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Considering the cosmic fluid as a quasi-static thermodynamic system, the status of the generalized second law of thermodynamics
is investigated and the valid range of the equation of state parameter is derived for a few important cosmological models. Our study
shows that the satisfaction of the laws of thermodynamics in these cosmological models requires the existence of some kind of
energy in our universe with 𝜔 < −1/3. In other words, the existence of a dark energy component, or equivalently modified gravity
theory, is unavoidable if the cosmological model is to approach thermal equilibrium in late times.

1. Introduction

Thermodynamical nature of Einstein’s theory of general rela-
tivity was first disclosed by Jacobson [1] who showed that the
hyperbolic second order partial differential field equations of
gravity can be derived by applying the first law of thermody-
namics on any local Rindler horizon. Generalization of this
method to 𝑓(𝑅) gravity, by introducing the entropy gener-
ation term due to nonequilibrium nature of spacetime, was
investigated in [2]. More attempts to reveal the connection
between thermodynamics and various theories of gravity can
be found in [3–8]. An elegant example is the derivation of the
Friedmann equations as a consequence of the validity of the
first law of thermodynamics on the apparent horizon of the
Friedmann-Robertson-Walker (FRW) universe [9].

Recently, an entropic origin for gravity was proposed by
Verlinde [10]. He argued that the laws of gravity are not
fundamental and in particular they emerge as an entropic
force caused by the changes in the information associated
with the positions of material bodies. Verlinde’s derivation
of Newton’s law of gravitation at the very least offers a
strong analogy with the well-understood statistical approach.
Therefore, this derivation opens a new window to under-
standing gravity from first principles. The entropic approach
to gravity has arisen a lot of enthusiasm, recently (see, e.g.,

[11–34] and references therein). The studies have also been
generalized to higher order gravity theories such as Gauss-
Bonnet and Lovelock gravity [35]. All these attempts indicate
a hope to achieve a deeper connection between gravity and
thermodynamics.

From the second law of thermodynamics, we know that
every closed system moves towards its maximum entropy
state which is an equilibrium state. This leads to the con-
clusion that the second derivative of the entropy should be
negative [36]. The assumption that the second derivative
of entropy is negative comes from the fact that while the
entropy is increasing as the system approaches equilibrium,
it should tend to a maximum; hence the first derivative
which is already positive tends to zero, leading to a negative
second derivative. Indeed, our discussion in this paper is
based on that the natural tendency of systems to evolve
toward thermodynamical equilibrium is characterized by
two properties of its entropy function, 𝑆(𝑥); namely, it is
always a nondecreasing function, 𝑑𝑆(𝑥)/𝑑𝑥 ≥ 0, and is a
convex function, 𝑑2𝑆(𝑥)/𝑑𝑥2 ≤ 0 [37]. In the context of
cosmology, this implies that the total entropy including the
entropy associated with the apparent horizon together with
the matter field entropy inside the apparent horizon must be
a nondecreasing function of scale factor, 𝑆󸀠(𝑎) ≥ 0, where the
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prime stands for the derivative with respect to scale factor
𝑎. This statement is usually called the generalized second
law (GSL) of thermodynamics. In addition as 𝑎 → ∞ we
must have 𝑆󸀠󸀠(𝑎) ≤ 0. Applying these requirements to the
cosmological setup leads to interesting constraints on the
equation of state parameter of the cosmic fluid filling the
universe.

We consider a background which is filled by a homoge-
neous fluid with the equation of state 𝑝 = 𝜔𝜌 and endorsing
situations in that the background component of the total
entropy plays the role of dominate entropy in fulfilling the
GSL of thermodynamics in the long run limit. In [38, 39],
authors have divided the entropy of the universe into three
parts arising from the matter field, geometry (horizon), and
an unknown fluid with the equation of state 𝑝 = 𝜔𝜌.

Then, they studied situations in which the background
component of entropy has a major contribution to the total
entropy of the universe and that it satisfies GSL. In this way,
the authors of [38, 39] could find the proper range of 𝜔which
is consistent with dark energy. In the present work, we do not
separate matter component from the dominant fluid and try
to reach the corresponding implications for the equation of
state in various theories of gravity. Further calculations using
this approach were presented in [38, 39].

Let us have a glimpse at general properties of a homoge-
neous and isotropic FRW universe which is described by the
line element

𝑑𝑠
2
= ℎ
𝜇]𝑑𝑥
𝜇
𝑑𝑥

]
+ 𝑟
2
[𝑑𝜃
2
+ sin2𝜃𝑑𝜙2] , (1)

where 𝑟 = 𝑎(𝑡)𝑟 and ℎ
𝜇] = diag(−1, 𝑎2(𝑡)/(1 − 𝑘𝑟2)) with

𝑥
0
= 𝑡 and 𝑥1 = 𝑟 and 𝑘 is spatial curvature taking the val-

ues 0, −1, and 1 for a flat, open, and closed universe, resp-
ectively [40]. Here 𝑎(𝑡) is the scale factor which carries the
effect of expansion on the spatial degrees of freedom. Recent
observations have confirmed an accelerating universe (i.e.,
̇𝑎 ≥ 0 and ̈𝑎 ≥ 0) [41–43]. The validity of the first condition

( ̇𝑎 ≥ 0) is clear. Using the fact that𝐻 = ̇𝑎/𝑎, we have

̈𝑎 = 𝑎𝐻 (𝐻 + 𝑎𝐻
󸀠
) , (2)

where the prime stands for derivative with respect to the scale
factor 𝑎. For every model of cosmology this relation makes
an upper bound on the equation of state parameter 𝜔 and so
must be evaluated for each model separately. The apparent
horizon which is defined as a marginally trapped surface
with vanishing expansion can be determined by relation
ℎ
𝜇]𝜕
𝜇
𝑟𝜕

]
𝑟 = 0. A simple calculation yields

𝑟
𝐴
=

1

√𝐻
2
+ 𝑘/𝑎
2

. (3)

Suppose that the energy-momentum tensor of the total
matter and energy in the universe has the form of a perfect
fluid, 𝑇

𝜇] = 𝑝𝑔𝜇] + (𝜌 + 𝑝)𝑈𝜇𝑈], where 𝑈
] denotes the four-

velocity of the fluid and 𝜌 and 𝑝 are the total energy density
and pressure of the fluid, respectively. The energy conserva-
tion law ∇

𝜇
𝑇
𝜇]
= 0 leads to the continuity equation in the

form

̇𝜌 + 3𝐻 (𝜌 + 𝑝) = 0. (4)

Also, we suppose the equation of state as

𝑝 = 𝜔𝜌, (5)

where, for radiation and byronic matter, we have𝜔 ≥ 0. From
the continuity (4), one finds

𝜌 = 𝜌
0
𝑎
−3(1+𝜔)

. (6)

In the long run where 𝑎 → ∞, the energy density goes to
zero provided that 𝜔 > −1. For 𝜔 < −1, that is, ghost
matter, we have the unusual situation where density grows
with expansion.Throughout this paper, we assume a spatially
flat FRW spacetime. In the next section, we study thermo-
dynamic nature of ghost dark energy model. Cyclic model,
Horava-Liftshitz deformed model, DGP model, and Gauss-
Bonnet model will be discussed in the subsequent sections.
The last section is devoted to our concluding remarks.

2. Ghost Dark Energy

A new dark energy model called “ghost dark energy”
was recently proposed to explain the observed accelerating
expansion of the Universe [44–51]. In this model, dark
energy originates from the Veneziano ghost of QCD [52, 53]
with an energy density which is proportional to the Hubble
parameter, 𝜌

𝐷
= 𝛼𝐻, where 𝛼 is a constant of order Λ3QCD or

QCD mass scale. Taking into account the fact that ΛQCD ∼

100MeV and𝐻 ∼ 10
−33 eV for the present time, this gives the

right order of magnitude 𝜌
𝐷
∼ (3 × 10

−3 eV)4 for the ghost
energy density [44]. In this section we would like to con-
straint the equation of state parameter of ghost dark energy
using the entropy argument. Let us rewrite the ghost energy
density as [44]

𝐻 = 𝛼
−1
𝜌. (7)

Substituting (6) and (7) in (2), after simple calculations, we
find 𝜔 ≤ −1/3 in order to have an accelerating universe;
namely, ̈𝑎 ≥ 0. Assuming the background is filled by a
typical fluid with energy density (7), we want to see under
which circumstances the GSL is preserved for the universe
filled with ghost dark energy. The entropy associated with
the apparent horizon in a flat FRW universe obeys the well-
known area law [54]:

𝑆
ℎ
=

𝐴

4

= 𝜋𝐻
−2
= 𝜋𝛼
2
𝜌
−2

0
𝑎
6(1+𝜔)

, (8)

where 𝐴 = 4𝜋𝐻
−2 is the apparent horizon area. Throughout

this paper, we employ units in which 𝐺 = 𝑐 = ℎ = 𝑘
𝐵
=

1. Taking the first and the second derivative of the entropy
function 𝑆

ℎ
with respect to the scale factor, we get

𝑆
󸀠

ℎ
= 6𝜋𝛼

2
𝜌
−2

0
(𝜔 + 1) 𝑎

6𝜔+5
,

𝑆
󸀠󸀠

ℎ
= 36𝜋𝛼

2
𝜌
−2

0
(𝜔 + 1) (𝜔 +

5

6

) 𝑎
6𝜔+4

.

(9)
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Hence, we arrive at

𝑆
󸀠

ℎ
≥ 0 󳨐⇒ 𝜔 ≥ −1,

𝑆
󸀠󸀠

ℎ
≤ 0 󳨐⇒ −1 ≤ 𝜔 ≤ −

5

6

.

(10)

Thus, for both conditions to be satisfied simultaneously, we
must have −1 ≤ 𝜔 ≤ −5/6 which is in agreement with the
accelerating condition 𝜔 ≤ −1/3. Next, we consider the entr-
opy of the perfect fluid inside the horizon.The entropy of the
universe inside the horizon 𝑆

𝑓
can be related to its energy and

pressure in the horizon by the Gibbs equation [55]:

𝑇
𝑓
𝑑𝑆
𝑓
= 𝑑𝐸
𝑓
+ 𝑝
𝑓
𝑑𝑉, (11)

where 𝐸
𝑓
is the energy of the fluid within the Hubble horizon

with radius 𝐿 = 𝐻−1,

𝐸
𝑓
= 𝜌
𝑓
𝑉 =

4𝜋𝐻
−3
𝜌
𝑓

3

=

4𝜋𝛼
3

3𝜌
2

𝑓

, (12)

where we have also used (7). Therefore, we have

𝑇
𝑓

𝑑𝑆
𝑓

𝑑𝑎

=

𝑑

𝑑𝑎

(

4𝜋𝛼
3

3𝜌
2

𝑓

) + 𝜔𝜌
𝑓

𝑑𝑉

𝑑𝑎

. (13)

The evolution of the temperature of the matter field can be
determined by (𝑑 ln𝑇

𝑓
/𝑑 ln 𝑎) = −3𝜔, which leads to 𝑇

𝑓
=

𝑇
0
𝑎
−3𝜔 [56]. From (13) one finds

𝑆
󸀠

𝑓
=

4𝜋𝜌
0
𝛼
3

3𝑇
0

(𝜔 + 1) (6𝑎
9𝜔+5

+

9 (𝜔 − 1)

2

𝑎
12𝜔+8

) , (14)

where we have used the fact that 𝜌 = 𝜌
𝑓
. The second

derivative of the fluid entropy can be obtained as

𝑆
󸀠󸀠

𝑓
=

4𝜌
0
𝜋𝛼
3

3𝑇
0

(𝜔 + 1)

× [6 (9𝜔 + 5) 𝑎
9𝜔+4

+

9 (𝜔 − 1) (12𝜔 + 8)

2

𝑎
12𝜔+7

] .

(15)

The ratio between derivatives of different components, the
entropy of the fluid, and the entropy associated with the
Hubble horizon can be obtained in the long run limit as

𝑆
󸀠

𝑓

𝑆
󸀠

ℎ

≈

𝑆
󸀠󸀠

𝑓

𝑆
󸀠󸀠

ℎ

∼ 𝑎
3𝜔
+ 𝑎
6𝜔+3

󳨐⇒ 𝜔 < −

1

2

, (16)

which implies that−3/2 < 𝜔 < −1/2. By comparingwith (10),
it becomes obvious that the domain −1 ≤ 𝜔 ≤ −5/6 is an
appropriate domain for the equation of state parameter of
ghost dark energy which satisfies all thermodynamic condi-
tions simultaneously.

3. Cyclic Universe Model

The modified Friedman equation of cyclic universe, which
can be obtained from the effective theory of loop quantum
cosmology, can be written as [57, 58]

𝐻
2
=

8𝜋𝐺

3

𝜌(1 −

𝜌

𝜌
𝑐

) , (17)

where 𝜌
𝑐
≈ 10
76
(GeV)4 is the critical density, set by quantum

gravity [59] and disparate from the usual critical density
3𝑀
2

𝑝
𝐻
2. Using (2), (6), and (17) in the late time (low density),

the upper bound for 𝜔 can be obtained as 𝜔 ≤ −1/3, similar
to what we found for ghost dark energy model. Using area
law for the horizon entropy, 𝑆

ℎ
= 𝐴/4 = 𝜋𝐻

−2, as well as
Friedmann (17), the first derivative of the entropywith respect
to scalar factor reads

𝑆
󸀠

ℎ
=

9 (𝜔 + 1)

8𝐺

𝜌 − 2𝜌
2
/𝜌
𝑐

𝑎(𝜌 − 𝜌
2
/𝜌
𝑐
)
2
. (18)

In two cases 𝑆󸀠
ℎ
can be positive. First for 𝜌 > 𝜌

𝑐
/2 and 𝜔 < −1,

and second for 𝜌 < 𝜌
𝑐
/2 and 𝜔 > −1. For the late time cosm-

ology where 𝑎 → ∞ (𝜌 → 0), (18) reduces to

𝑆
󸀠

ℎ
≈ (𝜔 + 1) 𝑎

3(𝜔+(2/3))
. (19)

Therefore, in order to have 𝑆󸀠
ℎ
≥ 0 the equation of state para-

meter should satisfy𝜔 ≥ −1. Now, we consider the second de-
rivative of the entropy:

𝑆
󸀠󸀠

ℎ
=

9 (𝜔 + 1)

8𝐺𝑎
2
(𝜌 − 𝜌

2
/𝜌
𝑐
)
2

×
[

[

− 3 (𝜔 +

4

3

) 𝜌 + 12 (𝜔 + 1)

𝜌
2

𝜌
𝑐

+

2𝜌
2

𝜌
𝑐

+ 6 (𝜔 + 1)

(𝜌 − 2𝜌
2
/𝜌
𝑐
)

2

𝜌 − 𝜌
2
/𝜌
𝑐

]

]

.

(20)

In the late time where 𝜌 → 0, the above relation can be sim-
plified as

𝑆
󸀠󸀠

ℎ
≈ (𝜔 + 1) (3𝜔 + 2) 𝑎

3𝜔+1
, (21)

which indicates that −1 ≤ 𝜔 ≤ −2/3 for which we have 𝑆󸀠󸀠
ℎ
≤

0. Next, we turn to the calculation of the entropy of a fluid
which fills the background spacetime. Following the method
of the previous section, we arrive at

𝑆
󸀠

𝑓
=

𝜌
0
(𝜔 + 1) 2𝜋

(8𝜋𝐺/3)
3/2
𝑇
0
𝑎
4
(𝜌 − 𝜌

2
/𝜌
𝑐
)
3/2

× [3𝜔

𝜌 − 2𝜌
2
/𝜌
𝑐

𝜌 − 𝜌
2
/𝜌
𝑐

+

3

𝜌
𝑐
(1 − 𝜌/𝜌

𝑐
)

+ 1] .

(22)
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One can easily check that at the late time the above relation
reduces to

𝑆
󸀠

𝑓
󳨀→ (𝜔 + 1) (3𝜔 + 1) 𝑎

9𝜔/2+1/2
, (23)

and thus for the second derivative in this limit we obtain

𝑆
󸀠󸀠

𝑓
≈

(9𝜔 + 1) (3𝜔 + 1) (𝜔 + 1)

2

𝑎
9𝜔−1/2

. (24)

This implies 𝜔 < 1 for the dominating background compo-
nent. This is due to the fact that

𝑆
󸀠

𝑓

𝑆
󸀠

ℎ

∼

𝑆
󸀠󸀠

𝑓

𝑆
󸀠󸀠

ℎ

󳨀→ 𝑎
3(𝜔−1)/2

󳨐⇒ 𝜔 < 1. (25)

Now, it is clear that in the limit of −1 ≤ 𝜔 ≤ −2/3, the
background piece of entropy dominates and is responsible for
satisfying the GSL of thermodynamics. From (18) and (20),
in the high density limit, one finds condition 𝜔 ≤ −3/2 for
satisfying the GSL, which is compatible with phantom regime
(𝜔 < −1).

4. IR Deformed Horava-Liftshitz Cosmology

Inspired by Lifshitz theory in solid state physics, Horava
proposed a field theory model for a UV complete theory
of gravity [60–62]. This theory is a nonrelativistic reno-
rmalizable theory of gravity and reduces to Einstein’s gen-
eral relativity at large scales. The theory is usually referred
to as the Horava-Lifshitz (HL) theory. It has also manifested
three-dimensional spatial general covariance and time rep-
arametrization invariance. Various aspects of HL gravity have
been investigated in the literature [63–69]. In HL theory, that
reduces to Einstein’s general relativity at large scales, quantum
field theory definitions of time and space come over Einstein’s
proposal and so, in the large scales, Lorentzian symmetry is
achievable. The action of HL gravity is given by [60–62]

𝐼SH = ∫𝑑𝑡𝑑
3
𝑥 (L
0
+
̃L
1
+L
𝑚
) ,

L
0
= √𝑔𝑁{

2

𝜅
2
(𝐾
𝑖𝑗
𝐾
𝑖𝑗
− 𝜆𝐾
2
) +

𝜅
2
𝜇
2
(Λ
𝑊
𝑅 − 3Λ

2

𝑊
)

8 (1 − 3𝜆)

} ,

̃L
1
= √𝑔𝑁{

𝜅
2
𝜇
2
(1 − 4𝜆)

32 (1 − 3𝜆)

𝑅
2
−

𝜅
2

2𝜉
4
(𝐶
𝑖𝑗
−

𝜇𝜉
2

2

𝑅
𝑖𝑗
)

×(𝐶
𝑖𝑗
−

𝜇𝜉
2

2

𝑅
𝑖𝑗
)} ,

(26)

where 𝜅2, 𝜆, and 𝜉 are dimensionless constant parameters
while 𝜇 and Λ

𝑊
are constant parameters with mass dimen-

sions. Here𝐾
𝑖𝑗
is the extrinsic curvature which takes the form

𝐾
𝑖𝑗
=

1

2𝑁

( ̇𝑔
𝑖𝑗
− ∇
𝑖
𝑁
𝑗
− ∇
𝑗
𝑁
𝑖
) , (27)

and a dot denotes a derivative with respect to 𝑡 and covariant
derivatives defined with respect to the spatial metric 𝑔

𝑖𝑗
. In

the above action L
𝑚
stands for the lagrangian of the matter

field, 𝑅 and 𝑅
𝑖𝑗
are three-dimensional spatial Ricci scalar and

Ricci tensor, and 𝐶
𝑖𝑗
is the Cotton tensor defined as

𝐶
𝑖𝑗
= 𝜖
𝑖𝑘𝑙
∇
𝑘
(𝑅
𝑗

𝑙
−

1

4

𝑅𝛿
𝑗

𝑙
) = 𝜖
𝑖𝑘𝑙
∇
𝑘
𝑅
𝑗

𝑙
−

1

4

𝜖
𝑖𝑘𝑗
𝜕
𝑘
𝑅, (28)

where 𝜖𝑖𝑘𝑙 is the totally antisymmetric unit tensor. It is worth
mentioning that the IR vacuum of this theory is an anti de
Sitter (AdS) spacetime. Hence, it is interesting to take a limit
of the theory, whichmay lead to aMinkowskian spacetime in
the IR sector. For this purpose, onemaymodify the theory by
introducing 𝜇4𝑅 and then take the Λ

𝑊
→ 0 limit [70]. This

does not alter the UV properties of the theory, but it changes
the IR properties. That is, there exists a Minkowski vacuum,
instead of an AdS vacuum. We will now consider the limit of
this theory such that Λ

𝑊
→ 0. The deformed action of the

nonrelativistic renormalizable gravitational theory is given by
[70]:

𝐼SH = ∫𝑑𝑡𝑑
3
𝑥√𝑔𝑁{

2

𝜅
2
(𝐾
𝑖𝑗
𝐾
𝑖𝑗
− 𝜆𝐾
2
) −

𝜅
2

2𝜉
4
𝐶
𝑖𝑗
𝐶
𝑖𝑗

−

𝜇
2
𝜅
2

8

𝑅
𝑖𝑗
𝑅
𝑖𝑗
+

𝜅
2
𝜇

2𝜉
2
𝜖
𝑖𝑗𝑘
𝑅
𝑖𝑙
∇
𝑗
𝑅
𝑙

𝑘

+

𝜅
2
𝜇
2
(1 − 4𝜆)

32 (1 − 3𝜆)

𝑅
2
+ 𝜇
4
𝑅} .

(29)

In the IR limit, action (29) can be written as the standard
Einstein-Hilbert action in the ADM formalism provided [70]

𝜆 = 1, 𝑐
2
=

𝜅
2
𝜇
4

2

, 𝐺 =

𝜅
2

32𝜋𝑐

. (30)

The constant 𝜉 is given by [71]

𝜉 ≡

8𝜇
2
(3𝜆 − 1)

𝜅
2

. (31)

Besides, for 𝜉 → ∞ (equivalently, 𝜅2 → 0), action (29) red-
uces to the action of Einstein gravity.

The Friedmann equation, resulting from variation of
action (29) with respect to FRWmetric, turns out to be [70]

𝐻
2
=

𝜅
2

6 (3𝜆 − 1)

(𝜌 −

6𝑘𝜇
4

𝑎
2
−

3𝑘
2
𝜅
2
𝜇
2

8 (3𝜆 − 1) 𝑎
4
) . (32)

For 𝑘 = 0, there is no contribution from the higher order
derivative terms in the action. However, for 𝑘 ̸= 0, the higher
derivative terms are significant for small volume, that is, for
small 𝑎, and become insignificant for large 𝑎, where it agrees
with general relativity. The standard Friedmann equation is
recovered, in units where 𝑐 = 1, provided we define [68, 69]

𝐺cosm =

𝜅
2

16𝜋 (3𝜆 − 1)

, (33)

𝜅
2
𝜇
4

3𝜆 − 1

= 1, (34)
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where condition (34) also agrees for 𝜆 = 1 = 𝑐 with second
relation in (30). Here 𝐺cosm is the “cosmological” Newton’s
constant. In the IR limit where 𝜆 = 1 the Lorentz invariance is
restored, and hence 𝐺cosm = 𝐺. Using the above identifica-
tions, as well as definition (31), the Friedmann equation (32)
can be rewritten as

𝐻
2
+

𝑘

𝑎
2
=

8𝜋𝐺cosm
3

𝜌 +

𝑘
2

2𝜉𝑎
4
. (35)

One can easily see that in the limit 𝜉 → ∞ the dark radiation
term vanishes and the standard Friedmann equation is
restored for 𝜆 = 1 (𝐺cosm = 𝐺), as expected. For a flat universe
(𝑘 = 0), this equation reduces to

𝐻
2
=

8𝜋𝐺cosm
3

𝜌. (36)

In the deformed HL gravity, the entropy associated with the
event horizon of a static spherically symmetric black hole
takes the form [72]:

𝑆
ℎ
=

𝐴

4𝐺

+

𝜋

𝜉

ln 𝐴
𝐺

, (37)

where𝐴 = 4𝜋𝑟
2

+
is the area of the black hole horizon and 𝑘

𝐵
=

𝑐 = ℎ = 1 set for simplicity. Replacing 𝑟
+
with the Hubble

radius𝐻−1 in the flat FRWUniverse, we have for the entropy
of IR modified HL cosmology:

𝑆
ℎ
=

𝜋𝐻
−2

𝐺

+

𝜋

𝜉

ln 4𝜋𝐻
−2

𝐺

. (38)

Taking the first derivative of the entropy with respect to scale
factor, one gets

𝑆
󸀠

ℎ
=

3 (𝜔 + 1)

𝑎

[

𝜋

𝜉

+

3

8𝐺
2
𝑎
3(𝜔+1)

] , (39)

where we have used
𝑑 ln𝐻
𝑑 ln 𝑎

= −

3 (𝜔 + 1)

2

(40)

and relation (36). For the second derivative of entropy, we
have

𝑆
󸀠󸀠

ℎ
=

3 (𝜔 + 1)

𝑎
2

[−

𝜋

𝜉

+

3

8𝐺
2
(3𝜔 + 2) 𝑎

3(𝜔+1)
] . (41)

In the long run limit where 𝑎 → ∞, we have 3𝜔+3 ≥ 0, and
so we arrive at

𝑆
󸀠

ℎ
≈ (𝜔 + 1) 𝑎

3𝜔+2
,

𝑆
󸀠󸀠

ℎ
≈ (𝜔 + 1) (3𝜔 + 2) 𝑎

3𝜔+1
.

(42)

These results imply the range (−1 ≤ 𝜔 ≤ −2/3) for satisfying
𝑆
󸀠

ℎ
≥ 0 and 𝑆󸀠󸀠

ℎ
≤ 0. For the fluid which is enveloped by the

Hubble Horizon, we get

𝑆
󸀠

𝑓
=

9 (𝜔 + 1) (3𝜔 + 1) 𝑎
9𝜔+5

𝜌
0

32𝜋𝐺
2
𝑇
0

,

𝑆
󸀠󸀠

𝑓
=

9 (𝜔 + 1) (3𝜔 + 1) (9𝜔 + 5) 𝑎
9𝜔+4

𝜌
0

32𝜋𝐺
2
𝑇
0

.

(43)

The ratio between the fluid and the horizon entropy is given
by

𝑆
󸀠󸀠

𝑓

𝑆
󸀠󸀠

ℎ

≃

𝑆
󸀠

𝑓

𝑆
󸀠

ℎ

∼ 𝑎
6𝜔+3

, (44)

which implies 𝜔 < −1/2, for dominating spacetime entropy.
By comparing this condition with what we saw from (42), we
get

−1 ≤ 𝜔 ≤ −

2

3

, (45)

as a proper domain. Another condition arises from our
second assumption which implies 3𝜔 + 3 ≥ 0. If we consider
opposite statement (3𝜔 + 3 < 0) then for satisfying the GSL
by background fluid we find 𝜔 < −1, which is consistent with
(44).

5. DGP Braneworld Model

For spatially flat FRW background, the Friedmann equation
in DGP braneworld can be written as [73, 74]

𝐻
2
= (√

𝜇
2
𝜌

3

+

1

4𝑟
2

𝑐

+

𝜖

2𝑟
𝑐

)

2

, (46)

where 𝜇2 = 8𝜋𝐺
4
, 𝑟
𝑐
= 𝑀
2

𝑝
/2𝑀
2

5
is the crossover scale which

determines the transition from 4𝐷 to 5𝐷 behavior, and 𝜖 = ±1
corresponds to the two branches of theDGP braneworld [75].
Equation (46) with 𝜖 = 1 and 𝜌 = 0 has an interesting self-
accelerating solution with a Hubble parameter given by the
inverse of the crossover scale 𝑟

𝑐
[76]. It was shown in [77]

that there are some cosmological constraints that confine this
model beside its prediction about cross over scale which is
inconsistentwith reality (because its scale is of the order of the
Solar system). However, it has attracted some investigations.
The reason of these attempts comes from its view about
acceleration which have been argued in ample details in the
literatures [78–80]. Using (2) and (46) it is clear that in the
low densities the condition ̈𝑎 ≥ 0 is satisfied, independent of
𝜔. For high densities, 𝜔 ≤ −1/3 emerges as an upper bound
for 𝜔. The entropy associated with the apparent horizon in
this model is given by [81]

𝑆
ℎ
=

𝐴

4𝐺
4

(1 −

𝜖𝑟
𝐴

3𝑟
𝑐

) . (47)

It is obvious that, for 𝜖 = −1 entropy is positive, whereas for
𝜖 = +1, the positivity of entropy implies that 𝑟

𝐴
< 3𝑟
𝑐
, which

is consistent with numerical simulations [77]. By evaluating
the first derivative of the entropy, we find

𝑆
󸀠

ℎ
=

2𝜋𝜇
2
(𝜔 + 1) 𝜌

𝑎𝐺
4
√𝜇
2
𝜌/3 +1/(2𝑟

𝑐
)
2

(√𝜇
2
𝜌/3 + 1/(2𝑟

𝑐
)
2

+ 𝜖 (1/2𝑟
𝑐
))

3

× (1 − (𝜖𝑟
𝐴
/2𝑟
𝑐
)) .

(48)
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For 𝜖 = −1 the above expressionwill be nonnegative provided
that 𝜔 ≥ −1. For positive value of 𝜖, the condition 𝑆󸀠

ℎ
≥ 0

yields a similar result for 𝑟
𝐴
< 2𝑟
𝑐
, and phantom regime for

2𝑟
𝑐
< 𝑟
𝐴
< 3𝑟
𝑐
. In the limit of 𝑎 → ∞, one gets

𝑆
󸀠

ℎ
≈

3 (𝜔 + 1)

𝜇
2

𝑎
3𝜔+2

(1 −

𝜖√3

2𝑟
𝑐
𝜇

𝑎
−3((𝜔+1)/2)

) . (49)

For nonphantom regime and independent of the value of 𝜖,
we get 𝑆󸀠

ℎ
≈ (𝜔+1)𝑎

(3𝜔+2) and 𝑆󸀠󸀠
ℎ
≈ (𝜔+1)(3𝜔+2)𝑎

3𝜔+1, which
yields −1 ≤ 𝜔 ≤ −2/3 as a proper domain for satisfying GSL
by background. For the entropy of fluid, from (11) we find

𝑆
󸀠

𝑓
=

3𝑉𝜌 (𝜔 + 1)

𝑎𝑇

(

𝜇
2
𝜌

𝐻√𝜇
2
𝜌/3 + 1/4𝑟

2

𝑐

− 1) , (50)

where in the long run limit yields

𝑆
󸀠

𝑓
≈ 𝑎
(9𝜔+1)/2

,

𝑆
󸀠󸀠

𝑓
≈ 𝑎
(9𝜔−1)/2

.

(51)

The ratio between fluid and horizon entropy is given by

𝑆
󸀠󸀠

𝑓

𝑆
󸀠󸀠

ℎ

≃

𝑆
󸀠

𝑓

𝑆
󸀠

ℎ

≈ 𝑎
(3𝜔−3)/2

󳨐⇒ 𝜔 < 1. (52)

Comparing this condition with one previously obtained for
the satisfaction of the GSL, it becomes clear that, for −1 ≤

𝜔 ≤ −2/3, the DGP braneworld model approaches thermal
equilibrium in the late time, which is consistent with obser-
vations at the present time [41, 42]. In the phantom regime
where 2𝑟

𝑐
< 𝑟
𝐴
< 3𝑟
𝑐
, 𝜔 < −1, the ratio between fluid and

horizon entropy is given by

𝑆
󸀠󸀠

𝑓

𝑆
󸀠󸀠

ℎ

≃

𝑆
󸀠

𝑓

𝑆
󸀠

ℎ

≈ 𝑎
3𝜔
󳨐⇒ 𝜔 < 0. (53)

By calculating the asymptotic behavior of the entropy deriva-
tives in this regime, namely, 𝑆󸀠

ℎ
≃ −(𝜔 + 1)𝑎

(3𝜔+1)/2, 𝑆󸀠󸀠
ℎ
≃

−(𝜔+1)(3𝜔+1)𝑎
(3𝜔−1)/2, and considering the results of (53)we

get 𝜔 < −1.

6. Gauss Bonnet Gravity

The action of Gauss-Bonnet gravity in (𝑛+1) dimensions can
be written as

𝐼 =

1

16𝜋𝐺

∫𝑑
𝑛+1
𝑥√−𝑔 (𝑅 + 𝛼LGB) + 𝐼𝑚, (54)

where LGB = 𝑅
2
− 4𝑅
𝜇]𝑅
𝜇]
+ 𝑅
𝜇]𝜆𝜌𝑅
𝜇]𝜆𝜌 is the lagrangian

of the Gauss-Bonnet correction term, 𝛼 is the Gauss-Bonnet
coefficient which is a positive constant, and 𝐼

𝑚
denotes

the matter action. The Gauss-Bonnet term is a topological

term in four dimensions, and its expansion around flat
spacetime is ghost-free. Although the action includes higher
order derivatives of curvature terms, there are no more than
second-order derivatives of metric in the equation of motion.
The entropy of the static spherically symmetric black hole in
(𝑛 + 1)-dimensional Gauss-Bonnet theory has the following
form [82–86]:

𝑆
ℎ
=

𝐴

4𝐺

(1 +

𝑛 − 1

𝑛 − 3

2𝛼̃

𝑟
2

+

) , (55)

where 𝛼̃ = (𝑛 − 2)(𝑛 − 3)𝛼 and 𝐴 = 𝑛Ω
𝑛
𝑟
𝑛−1

+
. Taking into

account the entropy formula (55) for the apparent horizon,
using the apparent horizon radius 𝑟

𝐴
instead of the black

hole radius 𝑟
+
, and applying the first law, one obtains the

Friedmann equation in the Gauss-Bonnet cosmology as [9]

𝐻
2
+ 𝛼̃𝐻
4
=

16𝜋𝐺

𝑛 (𝑛 − 1)

𝜌. (56)

Taking the derivative with respect to scale factor 𝑎 and using
relation (6), one finds

𝑑𝐻

𝑑𝑎

= −

𝑛 (𝜔 + 1) 𝛽𝜌

2𝑎 [𝐻 + 2𝛼̃𝐻
3
]

, (57)

where 𝛽 = 16𝜋𝐺/𝑛(𝑛 − 1). After inserting (57) into (2) and
doing simple calculations, one arrives at

𝜔 ≤

2𝛼̃𝐻
4

𝑛𝛽𝜌

+

2 − 𝑛

𝑛

, (58)

where 𝐻 obviously decreases by expansion [87–89]; there-
fore, for small values of𝐻 (late time limit), this reduces to

𝜔 ≤

2

𝑛

(𝛼̃𝛽𝜌 + 1 −

𝑛

2

) . (59)

As a proper upper bound for density, one can consider
(2𝛼̃𝛽𝜌/𝑛+ (2− 𝑛)/𝑛) in which we have used𝐻2 ∼ 𝛽𝜌. Taking
the first derivative of the entropy of the apparent horizonwith
respect to the scale factor, we find

𝑆
󸀠

ℎ
=

𝑛
2
(𝑛 − 1)Ω

𝑛
(𝜔 + 1) 𝛽𝜌𝑟

𝑛

𝐴

8𝐺𝑎𝐻

, (60)

where we have used

𝑟
󸀠

ℎ
=

𝑑𝑟
𝐴

𝑑𝑎

=

𝑑𝑟
𝐴

𝑑𝐻

𝑑𝐻

𝑑𝑎

=

𝑛 (𝜔 + 1) 𝛽𝜌

2𝑎𝐻 [𝐻
2
+ 2𝛼̃𝐻

4
]

. (61)

Employing the second law of thermodynamics, we get 𝑤 ≥

−1, which implies a decreasing density, 𝜌 = 𝜌
0
𝑎
−𝑛(𝜔+1), in the

long run limit for negative values of𝜔.Therefore, we can neg-
lect the effects of higher orders of 𝐻 in the left hand side of
(56) and justify relation 𝐻2 ≃ 𝛽𝜌. By evaluating the second
derivative we get

𝑆
󸀠󸀠

ℎ
=

𝑛
2
(𝑛 − 1)Ω

𝑛
(𝜔 + 1) 𝛽𝜌

8𝐺𝑎
2
𝐻
𝑛+1

× [− (1 + 𝑛𝜔 + 𝑛) + 𝑎𝐻𝑟
󸀠

𝐴
(𝑛 + 1)] .

(62)
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In the long run limit 𝑟󸀠
𝐴
≃ 𝑛(𝜔 + 1)/2𝑎𝐻 and we have

𝑆
󸀠󸀠

ℎ
≈ (𝜔 + 1) [(𝜔 + 1) (𝑛

2
− 𝑛) − 2]

𝜌

𝑎
2
𝐻
𝑛+1

. (63)

Using the GSL of thermodynamics we find −1 ≤ 𝜔 ≤ −1 +

2/(𝑛
2
− 𝑛), which shows that the GSL can be satisfied by the

background fluid. Note that 𝜔 = −1 and 𝜔 = −1 + 2/(𝑛2 − 𝑛)
are roots of equation 𝑆󸀠󸀠

ℎ
= 0, and therefore condition 𝑆󸀠󸀠

ℎ
≤ 0 is

satisfied. Also, by using the result of applying the second law
to (60) which includes 𝜔 ≥ −1, it is obvious that GSL is sati-
sfied. For 𝑛 = 3, the result is the same as Einstein’s gravity [39].
By increasing 𝑛,𝜔 approaches−1 as a limiting value.Using the
Gibbs’ law for the fluid, we obtain

𝑆
󸀠

𝑓
=

𝑛 (𝜔 + 1)𝑉
𝑛
𝜌
0

𝑎
𝑛+1
𝑇
0

[

𝑛 (𝜔 + 1) 𝛽𝜌

2 (𝐻
2
+ 2𝛼̃𝐻

4
)

− 1] . (64)

Thus, in the long run limit we have 𝑆󸀠
𝑓
∼ ((𝑛(𝜔 + 1) − 2)/

2)𝑎
(𝑛
2
(𝜔+1)−2𝑛−2)/2 and 𝑆󸀠󸀠

𝑓
∼ 𝑎
(𝑛
2
(𝜔+1)−2𝑛−4)/2.The relations bet-

ween various components of entropy are as follows:

𝑆
󸀠󸀠

𝑓

𝑆
󸀠󸀠

ℎ

≃

𝑆
󸀠

𝑓

𝑆
󸀠

ℎ

∼ 𝑎
−(𝑛/2)(𝜔+3)

󳨐⇒ 𝑤 > −3. (65)

This result indicates −1 ≤ 𝜔 ≤ −1 + 2/(𝑛
2
− 𝑛) as a proper

domain for satisfying the GSL in Gauss-Bonnet gravity.

7. Conclusions and Discussion

The GSL of thermodynamics in cosmology not only implies
that the entropy of ourUniversemust be always a nondecreas-
ing function of scale factor 𝑆󸀠 ≥ 0, but also it must be a convex
function, 𝑆󸀠󸀠 ≤ 0, where the prime represents derivative with
respect to the scale factor 𝑎. Inspired by these requirements,
we investigated the total entropy within the Hubble horizon
in various models of cosmology. The satisfaction of these
conditions put upper and lower bounds on the equation of
state parameter𝜔 of each cosmologicalmodel.We considered
a cosmological background filled with a fluid with the linear
equation of state𝑝 = 𝜔𝜌.We exploited the entropy conditions
and studied the long run limit to derive the proper domain of
the 𝜔 parameter in various models of cosmology including
ghost dark energy, cyclic universe model, IR modified HL
cosmology, DGP braneworld, and Gauss-Bonnet cosmology.
The present investigation extends the results obtained earlier
and confirms that the acceptable range of the equation of
state parameter is severely restricted if the GSL remains to
be valid. Our investigations show that the satisfaction of
the GSL of thermodynamics in various cosmological models
requires the existence of some kind of energy in our Universe
with 𝜔 < −1/3. In other words, the existence of a dark
energy component or equivalently modified gravity theory,
is unavoidable if we require the cosmological models to
approach thermal equilibrium in the long run limit.
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onal field equations in Hořava-Lifshitz gravity,” Physical Review
D, vol. 81, no. 8, Article ID 084061, 8 pages, 2010.

[68] M. Jamil, E.N. Saridakis, andM.R. Setare, “The generalized sec-
ond law of thermodynamics in Hořava-Lifshitz cosmology,”
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