝑘))} ,

E {Δ𝑉
5
(𝑒
𝑘
, 𝑘)}

= E {E {𝑉
5
(𝑒
𝑘+1

, 𝑘 + 1) | 𝑒
𝑘
} − 𝑉
5
(𝑒
𝑘
, 𝑘)}

=

𝑛
2

∑

𝑖=1

{

{

{

−1

∑

𝑗=−𝑑
𝑖(𝑘+1)

𝑘

∑

𝑙=𝑘+𝑗+1

ℎ

𝑇

(𝑙) 𝑇
𝑖
ℎ (𝑙)

+

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖

−1

∑

𝑙=𝑗+1

𝑘

∑

𝑟=𝑘+𝑙+1

ℎ

𝑇

(𝑟) 𝑇
𝑖
ℎ (𝑟)
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−

−1

∑

𝑗=−𝑑
𝑖(𝑘)

𝑘−1

∑

𝑙=𝑘+𝑗

ℎ

𝑇

(𝑙) 𝑇
𝑖
ℎ (𝑙)

−

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖

−1

∑

𝑙=𝑗+1

𝑘−1

∑

𝑟=𝑘+𝑙

ℎ

𝑇

(𝑟) 𝑇
𝑖
ℎ (𝑟)

}

}

}

=

𝑛
2

∑

𝑖=1

{

{

{

−1

∑

𝑗=−𝑑
𝑖(𝑘+1)

𝑘−1

∑

𝑙=𝑘+𝑗+1

ℎ

𝑇

(𝑙) 𝑇
𝑖
ℎ (𝑙)

+

−1

∑

𝑗=−𝑑
𝑖(𝑘+1)

ℎ

𝑇

(𝑙) 𝑇
𝑖
ℎ (𝑙)

−

−1

∑

𝑗=−𝑑
𝑖(𝑘)

𝑘−1

∑

𝑙=𝑘+𝑗+1

ℎ

𝑇

(𝑙) 𝑇
𝑖
ℎ (𝑙)

−

−1

∑

𝑗=−𝑑
𝑖(𝑘)

ℎ

𝑇

(𝑘 + 𝑗) 𝑇
𝑖
ℎ (𝑘 + 𝑗)

+

−𝑑i−1−1

∑

𝑗=−𝑑
𝑖

−1

∑

𝑙=𝑗+1

(ℎ

𝑇

(𝑘) 𝑇
𝑖
ℎ (𝑘)

−ℎ

𝑇

(𝑘 + 𝑙) 𝑇
𝑖
ℎ (𝑘 + 𝑙))

}

}

}

≤

𝑛
2

∑

𝑖=1

{

{

{

(

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖

+

−1

∑

𝑗=−𝑑
𝑖−1

)

𝑘−1

∑

𝑙=𝑘+𝑗+1

ℎ

𝑇

(𝑙) 𝑇
𝑖
ℎ (𝑙)

+ 𝑑
𝑖
ℎ

𝑇

(𝑘) 𝑇
𝑖
ℎ (𝑘)

−

−1

∑

𝑗=−𝑑
𝑖−1

𝑘−1

∑

𝑙=𝑘+𝑗+1

ℎ

𝑇

(𝑙) 𝑇
𝑖
ℎ (𝑙)

−

−1

∑

𝑗=−𝑑
𝑖(𝑘)

ℎ

𝑇

(𝑘 + 𝑗) 𝑇
𝑖
ℎ (𝑘 + 𝑗)

+

−𝑑
𝑖−1
−1

∑

𝑗=−𝑑
𝑖

−1

∑

𝑙=𝑗+1

(ℎ

𝑇

(𝑘) 𝑇
𝑖
ℎ (𝑘)

−ℎ

𝑇

(𝑘 + 𝑙) 𝑇
𝑖
ℎ (𝑘 + 𝑙))

}

}

}

=

𝑛
2

∑

𝑖=1

{

{

{

𝑑
𝑖
ℎ

𝑇

(𝑘) 𝑇
𝑖
ℎ (𝑘) −

−1

∑

𝑗=−𝑑
𝑖(𝑘)

ℎ

𝑇

(𝑘 + 𝑗) 𝑇
𝑖
ℎ (𝑘 + 𝑗)

+

(𝑑
𝑖
− 𝑑
𝑖−1
) (𝑑
𝑖
+ 𝑑
𝑖−1

− 1)

2

ℎ

𝑇

(𝑘) 𝑇
𝑖
ℎ (𝑘)

}

}

}

≤

𝑛
2

∑

𝑖=1

{

{

{

−(

−1

∑

𝑗=−𝑑
𝑖(𝑘)

ℎ (𝑘 + 𝑗))

𝑇

𝑇
𝑖

𝑑
𝑖

(

−1

∑

𝑗=−𝑑
𝑖(𝑘)

ℎ (𝑘 + 𝑗))

+

(𝑑
𝑖
− 𝑑
𝑖−1

+ 1) (𝑑
𝑖
+ 𝑑
𝑖−1
)

2

ℎ

𝑇

(𝑘) 𝑇
𝑖
ℎ (𝑘)

}

}

}

.

(31)

Then, by using Lemma 7, we have

− ℎ

−1

∑

𝑖=−𝜏
𝑀

𝜂
𝑇

(𝑘 + 𝑖) 𝑃𝜂 (𝑘 + 𝑖)

= −ℎ

𝑘−1

∑

𝑖=𝑘−𝜏
1(𝑘)

𝜂
𝑇

(𝑖) 𝑃𝜂 (𝑖) − ℎ

𝑘−𝜏
1
(𝑘)−1

∑

𝑖=𝑘−𝜏
2(𝑘)

𝜂
𝑇

(𝑖) 𝑃𝜂 (𝑖)

− ⋅ ⋅ ⋅ − ℎ

𝑘−𝜏
𝑛1
(𝑘)−1

∑

𝑖=𝑘−𝜏
𝑀

𝜂
𝑇

(𝑖) 𝑃𝜂 (𝑖)

≤ −(

𝑘−1

∑

𝑖=𝑘−𝜏
1(𝑘)

𝜂 (𝑖))

𝑇

𝑃(

𝑘−1

∑

𝑖=𝑘−𝜏
1(𝑘)

𝜂 (𝑖))

− (

𝑘−𝜏
1
(𝑘)−1

∑

𝑖=𝑘−𝜏
2(𝑘)

𝜂 (𝑖))

𝑇

𝑃(

𝑘−𝜏
1
(𝑘)−1

∑

𝑖=𝑘−𝜏
2(𝑘)

) − ⋅ ⋅ ⋅

− (

𝑘−𝜏
𝑛1
(𝑘)−1

∑

𝑖=𝑘−𝜏
𝑀

𝜂 (𝑖))

𝑇

𝑃(

𝑘−𝜏
𝑛1
(𝑘)−1

∑

𝑖=𝑘−𝜏
𝑀

𝜂 (𝑖))

= −(𝑒 (𝑘) − 𝑒 (𝑘 − 𝜏
1
(𝑘)))
𝑇

𝑃 (𝑒 (𝑘) − 𝑒 (𝑘 − 𝜏
1
(𝑘)))

− (𝑒 (𝑘 − 𝜏
1
(𝑘)) − 𝑒 (𝑘 − 𝜏

2
(𝑘)))
𝑇

× 𝑃 (𝑒 (𝑘 − 𝜏
1
(𝑘)) − 𝑒 (𝑘 − 𝜏

2
(𝑘))) − ⋅ ⋅ ⋅

− (𝑒 (𝑘 − 𝜏
𝑛
1
(𝑘)) − 𝑒 (𝑘 − 𝜏

𝑀
))

𝑇

× 𝑃 (𝑒 (𝑘 − 𝜏
𝑛
1
(𝑘)) − 𝑒 (𝑘 − 𝜏

𝑀
)) .

(32)

Let 𝛼
1
(𝑘) = (𝑒

𝑇

(𝑘 − 𝜏
1
(𝑘)), 𝑒𝑇(𝑘 − 𝜏

2
(𝑘)), . . . , 𝑒

𝑇

(𝑘 − 𝜏
𝑛
1

(𝑘)),
𝑒
𝑇

(𝑘 − 𝜏
𝑀
))
𝑇; we have

− ℎ
2

𝑘−𝜏
𝑚
−1

∑

𝑖=𝑘−𝜏
𝑀

𝜂
𝑇

(𝑖) 𝑄𝜂 (𝑖)

≤ (𝑒
𝑇

(𝑘) , 𝛼
𝑇

1
(𝑘))

×

[

[

[

[

[

[

[

−𝑃 𝑃 0 ⋅ ⋅ ⋅ 0

∗ −2𝑃 𝑃 ⋅ ⋅ ⋅ 0

...
... d

...
...

∗ ∗ ∗ −2𝑃 𝑃

∗ ∗ ∗ ∗ −𝑃

]

]

]

]

]

]

]

(

𝑒 (𝑘)

𝛼
1
(𝑘)

) .

(33)
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From Assumption 1, 𝑓−
𝑖
≤ (𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑦))/(𝑥 − 𝑦) ≤ 𝑓

+

𝑖

and 𝑔
−

𝑖
≤ (𝑔
𝑖
(𝑥) − 𝑔

𝑖
(𝑦))/(𝑥 − 𝑦) ≤ 𝑔

+

𝑖
, we have (𝑓(𝑘) −

𝑓
−

𝑖
𝑦(𝑘))(𝑓(𝑘) − 𝑓

+

𝑖
𝑦(𝑘)) ≤ 0 and (𝑔(𝑘 − 𝜏

𝑖
(𝑘)) − 𝑔

−

𝑖
𝑦(𝑘 −

𝜏
𝑖
(𝑘)))(𝑔(𝑘 − 𝜏

𝑖
(𝑘)) − 𝑔

+

𝑖
𝑒(𝑘 − 𝜏

𝑖
(𝑘))) ≤ 0.

It can be deduced that there exist U = diag[𝑢
1
, 𝑢
2
,

. . . 𝑢
𝑛
] > 0, 𝑊 = diag[𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
] > 0, and 𝑉 =

diag[V
1
, V
2
, . . . , V

𝑛
] > 0, such that

𝑛

∑

𝑖=1

𝑢
𝑖
[

𝑒 (𝑘)

𝑓 (𝑘)
]

𝑇
[

[

[

[

𝑓
−

𝑖
𝑓
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−

𝑓
−

𝑖
+ 𝑓
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖

−

𝑓
−

𝑖
+ 𝑓
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖

]

]

]

]

[

𝑒 (𝑘)

𝑓 (𝑘)
]

= [

𝑒 (𝑘)

𝑓 (𝑘)
]

𝑇

[

𝑈𝐹
1

−𝑈𝐹
2

−𝑈𝐹
2

𝑈
][

𝑒 (𝑘)

𝑓 (𝑘)
] ≤ 0,

𝑛

∑

𝑖=1

𝑢
𝑖
[

𝑥 (𝑘)

𝐹 (𝑥 (𝑘))
]

𝑇

×

[

[

[

[

𝑓
−

𝑖
𝑓
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−

𝑓
−

𝑖
+ 𝑓
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖

−

𝑓
−

𝑖
+ 𝑓
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖

]

]

]

]

[

𝑥 (𝑘)

𝐹 (𝑥 (𝑘))
]

= [

𝑥 (𝑘)

𝐹 (𝑥 (𝑘))
]

𝑇

[

𝑈𝐹
1

−𝑈𝐹
2

−𝑈𝐹
2

𝑈
][

𝑥 (𝑘)

𝐹 (𝑥 (𝑘))
] ≤ 0,

𝑛

∑

𝑖=1

𝑤
𝑖
[

𝑥 (𝑘 − 𝜏
𝑗
(𝑘))

𝐺 (𝑥 (𝑘 − 𝜏
𝑖
(𝑘)))

]

𝑇

[

[

[

[

𝑔
−

𝑖
𝑔
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−

𝑔
−

𝑖
+ 𝑔
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖

−

𝑔
−

𝑖
+ 𝑔
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖

]

]

]

]

× [

𝑥 (𝑘 − 𝜏
𝑗
(𝑘))

𝐺 (𝑥 (𝑘 − 𝜏
𝑖
(𝑘)))

]

= [

𝑥 (𝑘 − 𝜏
𝑖
(𝑘))

𝐺 (𝑥 (𝑘 − 𝜏
𝑖
(𝑘)))

]

𝑇

[

𝑊𝐺
1

−𝑊𝐺
2

−𝑊𝐺
2

𝑊
]

× [

𝑥 (𝑘 − 𝜏
𝑖
(𝑘))

𝐺 (𝑥 (𝑘 − 𝜏
𝑖
(𝑘)))

] ≤ 0,

𝑛

∑

𝑖=1

𝑤
𝑖
[

𝑒 (𝑘)

𝑔 (𝑘)
]

𝑇
[

[

[

[

𝑔
−

𝑖
𝑔
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−

𝑔
−

𝑖
+ 𝑔
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖

−

𝑔
−

𝑖
+ 𝑔
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖

]

]

]

]

[

𝑒 (𝑘)

𝑔 (𝑘)
]

= [

𝑒 (𝑘)

𝑔 (𝑘)
]

𝑇

[

𝑊𝐺
1

−𝑊𝐺
2

−𝑊𝐺
2

𝑊
][

𝑒 (𝑘)

𝑔 (𝑘)
] ≤ 0,

𝑛

∑

𝑖=1

V
𝑖
[

𝑒 (𝑘)

ℎ (𝑘)
]

𝑇
[

[

[

[

ℎ
−

𝑖
ℎ
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−

ℎ
−

𝑖
+ ℎ
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖

−

ℎ
−

𝑖
+ ℎ
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖

]

]

]

]

[

𝑒 (𝑘)

ℎ (𝑘)
]

= [

𝑒 (𝑘)

ℎ (𝑘)
]

𝑇

[

𝑉𝐻
1

−𝑉𝐻
2

−𝑉𝐻
2

𝑉
][

𝑒 (𝑘)

ℎ (𝑘)
] ≤ 0,

𝑛

∑

𝑖=1

V
𝑖
[

𝑥 (𝑘)

𝐻 (𝑥 (𝑘))
]

𝑇
[

[

[

[

ℎ
−

𝑖
ℎ
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−

ℎ
−

𝑖
+ ℎ
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖

−

ℎ
−

𝑖
+ ℎ
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖

]

]

]

]

× [

𝑥 (𝑘)

𝐻 (𝑥 (𝑘))
]

= [

𝑥 (𝑘)

𝐻 (𝑥 (𝑘))
]

𝑇

[

𝑉𝐻
1

−𝑉𝐻
2

−𝑉𝐻
2

𝑉
][

𝑥 (𝑘)

𝐻 (𝑥 (𝑘))
] ≤ 0,

(34)

where 𝑒
𝑖
denotes the unit column vector having one element

on its 𝑟th row and zeros elsewhere.
According to (10), 𝑜𝑇(𝑘)𝑜(𝑘) − 𝑒

𝑇

(𝑘)𝐿
𝑇

𝐿𝑒(𝑘) ≤ 0; the
following equation can be concluded, where 𝜗 is a positive
scalar:

𝜗𝑜
𝑇

(𝑘) 𝑜 (𝑘) − 𝜗𝑒
𝑇

(𝑘) 𝐿
𝑇

𝐿𝑒 (𝑘) ≤ 0. (35)

And from Assumption 3, we can obtain, for a positive scalar,
𝜎

𝜎𝛿
𝑇

(𝑘, 𝑥 (𝑘)) 𝛿 (𝑘, 𝑥 (𝑘)) − 𝜎𝜉𝑥
𝑇

(𝑘) 𝑥 (𝑘) ≤ 0. (36)

Combining (27)–(36), we obtain

E {Δ𝑉 (𝑒 (𝑘) , 𝑘)} ≤ 𝜁
𝑇

(𝑘) (Γ̂ + Φ
𝑇

ΛΦ) 𝜁 (𝑘) ,

𝜁 (𝑘) = (𝑒
𝑇

(𝑘) , 𝛼
𝑇

1
(𝑘) , 𝛼

𝑇

2
(𝑘) ,

̂
𝑓
𝑇

(𝑘) , 𝑔
𝑇

(𝑘) ,

̂
ℎ
𝑇

(𝑘) , 𝐺
𝑇

(𝑘) , 𝐻̂
𝑇

(𝑘) , 𝑜
𝑇

(𝑘) , 𝑔
𝑇

(𝑘) ,

ℎ
𝑇

(𝑘) ,𝐻
𝑇

(𝑥 (𝑘)) , 𝛿
𝑇

(𝑘, 𝑥 (𝑘)))

𝑇

,

(37)

where

𝛼
2
(𝑘) =

[

[

−1

∑

𝑗=−𝑑
1(𝑘)

𝑒
𝑇

(𝑘 + 𝑗)

−1

∑

𝑗=−𝑑
2(𝑘)

𝑒
𝑇

(𝑘 + 𝑗) ⋅ ⋅ ⋅

−1

∑

𝑗=−𝑑
𝑛2
(𝑘)

𝑒
𝑇

(𝑘 + 𝑗)]

]

𝑇

,
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Γ̂ =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Γ
1
Γ
1,2

0 Γ
1,4

Γ
1,5

Γ
1,6

Γ
1,7

Γ
1,8

Γ̂
1,9

Γ
1,10

Γ
1,11

Γ
1,12

0

∗ Γ
2

0 0 Γ
2,5

0 0 0 0 0 0 0 0

∗ ∗ Γ
3

0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ Γ
4

Γ
4,5

Γ
4,6

Γ
4,7

Γ
4,8

Γ̂
4,9

0 0 0 0

∗ ∗ ∗ ∗ Γ
5

Γ
5,6

Γ
5,7

Γ
5,8

Γ̂
5,9

0 0 0 0

∗ ∗ ∗ ∗ ∗ Γ
6

Γ
6,7

Γ
6,8

Γ̂
6,9

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Γ
7

Γ
7,8

Γ̂
7,9

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
8

Γ̂
8,9

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ̂
9

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
10

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
11

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
12

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ
13

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Γ̂
1,9

= 𝐶
𝑇

𝑃𝐾̂, Γ̂
4,9

= 𝐴
𝑇

𝑃𝐾̂, Γ̂
5,9

= 𝐵
𝑇

𝜌
𝑇

1
𝑃𝐾̂, Γ̂

6,9
= 𝐷
𝑇̂
𝜉
𝑇

1
𝑃𝐾̂,

Γ̂
7,9

= 𝐵
𝑇

𝜌
𝑇

2
𝑃𝐾̂, Γ̂

8,9
= 𝐷
𝑇̂
𝜉
𝑇

2
𝑃𝐾̂, Γ̂

9
= 𝐾̂
𝑇

𝑃𝐾̂ − 𝜗𝐼,

Λ = ℎ𝜏
𝑀
𝑃, Φ = ((𝐶 − 𝐼) , 0, 0, 𝐴, 𝜌

1
𝐵,
̂
𝜉
1
𝐷, 0, 0, 𝐾̂) .

(38)

Using Schur complement, we can let Γ̂ + Φ
𝑇

ΛΦ < 0 be
equal to

[

Γ̂ Φ
𝑇

𝑃

∗ −𝑃Λ
−1

𝑃

] < 0. (39)

Pre- and postmultiplying (39), respectively, by diag{𝐼, Λ𝑃−1}
and its transpose yield

[
Γ̂ Φ
𝑇

Λ

∗ −Λ

] < 0. (40)

Then, by denoting𝐾 = 𝑃
−1

2
𝑋, one gets that the LMI condition

(40) can guarantee (10).
It is obvious that

E {Δ𝑉 (𝑒
𝑘
, 𝑘)} < 𝜆max (Γ)E {

󵄩
󵄩
󵄩
󵄩
𝜁 (𝑘)

󵄩
󵄩
󵄩
󵄩

2

}

≤ −𝜆max (Γ)E {‖𝑒 (𝑘)‖
2

} .

(41)

The summation of both sides of (41) from 1 to𝑁 (let𝑁 be a
positive integer) is equal to

E {𝑉 (𝑒
𝑁
, 𝑁) − 𝑉 (𝑒

0
, 0)} ≤ 𝜆max (Γ)

𝑁

∑

𝑘=1

E {‖𝑒 (𝑘)‖
2

} . (42)

So,

−𝜆max (Υ)
𝑁

∑

𝑘=1

E {‖𝑒 (𝑘)‖
2

} ≤ E {𝑉 (𝑦
0
, 0)} . (43)

We can conclude that ∑+∞
𝑘=1

E{‖𝑒(𝑘)‖
2

} is convergent and

lim
𝑘→+∞

E {‖𝑒 (𝑘)‖
2

} = 0. (44)

This completes the proof.

Based on Theorem 10, a further improved delay-
dependent stability criterion of the system (15) is given in the
following corollary by using Lemma 8.

Corollary 11. Under Assumptions 1, 3, and 4, the system (15)
is globally asymptotically stable in mean square, if there exist
matrices 𝑃 = 𝑃

𝑇

= diag{𝑃
1
, 𝑃
2
} > 0, 𝑄

𝑖
= 𝑄
𝑇

𝑖
≥ 0 (𝑖 =

1, 2, 3, 4), 𝑆 > 0, 𝑅 + 𝑆 > 0, and 𝑊 = diag(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)

such that the following LMI holds:

Ξ =

[

[

[

[

[

[

[

[

[

[

Γ +

𝑛
2

∑

𝑖=1

Sym (𝐸
6
𝑄
𝑖
) ∗ ∗ ∗ ∗

𝑑
1
𝑄
1

−𝑑
1
𝑄
1

∗ ∗ ∗

𝑑
2
𝑄
2

0 −𝑑
2
𝑄
2
∗ ∗

...
...

... d ∗

𝑑
𝑛
1

𝑄
𝑛
1

∗ ∗ ∗ −𝑑
𝑛
1

𝑄
𝑛
1

]

]

]

]

]

]

]

]

]

]

<0,

(45)

where Γ is defined in Theorem 10 and 𝐸
6
= (0
2𝑛
, 0
(𝑛
1
+1)𝑛

, 0
𝑛
2
𝑛
,

0
2𝑛
, 0
𝑛
1
𝑛
, 𝐼
𝑛
2

, 0
𝑛
1
𝑛
, 0
𝑛
2
𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
)
𝑇.

Proof. FromTheorem 10, we can know that

E {Δ𝑉
5
(𝑒
𝑘
, 𝑘)}

= E {E {𝑉
5
(𝑒
𝑘+1

, 𝑘 + 1) | 𝑒
𝑘
} − 𝑉
5
(𝑒
𝑘
, 𝑘)}

≤

𝑛
2

∑

𝑖=1

{

{

{

−

−1

∑

𝑗=−𝑑
𝑖(𝑘)

ℎ

𝑇

(𝑘 + 𝑗) 𝑇
𝑖
ℎ (𝑘 + 𝑗)

+

(𝑑
𝑖
− 𝑑
𝑖−1

+ 1) (𝑑
𝑖
+ 𝑑
𝑖−1
)

2

ℎ

𝑇

(𝑘) 𝑇
𝑖
ℎ (𝑘)

}

}

}

.

(46)
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Then, Using Lemma 8 and 𝑑
𝑖
(𝑘) ∈ (𝑑

𝑖−1
, 𝑑
𝑖
], we can deduce

that, for any matrices 𝑄
𝑖
with appropriate dimension,

−

−1

∑

𝑗=−𝑑
𝑖(𝑘)

ℎ

𝑇

(𝑘 + 𝑗) 𝑇
𝑖
ℎ (𝑘 + 𝑗)

≤ 𝑑
𝑖
(𝑘) 𝜁
𝑇

(𝑘) 𝑄
𝑇

𝑖
𝑇
−1

𝑖
𝑄
𝑖
𝜁 (𝑘)

+ 2𝜁
𝑇

(𝑘) 𝑄
𝑇

𝑖
(

−1

∑

𝑗=−𝑑
𝑖(𝑘)

ℎ

𝑇

(𝑘 + 𝑗))

≤ 𝑑
𝑖−1
𝜁
𝑇

(𝑘) 𝑄
𝑇

𝑖
𝑇
−1

𝑖
𝑄
𝑖
𝜁 (𝑘)

+ 2𝜁
𝑇

(𝑘) 𝑄
𝑇

𝑖
(

−1

∑

𝑗=−𝑑
𝑖(𝑘)

ℎ

𝑇

(𝑘 + 𝑗)) .

(47)

4. Examples

In this section, a numerical example is given to illustrate the
effectiveness and benefits of the developed methods.

Example 1. Weconsider the delayed stochastic DNNs (1) with
the following parameters:

𝐶 = [

−0.1 0

0 0.4
] , 𝐴 = [

0.1 −0.2

0 −0.1
] ,

𝐵 = [

0 0.2

0.2 −0.1
] , 𝐿 = [

0.2 0

0 0.2
] .

(48)

And the activation functions satisfy Assumption 1 with

𝐹
1
= [

−0.64 0

0 0
] , 𝐹

2
= [

0 0

0 0.2
] ,

𝐺
1
= [

−0.6 0

0 0
] , 𝐺

2
= [

−0.2 0

0 −0.1
] .

(49)

For the parameters listed above, letting 𝜏
𝑚
= 1, 𝜏

𝑀
= 5, 𝜏

1
=

3, and𝜌
1
= 0.89, we can obtain the following feasible solution.

Therefore, it is clear to see that our method is effective. Due
to the limitation of the length of this paper, we only provide
a part of the feasible solution here:

𝑃
1
= [

5.8618 2.1488

2.1488 3.9636
] , 𝑃

2
= [

8.3545 3.4900

3.4900 3.9051
] ,

𝑋 = [

1.7218 0.4208

0.4208 0.9386
] .

(50)

Therefore, according toTheorem 10, the gainmatrix of the
desired estimator can be obtained as

𝐾 = 𝑃
−1

2
𝑋 = [

0.2571 −0.0798

−0.1220 0.3117
] . (51)

When we define 𝑓
1
(𝑠) = 𝑔

1
(𝑠) = ℎ

1
(𝑠) = tanh(−0.4𝑠),

𝑓
2
(𝑠) = 𝑔

2
(𝑠) = ℎ

2
(𝑠) = tanh(0.4𝑠)), 𝑂(𝑘, 𝑥(𝑘)) = 0.2 sin(𝑥

(𝑘)), 𝛿(𝑘, 𝑥(𝑘)) = sin(𝑥(𝑘)),we get Figures 1 and 2. They
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Figure 1: The trajectories of 𝑥(𝑘) with 𝐽 = 0.
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Figure 2: The trajectories of 𝑥(𝑘) with 𝐽 = 0.

represent the trajectories of 𝑥(𝑘) and the state estimator
𝑥(𝑘) with the initial condition 𝑥(𝑘) = [−1, 0.5], 𝑥(𝑘) =

[−0.5, −0.5]. And from Theorem 10, it follows that the state
estimator (46) is indeed a state estimator of the delayed neural
network (1). Figure 3 further confirmed that the estimation
error 𝑒(𝑘) tends to zero as 𝑘 → ∞.

5. Conclusions

The robust stability for stochastic discrete-time NNs with
mixed delays has been investigated in this research via the
Lyapunov functional method. By employing delay parti-
tioning and introducing a new Lyapunov functional, more
general LMIs conditions on the stability of the stochastic
discrete-time NNs are established. Finally, the feasibility and
effectiveness of the developed methods and their less conser-
vatism than most of the existing results have been shown by
numerical simulation examples. The foregoing results have



Journal of Applied Mathematics 13

5

4

3

2

1

0

0

−1

5 10 15 20 25 30 35 40

Times (s)

Th
e e

vo
lu

tio
n 

of
 es

tim
at

io
n 

er
ro

rs

Figure 3: The evolution of estimation errors 𝑒(𝑘).

the potential to be useful for the study of stochastic discrete-
timeNNs. And the results can also been extended to complex
networks with mixed time-varying delays.
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